Skip to main content

Hamiltonian Quantization and BRST Symmetry of Skyrmion Models

  • Chapter
  • 721 Accesses

Abstract

In this chapter, in the framework of Dirac quantization, SU(2) Skyrmion is canonically quantized to yield modified predictions of static properties of baryons. We show that the energy spectrum of this Skyrmion obtained by the Dirac quantization method with a suggestion of generalized momenta is consistent with result of the improved Dirac Hamiltonian formalism [42]. We next apply the improved Dirac Hamiltonian method to the SU(2) Skyrmion and directly obtain the first class Hamiltonian. We also find that Poisson brackets of first class physical fields in extended phase space have the same structure as the well-known Dirac brackets. Furthermore, in this improved Dirac Hamiltonian scheme, effects of Weyl ordering correction on a baryon energy spectrum are shown to modify static properties of baryons. On the other hand, following BFV formalism [23, 26, 7982] we derive a BRST invariant gauge fixed Lagrangian as well as an effective action corresponding to the first class Hamiltonian.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here, one can easily check that the Skyrmion Lagrangian can be rewritten as \(L = -E + 2\mathcal{I}\vec{\alpha }^{2}\) by defining the new variables \(\alpha ^{k} = a^{0}\dot{a}^{k} -\dot{ a}^{0}a^{k} +\epsilon ^{\mathit{kpq}}a^{p}\dot{a}^{q}\).

  2. 2.

    In Ref. [137], the authors did not include the last term so that one cannot clarify the relations between the improved Dirac scheme and the Dirac bracket one. Also one can easily see that \(\Pi ^{\mu }\) is not the canonical momenta conjugate to the collective coordinates a μ any more since \(\Pi ^{\mu }\) depend on a μ, as expected.

  3. 3.

    Here, the first three terms are nothing but the three-sphere Laplacian [135] given in terms of the collective coordinates and their derivatives to yield the eigenvalues l(l + 2).

  4. 4.

    Due to the missing factor \(a^{\sigma }a^{\sigma }\) in the denominators in Eq. (6.12) which is ignored in Refs. [135, 137], apart from − c 2 originated from the additional c-term in Eq. (6.14) we obtain the Weyl ordering correction 9∕4, different from the value 5∕4 given in Ref. [135].

  5. 5.

    For the delta magnetic moments, we use the experimental data of Nefkens et al.[165].

  6. 6.

    Here, one notes that the Poisson brackets of \(\tilde{\mathcal{F}}\)’s have the same structure as that of the corresponding Dirac brackets [75].

  7. 7.

    Here, we have the modified predictions c = 0. 22 and \(\bar{c} = 0.34\) of the standard rigid rotator without the pion mass since the numerical evaluation for the inertia parameters should be fixed with the values \(\mathcal{I}_{1}^{-1} = 196\,\mathrm{MeV}\), \(\mathcal{I}_{2}^{-1} = 528\,\mathrm{MeV}\), \(\Gamma _{0}^{-1} = 182\,\mathrm{MeV}\) and E = 866 MeV, instead of \(\mathcal{I}_{1}^{-1} = 211\,\mathrm{MeV}\), \(\mathcal{I}_{2}^{-1} = 552\,\mathrm{MeV}\), \(\Gamma _{0}^{-1} = 202\,\mathrm{MeV}\) and E = 862 MeV which yields c = 0. 28 and \(\bar{c} = 0.35\) [126], to be consistent with the parameter fit \(f_{\pi } = 64.5\,\mathrm{MeV},\ e = 5.45\) used in the massless standard SU(2) Skyrmion [158]. One notes also that the bound state approach does not include the quartic terms in the kaon field.

References

  1. P.A.M. Dirac, Lectures in Quantum Mechanics (Yeshiva University, New York, 1964)

    Google Scholar 

  2. I.A. Batalin, E.S. Fradkin, Phys. Lett. B 180, 157 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  3. A.J. Niemi, Phys. Lett. B 213, 41 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Fujiwara, Y. Igarashi, J. Kubo, Nucl. Phys. B 341, 695 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Y.W. Kim, S.K. Kim, W.T. Kim, Y.J. Park, K.Y. Kim, Y. Kim, Phys. Rev. D 46, 4574 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. S.T. Hong, Y.W. Kim, Y.J. Park, Phys. Rev. D 59, 114026 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. S.T. Hong, Y.J. Park, Mod. Phys. Lett. A 15, 913 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. S.T. Hong, Y.J. Park, Phys. Rev. D 63, 054018 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  10. W. Oliveira, J.A. Neto, Int. J. Mod. Phys. A 12, 4895 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. E.S. Fradkin, G.A. Vilkovisky, Phys. Lett. B 55, 224 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. S. Hamamoto, Prog. Theor. Phys. 95, 441 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Bowick, D. Karabali, L.C.R. Wijewardhana, Nucl. Phys. B 271, 417 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  14. M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  15. E. Witten, Nucl. Phys. B 223, 422 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Witten, Nucl. Phys. B 223, 433 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  17. S.T. Hong, B.Y. Park, Nucl. Phys. A 561, 525 (1993)

    Article  Google Scholar 

  18. K.M. Westerberg, I.R. Klebanov, Phys. Rev. D 50, 5834 (1994)

    Article  ADS  Google Scholar 

  19. I.R. Klebanov, K.M. Westerberg, Phys. Rev. D 53, 2804 (1996)

    Article  ADS  Google Scholar 

  20. J.A. Neto, J. Phys. G 21, 695 (1995)

    Article  ADS  Google Scholar 

  21. K. Fujii, N. Ogawa, Prog. Theor. Phys. Suppl. 109, 1 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  22. T.D. Lee, Particle Physics and Introduction to Field Theory (Harwood, New York, 1981)

    Google Scholar 

  23. L.D. Faddeev, Theor. Math. Phys. 1, 1 (1970)

    Article  MathSciNet  Google Scholar 

  24. P. Senjanovich, Ann. Phys. 100, 277 (1976)

    Google Scholar 

  25. S.T. Hong, Y.W. Kim, Y.J. Park, Mod. Phys. Lett. A 15, 55 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. G.S. Adkins, C.R. Nappi, E. Witten, Nucl. Phys. B 228, 552 (1983)

    Article  ADS  Google Scholar 

  27. I. Zahed, G.E. Brown, Phys. Rep. 142, 1 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  28. S.T. Hong, B.Y. Park, D.P. Min, Phys. Lett. B 414, 229 (1997)

    Article  ADS  Google Scholar 

  29. B. Mueller et al., Phys. Rev. Lett. 78, 3824 (1997)

    Article  ADS  Google Scholar 

  30. W. Oliveira, J.A. Neto, Nucl. Phys. B 533, 611 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. G.S. Adkins, Chiral Solitons, ed. by K.F. Liu (World Scientific, Singapore, 1983)

    Google Scholar 

  32. B.M.K. Nefkens et al., Phys. Rev. D 18, 3911 (1978)

    Article  ADS  Google Scholar 

  33. M. Henneaux, C. Teitelboin, J. Zanelli, Nucl. Phys. B 332, 169 (1990)

    Article  ADS  Google Scholar 

  34. D. Kaplan, I.R. Klebanov, Nucl. Phys. B 335, 45 (1990)

    Article  ADS  Google Scholar 

  35. G.S. Adkins, C.R. Nappi, Nucl. Phys. B 233, 109 (1984)

    Article  ADS  Google Scholar 

  36. M.V. Berry, Proc. R. Soc. A 392, 45 (1984)

    Article  ADS  MATH  Google Scholar 

  37. M.A. Nowak, M. Rho, I. Zahed, Chiral Nuclear Dynamics (World Scientific, Singapore, 1996)

    Book  Google Scholar 

  38. B. Moussallam, Ann. Phys. 225, 264 (1993)

    Article  ADS  Google Scholar 

  39. J.I. Kim, B.Y. Park, Phys. Rev. D 57, 2853 (1998)

    Article  ADS  Google Scholar 

  40. G. Pari, B. Schwesinger, H. Walliser, Phys. Lett. B 255, 1 (1991)

    Article  ADS  Google Scholar 

  41. B. Schwesinger, Nucl. Phys. A 537, 253 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hong, ST. (2015). Hamiltonian Quantization and BRST Symmetry of Skyrmion Models. In: BRST Symmetry and de Rham Cohomology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9750-4_6

Download citation

Publish with us

Policies and ethics