Skip to main content

Aerodynamics of Non-lifting Bodies

  • Chapter
  • First Online:
Book cover Introduction to Transonic Aerodynamics

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 110))

  • 4723 Accesses

Abstract

This chapter presents the sources of drag that are encountered by a nonlifting body that is moving at transonic Mach numbers. In inviscid conditions drag can be produced if the integrated pressure over a body has a component in the opposite direction to the flow (pressure drag). First, the reader is introduced to the relation between the geometry of a body and the pressure distribution over the body. Subsequently, a method for the calculation of the pressure drag over axisymmetric bodies is presented based on the linear potential flow equation. It is shown how the pressure drag is a function of the cross-sectional area distribution of the body. The concept of area ruling is presented and examples are shown of practical implementations of the area rule. If the flow is assumed viscous, other drag sources arise: friction drag and drag due to boundary-layer separation. A qualitative characterization of laminar and turbulent boundary layers is presented along with the concepts of transition and separation. Also, the interaction between shock and boundary layer (both weak and strong) is further detailed and it is shown how this influences drag divergence in transonic conditions. In addition, calculation methods are presented to estimate the boundary-layer properties of laminar and turbulent boundary layers along with their transition region for bodies subjected to an external pressure and velocity distribution. This chapter contains 8 examples and concludes with 29 practice problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See a text book on calculus such as Ref. [2] for details on logarithmic differentiation.

  2. 2.

    The interested reader is referred to Fick’s laws of diffusion [21].

  3. 3.

    Details on Crocco’s method can be found in Ref. [59].

  4. 4.

    In this context, the word critical is unrelated to the flow properties at sonic conditions.

  5. 5.

    For details on the Runge-Kutta method the reader is directed to an introductory text on numerical methods for differential equations, which is also covered in Ref. [30].

  6. 6.

    The Blasius velocity profile satisfies the nonlinear ordinary differential equation that can be derived from the boundary layer equations under specific assumptions, see (6.90a).

  7. 7.

    “Drag rise” is a term that describes the exponential increase in drag coefficient with Mach number.

References

  1. Abernathy, F.H.: Fundamentals of boundary layers. In: Illustrated Experiments in Fluid Mechanics. National Committee for Fluid Mechanics Films. Cambridge (1970)

    Google Scholar 

  2. Adams, R.A.: Calculus: A Complete Course, 4th edn. Addison Wesley Longman Ltd., Reading (1999)

    MATH  Google Scholar 

  3. Anderson, J.: Fundamentals of Aerodynamics, 5th edn. McGraw Hill, New York (2010)

    Google Scholar 

  4. Ashley, H., Landahl, M.: Aerodynamics of Wings and Bodies. Addison Wesley, Reading (1965)

    MATH  Google Scholar 

  5. Babinsky, H., Délery, J.: Transonic shock-wave-boundary-layer interactions. In: Shock-Wave Boundary-Layer Interactions, pp. 87–136. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  6. Bauer, A.B., Smith, A.M., Hess, J.L.: Potential flow and boundary layer theory as design tools in aerodynamics. Can. Aeronaut. Space J. 16(2), 53–69 (1970)

    Google Scholar 

  7. Braslow, A.: A History of Suction-Type Laminar-flow Control with Emphasis on Flight Research. NASA, Washington (1999)

    Google Scholar 

  8. Chan, Y.: An Experimental Study of the Transonic Equivalence Rule with Lift. Aeronautical report LR-609. National Aeronautical Establishment. National Research Council of Canada, Ottawa (1982)

    Google Scholar 

  9. Chan, Y.: An Experimental Study of the Transonic Equivalence Rule with Lift, Part II. Aeronautical report LR-614. National Aeronautical Establishment. National Research Council of Canada, Ottawa (1984)

    Google Scholar 

  10. Clauser, F.H.: The turbulent boundary layer. J. Aeronaut. Sci. 21, 91–108 (1954)

    Article  Google Scholar 

  11. Coles, D.E.: The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191–226 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  12. Coles, D.E., Hirst, E.A.: Computation of turbulent boundary layers. In: Proceedings of the AFOSR-IFP Stanford Conference, vol. 2. Stanford University, Stanford (1968)

    Google Scholar 

  13. Corke, T.C., Post, M.L., Orlov, D.M.: SDBD plasma enhanced aerodynamics: concepts, optimization and applications. Prog. Aerosp. Sci. 43(7–8), 193–217 (2007). doi:10.1016/j.paerosci.2007.06.001

    Article  Google Scholar 

  14. da Dosta, A.L.: Application of computational aerodynamics methods to the design and analysis of transport aircraft. In: Proceedings of ICAS, vol. 2, pp. 261–269 (1978)

    Google Scholar 

  15. Das, D.K.: A simple theory for calculating turbulent boundary layers under arbitrary pressure gradients. Int. J. Eng. Fluid Mech. 1, 83–99 (1988)

    Google Scholar 

  16. Delery, J.: Shock-wave boundary-layer interactions. In: Babinsky, H., Harvey, J. (eds.) Physical Introduction, Chap. 2, pp. 5–86. Cambridge University Press, New York (2011)

    Google Scholar 

  17. Donlan, C.J.: An Assessment of the Airplane Drag Problem at Transonic and Supersonic Speeds. NACA-RM-L54F16, Washington (1954)

    Google Scholar 

  18. Drela, M., Giles, M.B.: Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J. 25(10), 1347–1355 (1987). doi:10.2514/3.9789

    Article  MATH  Google Scholar 

  19. Felsch, K. O., Geropp, D., Waltz, A.: Method for turbulent boundary layer prediction. In: Proceedings of the Stanford Conference on the Computation of Turbdent Boundary Layers, pp. 170–176 (1968)

    Google Scholar 

  20. Ferri, A.: Elements of Aerodynamics of Supersonic Flows. Macmillan Company, New York (1949)

    MATH  Google Scholar 

  21. Fick, A.: Ueber diffusion. Annalen der Physik 170(1), 59–86 (1855)

    Article  Google Scholar 

  22. Gersten, K.: AGARD Report 299: Corner interference effects (1959)

    Google Scholar 

  23. Gleyzes, C.J., Cousteix, Bonnet, J.L.: Theoretical and experimental study of low Reynolds number transitional separation bubbles. In: Conference on Low Reynolds Number Airfoil Aerodynamics, pp. 137–152 (1985)

    Google Scholar 

  24. Goodmanson, L., Gratzer, L.: Recent advances in aerodynamics for transport aircraft. In: 9th Annual Meeting and Technical Display, Annual Meeting. American Institute of Aeronautics and Astronautics (1973). doi:10.2514/6.1973-9

  25. Hicks, R.M., Hopkins, E.J.: Effects of Spanwise Variation of Leading-Edge Sweep on the Lift, Drag, and Pitching Moment of a Wing-Body Combination at Mach Numbers from 0.7 to 2.94, NASA TN D-2236, Moffett Field (1964)

    Google Scholar 

  26. Hoerner, S.F.: Fluid Dynamic Drag. Hoerner Fluid Dynamics (1965)

    Google Scholar 

  27. Johnson, H.A., Rubesin, M.W.: Aerodynamic heating and convective heat transfer—summary of literature survey. Trans. ASME 71, 447–456 (1949)

    MathSciNet  Google Scholar 

  28. Kegelman, J.T., Mueller, T.J.: Experimental studies of spontaneous and forced transition on an axisymmetric body. AIAA J. 24(3), 397–403 (1986)

    Article  Google Scholar 

  29. Kotsonis, M., Giepman, R., Hulshoff, S., Veldhuis, L.: Numerical study of the control of Tollmien-Schlichting waves using plasma actuators. AIAA J. 51(10), 2353–2364 (2013). doi:10.2514/1.J051766

  30. Kreyszig, E.: Advanced Engineering Mathematics. Wiley, New York (1988)

    Google Scholar 

  31. Kutney, J.T., Piszkin, S.P.: Reduction of drag rise on the Convair 990 airplane. J. Aircr. 1(1), 8–12 (1964)

    Article  Google Scholar 

  32. Kutney Sr, J.: The inside story of the Convair 990 the fastest subsonic airliner in the world. In: Proceedings of AIAA Joint Propulsion Conference and Exhibit, July, pp. 1–18. AIAA-2007-5338 (2007)

    Google Scholar 

  33. Kuz’min, A.G.: Boundary-Value Problems for Transonic Flow. Wiley, Chichester (2002)

    Google Scholar 

  34. Laufer, J., Vrebalovich, T.: Stability and transition of a supersonic laminar boundary layer on an insulated flat plate. J. Fluid Mech. 9(2), 257–299 (1960). doi:10.1017/S0022112060001092

    Article  MATH  Google Scholar 

  35. Lees, L.: The Stability of the Laminar Boundary Layer in a Compressible Fluid. NACA TN 1360. Langley Field, Virginia (1947)

    Google Scholar 

  36. Liepmann, H.W.: The interaction between boundary layer and shock waves in transonic flow. J. Aeronaut. Sci. 13(12), 103–138 (1946)

    Google Scholar 

  37. Liepmann, H.W., Roshko, A.: Elements of Gas Dynamics. Wiley, New York (1957)

    Google Scholar 

  38. Little Jr., B.H.: Advantages and problems of large subsonic aircraft. In: AGARD-LS-37-High Reynolds Number Subsonic Aerodynamics. AGARD (1970)

    Google Scholar 

  39. Lobb, R.K., Winkler, E.M., Persh, J.: Experimental investigation of turbulent boundary layers in hypersonic flow. J. Aeronaut. Sci. 22(1), 1–9 (1955)

    Article  Google Scholar 

  40. MacWilkinson, D.G., Blackerby, W.T., Paterson, J.H.: February correlation of full-scale drag predictions with flight measurements of the C141A aircraft—phase II. Wind Tunnel Test, Analysis, and Prediction Techniques, NASA CR-2333, Marietta (1974)

    Google Scholar 

  41. Moulden, T.H.: Fundamentals of Transonic Flow. Wiley, New York (1984)

    MATH  Google Scholar 

  42. Nikuradse, J.: Stromungsgesetze in rauhen Rohren. Forsch. Arb. Ing.-Wes, p. 631 (1933)

    Google Scholar 

  43. Obert, E.: Aerodynamic Design of Transport Aircraft. IOS Press, Delft (2009)

    Google Scholar 

  44. Pfenniger, W.: Laminar flow control—laminarization. In: Special Course on Concepts for Drag Reduction, pp. 3.1–3.75. AGARD R-654 (1977)

    Google Scholar 

  45. Reynolds, O.: On the experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. Ser. A 174, 935–982 (1883)

    Article  MATH  Google Scholar 

  46. Rubesin, M.W., Maydew, R.C., Varga, S.A.: An Analytical and Experimental Investigation of the Skin Friction of the Turbulent Boundary Layer on a Flat Plate at Supersonic Speeds. NACA TN 2305. Moffett Field, California (1951)

    Google Scholar 

  47. Saric, W.S., Reed, H.L., White, E.B.: Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35(1), 413–440 (2003). doi:10.1146/annurev.fluid.35.101101.161045

    Article  MathSciNet  Google Scholar 

  48. Schlichting, H., Gestern, K.: Boundary Layer Theory, 8th edn. Springer, Berlin (1999)

    Google Scholar 

  49. Schlichting, H., Truckenbrot, E.: Aerodynamik des Flugzeuges. Springer, Heidelberg (1960)

    Book  MATH  Google Scholar 

  50. Shapiro, A.H.: The Dynamics and Thermodynamics of Compressible Fluid Flow. Ronald Press, New York (1953)

    Google Scholar 

  51. Shapiro, A.H.: Pressure fields and fluid acceleration. In: Illustrated Experiments in Fluid Mechanics. National Committee for Fluid Mechanics Films. Cambridge (1962)

    Google Scholar 

  52. Smith, A., Gamberoni, N.: Transition, Pressure Gradient, and Stability Theory. Douglas Aircraft Company, Rept. ES 26388 (1956)

    Google Scholar 

  53. Sommer, S.C., Short, B.J.: Free-Flight Measurements of Turbulent-Boundary-Layer Skin Friction in the Presence of Severe Aerodynamic Heating at Mach Numbers from 2.8 to 7.0. NACA TN 3391, Moffett Field (1955)

    Google Scholar 

  54. Spalding, D.B.: A single formula for the law of the wall. J. Appl. Mech. 28, 455–457 (1961)

    Article  MATH  Google Scholar 

  55. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer, 2nd edn. Taylor & Francis, Philadelphia (1997)

    Google Scholar 

  56. Thwaites, B.: Approximate calculation of the laminar boundary layer. Aeronaut. Q. 1, 245–280 (1949)

    MathSciNet  Google Scholar 

  57. Torenbeek, E., Wittenberg, H.: Generalized maximum specific range performance. J. Aircr. 20(7), 617–622 (1983)

    Article  Google Scholar 

  58. Van Driest, E.R.: Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18(3), 145–160 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  59. Van Driest, E.R.: Investigation of Laminar Boundary Layer in Compressible Fluids Using the Crocco Method. NACA TN 2597, Washington (1952)

    Google Scholar 

  60. van Ingen, J.L.: A Suggested Semi-Empirical Method for the Calculation of the Boundary-Layer Transition Region. TU Delft, Report VTH-74, Delft (1956)

    Google Scholar 

  61. van Ingen, J.L.: The eN method for transition prediction. Historical review of work at TU Delft. In: 38th Fluid Dynamics Conference and Exhibit, pp. 1–49. Seattle (2008)

    Google Scholar 

  62. von Kármán, T.: Uber laminare und turbulent Reibung. Zeitschrift fur Angewandte Mathematik und Mechanik 1(4), 233–252 (1921)

    Google Scholar 

  63. Wallace, L.E.: The Whitcomb area rule: NACA aerodynamics research and innovation. In: Mack, P.E. (ed.) From Engineering Science to Big Science, Chap. 5. National Aeronautics and Space Administration, History Office, Washington (1998)

    Google Scholar 

  64. Wazzan, A.R., Gazley Jr. C., Smith, A.: H-Rx method for predicting transition. J. Aircr. 19(6), 810–812 (1981)

    Google Scholar 

  65. Whitcomb, R.T.: A study of the zero-lift drag-rise characteristics of wing-body combinations near the speed of sound. NACA TR 1273 (1956)

    Google Scholar 

  66. White, F.M.: The stability of laminar flows. In: Viscous Fluid Flow, 2 edn. New York (1991)

    Google Scholar 

  67. Whitfield, D.: Integral Solution of Compressible Turbulent Boundary Layers Using Improved Velocity Profiles, Arnold Engineering Development Center AEDC-TR-78-42. Arnold Air Force Station, Tennessee (1978)

    Google Scholar 

  68. Whitford, R.: Chapter 3: fuselage design. In: Design for Air Combat, pp. 148–160. Jane’s, London (1987)

    Google Scholar 

  69. Wickens, R.H.: Aerodynamic design of low-drag fuselages. Can. Aeronaut. Space J. 36(4), 189–201 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roelof Vos .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vos, R., Farokhi, S. (2015). Aerodynamics of Non-lifting Bodies. In: Introduction to Transonic Aerodynamics. Fluid Mechanics and Its Applications, vol 110. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9747-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9747-4_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9746-7

  • Online ISBN: 978-94-017-9747-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics