Skip to main content

Hamiltonian Quantization with Constraints

  • Chapter
Book cover BRST Symmetry and de Rham Cohomology
  • 742 Accesses

Abstract

In the framework of the Dirac quantization with the second class constraints, a free particle moving on surface of (d − 1)-dimensional sphere has ambiguity in its energy spectrum due arbitrary shift of canonical momenta. In this chapter, we show that this spectrum obtained by the Dirac method can be consistent with that of the improved Dirac Hamiltonian formalism at the level of the first class constraint by fixing ambiguity, and then we discuss its physical consequences [48]. We next study a free particle system residing on torus to investigate its first class Hamiltonian associated with its Stückelberg coordinates [56].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, one can include the constraint (2.44) explicitly in the Lagrangian to yield \(L_{T} = L + u(r - a),\) with Lagrangian multiplier u. One can then obtain primary constraint \(\Omega _{0} = p_{u},\) with p u being momentum conjugate to u. The Hamiltonian is then given by \(H_{T} = H - u(r - a),\) and successive time evolutions of \(\Omega _{0}\) reproduce \(\Omega _{1} = r - a\) and \(\Omega _{2} = p_{r}\). The condition \(\{\Omega _{2},H_{T}\} = 0,\) fixes value of u, namely \(u = -p_{\theta }^{2}/(\mathit{mr}^{3}) - p_{\phi }^{2}\sin \theta /[m(b + r\sin \theta ]^{3},\) which can terminate series of constraints. Since \(\Omega _{0}\) is first class, one can thus end up with two second class constraints \(\Omega _{1}\) and \(\Omega _{2}\), which are used in the context.

References

  1. B. De Witt, Rev. Mod. Phys. 29, 377 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Dekker, Physica A 103, 586 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Dita, Phys. Rev. A 56, 2574 (1997)

    Article  ADS  Google Scholar 

  4. E. Abdalla, R. Banerjee, Braz. J. Phys. 31, 80 (2001)

    Article  ADS  Google Scholar 

  5. P.A.M. Dirac, Lectures in Quantum Mechanics (Yeshiva University, New York, 1964)

    Google Scholar 

  6. I.A. Batalin, E.S. Fradkin, Phys. Lett. B 180, 157 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  7. A.J. Niemi, Phys. Lett. B 213, 41 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Banerjee, Phys. Rev. D 48, R5467 (1993)

    Article  ADS  Google Scholar 

  9. S.T. Hong, Y.W. Kim, Y.J. Park, Phys. Rev. D 59, 114026 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. S.T. Hong, W.T. Kim, Y.J. Park, Mod. Phys. Lett. A 15, 1915 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. S.T. Hong, Mod. Phys. Lett. A 20, 1577 (2005)

    Article  ADS  MATH  Google Scholar 

  12. W. Oliveira, J.A. Neto, Int. J. Mod. Phys. A 12, 4895 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. S.T. Hong, Mod. Phys. Lett. A 20, 1577 (2005)

    Article  ADS  MATH  Google Scholar 

  14. J.A. Neto, J. Phys. G 21, 695 (1995)

    Article  ADS  Google Scholar 

  15. J.A. Neto, W. Oliveira, Int. J. Mod. Phys. A 14, 3699 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. K. Fujii, N. Ogawa, Prog. Theor. Phys. Suppl. 109, 1 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  17. T.D. Lee, Particle Physics and Introduction to Field Theory (Harwood, New York, 1981)

    Google Scholar 

  18. N. Vilenkin, Special Functions and the Theory of Group Representations (American Mathematical Society, Providence, 1968)

    MATH  Google Scholar 

  19. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hong, ST. (2015). Hamiltonian Quantization with Constraints. In: BRST Symmetry and de Rham Cohomology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9750-4_2

Download citation

Publish with us

Policies and ethics