Hamiltonian Quantization and BRST Symmetry of Soliton Models



In this chapter, we apply the improved Dirac Hamiltonian method to O(3) nonlinear sigma model, and obtain a compact form of the nontrivial first class Hamiltonian by introducing the first class physical fields. Furthermore, following the BFV formalism [23, 26, 79–82], we derive BRST invariant gauge fixed Lagrangian through standard path integral procedure. Introducing collective coordinates, we also study semi-classical quantization of soliton background [43]. We next study Schrödinger representation of the O(3) nonlinear sigma model to obtain the corresponding energy spectrum as well as the BRST Lagrangian [143].


Nonlinear Sigma Model Class Physical Fields Faddeev Model Extended Phase Space Class Constraints 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 14.
    P.A.M. Dirac, Lectures in Quantum Mechanics (Yeshiva University, New York, 1964)Google Scholar
  2. 15.
    I.A. Batalin, E.S. Fradkin, Phys. Lett. B 180, 157 (1986)CrossRefADSMathSciNetGoogle Scholar
  3. 22.
    A.J. Niemi, Phys. Lett. B 213, 41 (1988)CrossRefADSMathSciNetGoogle Scholar
  4. 23.
    T. Fujiwara, Y. Igarashi, J. Kubo, Nucl. Phys. B 341, 695 (1990)CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. 26.
    Y.W. Kim, S.K. Kim, W.T. Kim, Y.J. Park, K.Y. Kim, Y. Kim, Phys. Rev. D 46, 4574 (1992)CrossRefADSMathSciNetGoogle Scholar
  6. 42.
    S.T. Hong, Y.W. Kim, Y.J. Park, Phys. Rev. D 59, 114026 (1999)CrossRefADSMathSciNetGoogle Scholar
  7. 43.
    S.T. Hong, W.T. Kim, Y.J. Park, Phys. Rev. D 60, 125005 (1999)CrossRefADSMathSciNetGoogle Scholar
  8. 53.
    S.T. Hong, S.H. Lee, Eur. Phys. J. C 25, 131 (2002)CrossRefADSGoogle Scholar
  9. 54.
    S.T. Hong, A.J. Niemi, Phys. Rev. D 72, 127701 (2005)CrossRefADSMathSciNetGoogle Scholar
  10. 58.
    S.T. Hong, Y.J. Park, Phys. Rep. 358, 143 (2002)CrossRefADSzbMATHGoogle Scholar
  11. 75.
    W. Oliveira, J.A. Neto, Int. J. Mod. Phys. A 12, 4895 (1997)CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 79.
    E.S. Fradkin, G.A. Vilkovisky, Phys. Lett. B 55, 224 (1975)CrossRefADSzbMATHMathSciNetGoogle Scholar
  13. 82.
    S. Hamamoto, Prog. Theor. Phys. 95, 441 (1996)CrossRefADSMathSciNetGoogle Scholar
  14. 85.
    M. Bowick, D. Karabali, L.C.R. Wijewardhana, Nucl. Phys. B 271, 417 (1986)CrossRefADSMathSciNetGoogle Scholar
  15. 138.
    T.D. Lee, Particle Physics and Introduction to Field Theory (Harwood, New York, 1981)Google Scholar
  16. 139.
    N. Vilenkin, Special Functions and the Theory of Group Representations (American Mathematical Society, Providence, 1968)zbMATHGoogle Scholar
  17. 143.
    S.T. Hong, K.D. Rothe, Ann. Phys. 311, 417 (2004)CrossRefADSzbMATHMathSciNetGoogle Scholar
  18. 151.
    S.T. Hong, Y.W. Kim, Y.J. Park, Mod. Phys. Lett. A 15, 55 (2000)CrossRefADSMathSciNetGoogle Scholar
  19. 152.
    M. Levy, Nuo. Cim. A 52, 23 (1967)CrossRefADSGoogle Scholar
  20. 155.
    D. Black, A.H. Fariborz, S. Moussa, S. Nasri, J. Schechter, Phys. Rev. D 6, 014031 (2001)CrossRefADSGoogle Scholar
  21. 156.
    S.T. Hong, D.P. Min, J. Korean Phys. Soc. 30, 516 (1997)Google Scholar
  22. 157.
    L.D. Faddeev, Princeton Report No. IAS-75-QS70 (1970)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Science EducationEwha Womans UniversitySeoulRepublic of Korea

Personalised recommendations