Advertisement

Hamiltonian Quantization and BRST Symmetry of Skyrmion Models

Chapter
  • 602 Downloads

Abstract

In this chapter, in the framework of Dirac quantization, SU(2) Skyrmion is canonically quantized to yield modified predictions of static properties of baryons. We show that the energy spectrum of this Skyrmion obtained by the Dirac quantization method with a suggestion of generalized momenta is consistent with result of the improved Dirac Hamiltonian formalism [42]. We next apply the improved Dirac Hamiltonian method to the SU(2) Skyrmion and directly obtain the first class Hamiltonian. We also find that Poisson brackets of first class physical fields in extended phase space have the same structure as the well-known Dirac brackets. Furthermore, in this improved Dirac Hamiltonian scheme, effects of Weyl ordering correction on a baryon energy spectrum are shown to modify static properties of baryons. On the other hand, following BFV formalism [23, 26, 79, 80, 81, 82] we derive a BRST invariant gauge fixed Lagrangian as well as an effective action corresponding to the first class Hamiltonian.

Keywords

Skyrme Model Dirac Brackets Class Physical Fields flavor Symmetry Breaking Effects Skyrme Lagrangian 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 14.
    P.A.M. Dirac, Lectures in Quantum Mechanics (Yeshiva University, New York, 1964)Google Scholar
  2. 15.
    I.A. Batalin, E.S. Fradkin, Phys. Lett. B 180, 157 (1986)CrossRefADSMathSciNetGoogle Scholar
  3. 22.
    A.J. Niemi, Phys. Lett. B 213, 41 (1988)CrossRefADSMathSciNetGoogle Scholar
  4. 23.
    T. Fujiwara, Y. Igarashi, J. Kubo, Nucl. Phys. B 341, 695 (1990)CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. 26.
    Y.W. Kim, S.K. Kim, W.T. Kim, Y.J. Park, K.Y. Kim, Y. Kim, Phys. Rev. D 46, 4574 (1992)CrossRefADSMathSciNetGoogle Scholar
  6. 42.
    S.T. Hong, Y.W. Kim, Y.J. Park, Phys. Rev. D 59, 114026 (1999)CrossRefADSMathSciNetGoogle Scholar
  7. 47.
    S.T. Hong, Y.J. Park, Mod. Phys. Lett. A 15, 913 (2000)CrossRefADSMathSciNetGoogle Scholar
  8. 50.
    S.T. Hong, Y.J. Park, Phys. Rev. D 63, 054018 (2001)CrossRefADSMathSciNetGoogle Scholar
  9. 59.
    J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971)CrossRefADSMathSciNetGoogle Scholar
  10. 75.
    W. Oliveira, J.A. Neto, Int. J. Mod. Phys. A 12, 4895 (1997)CrossRefADSzbMATHMathSciNetGoogle Scholar
  11. 79.
    E.S. Fradkin, G.A. Vilkovisky, Phys. Lett. B 55, 224 (1975)CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 82.
    S. Hamamoto, Prog. Theor. Phys. 95, 441 (1996)CrossRefADSMathSciNetGoogle Scholar
  13. 85.
    M. Bowick, D. Karabali, L.C.R. Wijewardhana, Nucl. Phys. B 271, 417 (1986)CrossRefADSMathSciNetGoogle Scholar
  14. 87.
    M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)zbMATHGoogle Scholar
  15. 115.
    E. Witten, Nucl. Phys. B 223, 422 (1983)CrossRefADSMathSciNetGoogle Scholar
  16. 116.
    E. Witten, Nucl. Phys. B 223, 433 (1983)CrossRefADSMathSciNetGoogle Scholar
  17. 118.
    S.T. Hong, B.Y. Park, Nucl. Phys. A 561, 525 (1993)CrossRefGoogle Scholar
  18. 126.
    K.M. Westerberg, I.R. Klebanov, Phys. Rev. D 50, 5834 (1994)CrossRefADSGoogle Scholar
  19. 127.
    I.R. Klebanov, K.M. Westerberg, Phys. Rev. D 53, 2804 (1996)CrossRefADSGoogle Scholar
  20. 135.
    J.A. Neto, J. Phys. G 21, 695 (1995)CrossRefADSGoogle Scholar
  21. 137.
    K. Fujii, N. Ogawa, Prog. Theor. Phys. Suppl. 109, 1 (1992)CrossRefADSMathSciNetGoogle Scholar
  22. 138.
    T.D. Lee, Particle Physics and Introduction to Field Theory (Harwood, New York, 1981)Google Scholar
  23. 141.
    L.D. Faddeev, Theor. Math. Phys. 1, 1 (1970)CrossRefMathSciNetGoogle Scholar
  24. 142.
    P. Senjanovich, Ann. Phys. 100, 277 (1976)Google Scholar
  25. 151.
    S.T. Hong, Y.W. Kim, Y.J. Park, Mod. Phys. Lett. A 15, 55 (2000)CrossRefADSMathSciNetGoogle Scholar
  26. 158.
    G.S. Adkins, C.R. Nappi, E. Witten, Nucl. Phys. B 228, 552 (1983)CrossRefADSGoogle Scholar
  27. 160.
    I. Zahed, G.E. Brown, Phys. Rep. 142, 1 (1986)CrossRefADSMathSciNetGoogle Scholar
  28. 161.
    S.T. Hong, B.Y. Park, D.P. Min, Phys. Lett. B 414, 229 (1997)CrossRefADSGoogle Scholar
  29. 162.
    B. Mueller et al., Phys. Rev. Lett. 78, 3824 (1997)CrossRefADSGoogle Scholar
  30. 163.
    W. Oliveira, J.A. Neto, Nucl. Phys. B 533, 611 (1998)CrossRefADSzbMATHMathSciNetGoogle Scholar
  31. 164.
    G.S. Adkins, Chiral Solitons, ed. by K.F. Liu (World Scientific, Singapore, 1983)Google Scholar
  32. 165.
    B.M.K. Nefkens et al., Phys. Rev. D 18, 3911 (1978)CrossRefADSGoogle Scholar
  33. 166.
    M. Henneaux, C. Teitelboin, J. Zanelli, Nucl. Phys. B 332, 169 (1990)CrossRefADSGoogle Scholar
  34. 167.
    D. Kaplan, I.R. Klebanov, Nucl. Phys. B 335, 45 (1990)CrossRefADSGoogle Scholar
  35. 168.
    G.S. Adkins, C.R. Nappi, Nucl. Phys. B 233, 109 (1984)CrossRefADSGoogle Scholar
  36. 169.
    M.V. Berry, Proc. R. Soc. A 392, 45 (1984)CrossRefADSzbMATHGoogle Scholar
  37. 170.
    M.A. Nowak, M. Rho, I. Zahed, Chiral Nuclear Dynamics (World Scientific, Singapore, 1996)CrossRefGoogle Scholar
  38. 171.
    B. Moussallam, Ann. Phys. 225, 264 (1993)CrossRefADSGoogle Scholar
  39. 172.
    J.I. Kim, B.Y. Park, Phys. Rev. D 57, 2853 (1998)CrossRefADSGoogle Scholar
  40. 173.
    G. Pari, B. Schwesinger, H. Walliser, Phys. Lett. B 255, 1 (1991)CrossRefADSGoogle Scholar
  41. 174.
    B. Schwesinger, Nucl. Phys. A 537, 253 (1992)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Science EducationEwha Womans UniversitySeoulRepublic of Korea

Personalised recommendations