Skip to main content

Airfoil Aerodynamics

  • Chapter
  • First Online:
  • 5103 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 110))

Abstract

In this chapter we present the aerodynamics about two-dimensional lift-producing wing sections (airfoils) at low transonic conditions. It is shown how various design parameters influence the velocity distribution and the shock formation over an airfoil. The development of supercritical airfoils is explained from a historic perspective. First the advantages of natural laminar flow sections are explained for subsonic conditions prior to the formation local supersonic flow. It is shown how the supercritical airfoil distinguishes itself in terms pressure distribution and drag behavior once transonic conditions are encountered. Furthermore, it is demonstrated that transonic flow limitations can play a major role in the maximum lift coefficient of (multi-element) airfoils at Mach numbers as low as 0.25. A theoretical limit of the local Mach number is derived that effectively limits the amount of suction that can be generated over the upper surface of an airfoil. Also the concept of shock-boundary layer interaction is further expanded in this chapter. It is shown how periodic separation at the shock foot and shock oscillation can interact to produce a high-frequency pressure fluctuation known as transonic buffet. This chapter contains 4 examples and 16 practice problems at the end of the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The program that is used for this evaluation is Xfoil version 6.94. XFOIL carries out a vortex-panel analysis of subsonic isolated airfoils and has the option to include a boundary layer. More information can be found on http://web.mit.edu/drela/Public/web/xfoil/.

  2. 2.

    MSES is a viscous-inviscid analysis program that couples the numerical solution of the Von Kármán equation (6.89) in the boundary layer to the numerical solution of the steady state conservative Euler equations (2.183) outside the boundary layer. More information can be found in Refs. [10, 15].

  3. 3.

    This prediction is carried out by Xfoil 6.94 using an \(e^N\) method for transition prediction with \(N_{\text {crit}}=10\).

  4. 4.

    One drag count equals a drag coefficient variation of 0.0001.

  5. 5.

    This calculation procedure for obtaining the pressure drag is often called a “near-field analysis”.

  6. 6.

    The prediction was made by assuming the flow to be inviscid (Euler solution).

  7. 7.

    A monotonic curvature means that the Mach wave is either entirely convex or entirely concave. If Mach wave curvature is not monotonic it means an inflection point is present somewhere on the Mach wave.

  8. 8.

    The data presented in this problem is based on an experiment described in [43]. In this experiment the shock movement was introduced trough a periodic change in angle of attack around \(\alpha =3.0\) of a NLR 7301 airfoil at \(M=0.70\).

References

  1. Abbott, I.H., von Doenhoff, A.E.: Theory of Wing Sections. Dover Publications, New York (1959)

    Google Scholar 

  2. Anderson, J.: Modern Compressible Flow with Historic Perspective, 3rd edn. McGraw Hill, New York (2003)

    Google Scholar 

  3. Anderson, J.: Fundamentals of Aerodynamics, 5th edn. McGraw Hill, New York (2010)

    Google Scholar 

  4. Anon.: The supercritical airfoil. NASA TF-2004-13 DFRC (2004)

    Google Scholar 

  5. Axelson, J.A.: Estimation of transonic aircraft aerodynamics to high angles of attack. AIAA paper 75-996, Los Angeles (1975)

    Google Scholar 

  6. van den Berg, B.: Reynolds number and Mach number effects on the maximum lift and the stalling characteristics of wings at low speed. NLR TR 69025 U, Amsterdam (1969)

    Google Scholar 

  7. Blackerby, W., Johnson, J.: Application of advanced technologies to improve C-141 cruise performance. In: 17th Aerospace Sciences Meeting. AIAA 79-0066, New Orleans (1979)

    Google Scholar 

  8. Boerstoel, J.W., Uijlenhoet, R.: Lifting aerofoils with supercritical shockless flow. In: Proceedings of ICAS (1970)

    Google Scholar 

  9. Carpentieri, G.: An adjoint-based shape-optimization method for aerodynamic design. Ph.D. thesis, Delft University of Technology (2009)

    Google Scholar 

  10. Drela, M., Giles, M.B.: Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J. 25(10), 1347–1355 (1987). doi:10.2514/3.9789

    Article  MATH  Google Scholar 

  11. Emmons, H.W.: The theoretical flow of a frictionless, adiabatic, perfect gas inside of a two-dimensional hyperbolic nozzle. NACA TN 1003 (1946)

    Google Scholar 

  12. Fischenberg, D., Jategaonkar, R.V.: Identification of aircraft stall behavior from flight test data. In: RTO SCI Symposium on “System Identification for Integrated Aircraft Development and Flight Testing”. RTO MP-11, Madrid, Spain (1998)

    Google Scholar 

  13. Flaig, A., Hilbig, R.: High-lift design for large civil aircraft. In: AGARD Conference Proceedings CP-515, pp. 31.1–31.12. AGARD (1993)

    Google Scholar 

  14. Gibb, J.: The cause and cure of periodic flows at transonic speeds. In: Proceedings of ICAS, pp. 1522–1530. ICAS-88-3.10.1 (1988)

    Google Scholar 

  15. Giles, M.B., Drela, M.: Two-dimensional transonic aerodynamic design method. AIAA J. 25(9), 1199–1206 (1987). doi:10.2514/3.9768

    Article  Google Scholar 

  16. Göthert, B.: Widerstandsanstieg bei Profilen im Bereich hoher Unterschallgeschwindigkeiten, Deutche Versuchsanstalt fur Luftfahrt, E.V. Untersuchungen und Mitteilungen Nr. 1167 (1944)

    Google Scholar 

  17. Harris, C.D.: NASA supercritical airfoils; a matrix of family related airfoils. NASA TP2969, Langley (1990)

    Google Scholar 

  18. Hemenover, A.D.: Tests of the NACA 64-010 and 64A010 airfoil sections at high subsonic Mach numbers. NACA-RM-A9E31. Moffett Field (1949)

    Google Scholar 

  19. Hoak, D.E., Anderson, R., Goss, C.R.: USAF Stability and Control Datcom. Air Force Wright Aeronautical Laboratories, Wright Patterson Air Force Base, Ohio (1978)

    Google Scholar 

  20. Iovnovich, M., Raveh, D.E.: Reynolds-averaged Navier-Stokes study of the shock-buffet instability mechanism. AIAA J. 50(4), 880–890 (2012). doi:10.2514/1.J051329

    Article  Google Scholar 

  21. Jameson, A., Ou, K.: 50 years of transonic aircraft design. Prog. Aerosp. Sci. 47(5), 308–318 (2011). doi:10.1016/j.paerosci.2011.01.001

    Article  Google Scholar 

  22. Johnson, D.A., Spaid, F.W.: Supercritical airfoil boundary-layer and near-wake measurements. J. Aircr. 20(4), 298–305 (1983)

    Article  Google Scholar 

  23. Kacprznski, J., Ohman, L.H., Garabedian, P.R., Korn, D.G.: Analysis of the Flow Past a Shockless Lifting Airfoil in Design and Off-Design Conditions. NRCC LR-554, Ottawa (1971)

    Google Scholar 

  24. Laitone, E.: Local supersonic region on a body moving at subsonic speeds. In: Oswatitish, K. (ed.) Symposium Transsonicum, vol. I, pp. 57–70. Springer, Heidelberg (1964)

    Google Scholar 

  25. LeBalleur, J.C., Girodroux-Lavigne, P.: Viscous-inviscid strategy and computation of transonic buffet. In: Zierep, J., Oertel, H. (eds.) Symposium Transsonicum III. IUTAM, pp. 49–63. Springer, Berlin (1988)

    Google Scholar 

  26. Lee, B.: Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aerosp. Sci. 37(2), 147–196 (2001). doi:10.1016/S0376-0421(01)00003-3

    Article  Google Scholar 

  27. Lin, C.C., Rubinov, S.I.: On the flow behind curved shocks. J. Math. Phys. 27(2), 105–129 (1948)

    MATH  MathSciNet  Google Scholar 

  28. Maki, R., Hunton, L.: Investigation at subsonic speeds of several modifications to the leading-edge region of the NACA 64A010 airfoil section designed to increase maximum lift. NACA TN 3871. Moffett Field (1956)

    Google Scholar 

  29. Mayer, J.P.: A limit pressure coefficient and an estimation of limit forces on airfoils at supersonic speeds. NACA RM L8F23, Langley Field (1948)

    Google Scholar 

  30. McCullough, G.B., Gault, D.E.: Examples of three representative types of airfoil-section stall at low speed. NACA TN 2502. Moffett Field (1951)

    Google Scholar 

  31. McGhee, R., Beasley, W.: Low-speed aerodynamic characteristics of a 17%-thick-airfoil section for general aviation applications. NASA TN-D-7428. Hampton (1973)

    Google Scholar 

  32. Nieuwland, G.Y., Spee, B.M.: Transonic airfoils: recent developments in theory, experiment, and design. Annu. Rev. Fluid Mech. 5, 119–150 (1973)

    Article  Google Scholar 

  33. Obert, E.: Aerodynamic Design of Transport Aircraft. IOS Press, Delft (2009)

    Google Scholar 

  34. Pearcey, H.H.: Some Effects of Shock-induced Separation of Turbulent Boundary Layers in Transonic Flow Past Aerofoils. National Physics Laboratory R&M 3108 (1955)

    Google Scholar 

  35. Pearcey, H.H.: The aerodynamic design of section shapes for swept wings. Adv. Aeronaut. Sci. 3, 277–322 (1963)

    Google Scholar 

  36. Ringleb, F.: Exakte Loesungen der Differntialgleichungen einer adiabatischen Gasstroemung. Zeitschrift fur angewandte Mathematik und Mechanik 20(4), 185–198 (1940)

    Article  MathSciNet  Google Scholar 

  37. Roskam, J.: Airplane Design, Part 6: Preliminary Calculation of Aerodynamic, Thrust and Power Characteristics. DARcorp, Lawrence (2006)

    Google Scholar 

  38. Smith, A.M.O.: High-lift aerodynamics. J. Aircr. 12(6), 501–530 (1975)

    Article  Google Scholar 

  39. Sobieczky, H., Seebass, A.R.: Supercritical airfoil and wing design. Annu. Rev. Fluid Mech. 16, 337–363 (1984)

    Google Scholar 

  40. Spreiter, J.R., Steffen, P.J.: Effect of Mach and Reynolds numbers on maximum lift coefficient. NACA TN 1044 (1946)

    Google Scholar 

  41. Standish, K.J., van Dam, C.P.: Aerodynamic analysis of blunt trailing edge airfoils. J. Sol. Energy Eng. 125(4), 479 (2003). doi:10.1115/1.1629103

    Article  Google Scholar 

  42. Stanewsky, E., Basler, D.: Mechanism and Reynolds Number Dependence of Shock-Induced Buffet on Transonic Airfoils. In: Zierep, J., Oertel, H. (eds.) Symposium Transsonicum III. IUTAM. Springer, Berlin (1988)

    Google Scholar 

  43. Tijdeman, H., Seebass, A.R.: Transonic flow past oscillating airfoils. Annu. Rev. Fluid Mech. 12, 181–222 (1980)

    Article  Google Scholar 

  44. Torenbeek, E.: Elements of aerodynamic wing design. Advanced Aircraft Design, Chap. 10. Wiley, Chichester (2013)

    Chapter  Google Scholar 

  45. Viken, J., Wagner, R.D.: Design limits of compressible NLF airfoils. In: 29th Aerospace Sciences Meeting. AIAA-91-0067, Reno (1991). doi:10.2514/6.1991-67

  46. Vogelaar, H.: Wind-tunnel investigation on the two-dimensional F-29 model 12-1 airfoil section with various high lift devices at various Mach and Reynolds numbers. NLR TR 83059C (1983)

    Google Scholar 

  47. Whitcomb, R.T., Clark, L.R.: An Airfoil Shape for Efficient Flight at Supercritical Mach Numbers. NASA TM X-1109. Langley (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roelof Vos .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vos, R., Farokhi, S. (2015). Airfoil Aerodynamics. In: Introduction to Transonic Aerodynamics. Fluid Mechanics and Its Applications, vol 110. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9747-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9747-4_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9746-7

  • Online ISBN: 978-94-017-9747-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics