Skip to main content

Abstract

Ecotoxicity impact assessment of chemicals in life cycle assessment (LCA) adheres to a number of underlying principles and boundary conditions: (1) a large number of emitted substances to cover (at least 100,000 potentially relevant elementary flows with current models covering around 2,500), (2) linearity of characterisation models, (3) conservation of mass and mass balance, (4) infinite time horizon, (5) additivity of toxicity, (6) assuming average conditions as best estimates to avoid bias in the comparison (including consideration of generic/average ecosystems and impacts). The cause-effect mechanism for ecotoxicity impacts of chemicals can be divided into four parts: (1) chemical fate (i.e. chemical behaviour/distribution in the environment), (2) exposure (i.e. bioavailability), (3) effects (i.e. affected species), and (4) severity (i.e. disappeared species). In terms of species represented, a freshwater ecosystem is described in this chapter by three trophic levels: (1) primary producers (e.g. algae), (2) primary consumers (i.e. invertebrates), and (3) secondary consumers (e.g. fish). Model uncertainty was estimated at about three orders of magnitude on top of important sources of parameter uncertainty such as degradation rates and effect factors. Current midpoint LCIA methodologies covering ecotoxicity include TRACI 2.0, and the ILCD recommended methodology, both employing the USEtox factors. Current LCIA methodologies covering midpoint and endpoint characterisation are ReCiPe, LIME, IMPACT 2002+, and IMPACT World+. Important research needs are (1) increasing substance coverage, (2) further developing marine and terrestrial ecotoxicity modelling for midpoint, (3) improving endpoint modelling for ecotoxicity towards biodiversity, (4) consideration of long-term emissions and impacts of metals, (5) importance of spatial and temporal variability, (6) mixture toxicity, and (7) decreasing model and parameter uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldenberg T, Jaworska J, Traas TP (2002) Normal species sensitivity distributions and probabilistic ecological risk assessment. In: Posthuma L, SuterII GW, Traas TP (eds) Species sensitivity distribution in ecotoxicology. Lewis, Boca Raton, pp 49–102

    Google Scholar 

  • Bare J (2011) TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technol Environ Policy 13(5):687–696. doi:10.1007/s10098-010-0338-9

    Article  CAS  Google Scholar 

  • Bare JC, Norris GA, Pennington DW, McKone T (2003) TRACI: the tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6(3–4):49

    Google Scholar 

  • Barnthouse LW, Fava JA, Humphreys K, Hunt R, Laibson L, Noesen S, Norris GA, Owens JW, Todd J, Vigon B, Weitz K, Young JS (1997) Life-cycle impact assessment: the state of the art, 2nd edn. SETAC Press, Pensacola

    Google Scholar 

  • Braunschweig A, Müller-Wenk R (1993) Oekobilanzen für Unternehmungen; eine Wegleitung für die Praxis. Eine Wegleitung für die PraxisVerlag Paul Haupt. Verlag Paul Haupt/BUWAL, Bern

    Google Scholar 

  • Chapman PM (2008) Environmental risks of inorganic metals and metalloids: a continuing, evolving scientific odyssey. Hum Ecol Risk Assess 14:5–40

    Article  CAS  Google Scholar 

  • Chapman PM, Wang F, Janssen CR, Goulet RR, Kamunde CN (2003) Conducting ecological risk assessments of inorganic metals and metalloids: current status. Hum Ecol Risk Assess 9:641–697

    Article  CAS  Google Scholar 

  • Diamond ML, Gandhi N, Adams WJ, Atherton J, Bhavsar SP, Bulle C, Campbell PGC, Dubreuil A, Fairbrother A, Farley K, Green A, Guinee J, Hauschild MZ, Huijbregts MAJ, Humbert S, Jensen KS, Jolliet O, Margni M, McGeer JC, Peijnenburg WJGM, Rosenbaum RK, van de Meent D, Vijver MG (2010) The clearwater consensus: the estimation of metal hazard in fresh water. Int J Life Cycle Assess 15(2):143–147

    Article  CAS  Google Scholar 

  • Doka G (2009) Life cycle inventories of waste treatment services. Ecoinvent report no 13 part II: landfills – underground deposits – landfarming. Swiss Centre for Life Cycle Inventories, Dübendorf

    Google Scholar 

  • Doka G, Hischier R (2005) Waste treatment and assessment of long-term emissions. Int J Life Cycle Assess 10(1):77–84

    Article  CAS  Google Scholar 

  • Dreyer LC, Niemann AL, Hauschild MZ (2003) Comparison of three different LCIA methods: EDIP97, CML2001 and eco-indicator 99: does it matter which one you choose? Int J Life Cycle Assess 8(4):191–200

    Article  CAS  Google Scholar 

  • Duan N, Dobbs A, Ott W (1990) Comprehensive definitions of exposure and dose to environmental pollution. Department of Applied Earth Sciences, Stanford University, Stanford, California, Stanford

    Google Scholar 

  • EC (1996) EUSES, the European Union System for the Evaluation of Substances. National Institute of Public Health and the Environment (RIVM), Bilthoven

    Google Scholar 

  • EC-JRC (2010) Framework and requirements for LCIA models and indicators. ILCD handbook – International Reference Life Cycle Data System, vol EUR24571EN. European Union, Ispra

    Google Scholar 

  • EC-JRC (2011) International Reference Life Cycle Data System (ILCD). Handbook-recommendations for life cycle impact assessment in the European context, 1st edn. Luxemburg

    Google Scholar 

  • Finnveden G, Nielsen PH (1999) Long-term emissions from landfills should not be disregarded. Int J Life Cycle Assess 4(3):125–126

    Article  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guineé J, Heijungs R, Hellweg S, Koehler A, Pennington DW, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21

    Article  Google Scholar 

  • Forbes VE, Calow P (2002) Species sensitivity distribution revisited: a critical appraisal. Hum Ecol Risk Assess 8(3):473–492

    Article  Google Scholar 

  • Frischknecht R, Steiner R, Jungbluth N (2009) The ecological scarcity method – eco-factors 2006: a method for impact assessment in LCA. Federal Office for the Environment (FOEN), Bern

    Google Scholar 

  • Gandhi N, Diamond ML, Van de Meent D, Huijbregts MAJ, Peijnenburg WJGM, Guinée J (2010) New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc. Environ Sci Technol 44(13):5195–5201

    Article  CAS  Google Scholar 

  • Gandhi N, Diamond M, Huijbregts MJ, Guinée J, Peijnenburg WGM, Meent D (2011a) Implications of considering metal bioavailability in estimates of freshwater ecotoxicity: examination of two case studies. Int J Life Cycle Assess 16(8):774–787. doi:10.1007/s11367-011-0317-3

    Article  CAS  Google Scholar 

  • Gandhi N, Huijbregts MAJ, van de Meent D, Peijnenburg WJGM, Guinée J, Diamond ML (2011b) Implications of geographic variability on comparative toxicity potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions. Chemosphere 82:268–277

    Article  CAS  Google Scholar 

  • Goedkoop M, Müller-Wenk R, Hofstetter P, Spriensma R (1998) The eco-indicator 99 explained. Int J Life Cycle Assess 3(6):352–360

    Article  Google Scholar 

  • Goedkoop M, Effting S, Collignon M (2000) The Eco-indicator 99, a damage oriented method for life cycle impact assessment. Methodology Annex 2nd edn. Amersfoort, Pré Consultants, B.V.

    Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts MAJ, De Schryver A, Struijs J, van Zelm R (2012) ReCiPe 2008 – a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Volume report I: characterisation, 1st (revised) edn. Ministry of Housing, Spatial Planning and Environment (VROM), Den Haag

    Google Scholar 

  • Golsteijn L, van Zelm R, Veltman K, Musters G, Hendriks AJ, Huijbregts MAJ (2012) Including ecotoxic impacts on warm-blooded predators in life cycle impact assessment. Integr Environ Assess Manag 8(2):372–378. doi:10.1002/ieam.269

    Article  CAS  Google Scholar 

  • Guinée J, Heijungs R (1993) A proposal for the classification of toxic substances within the framework of life cycle assessment of products. Chemosphere 26(10):1925–1944

    Article  Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Eco-efficiency in industry and science. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hauschild M, Pennington DW (2003) Chapter 6: Indicators for ecotoxicity in life-cycle impact assessment. In: Udo de Haes H (ed) Life-cycle impact assessment: striving towards best practice. SETAC Press, Pensacola, pp 149–176

    Google Scholar 

  • Hauschild MZ, Potting J (2003) Spatial differentiation in life cycle impact assessment: the EDIP 2003 methodology. Institute for Product Development, Technical University of Denmark, Lyngby

    Google Scholar 

  • Hauschild M, Wenzel H (1998) Environmental assessment of products, vol 2, Scientific background. Thomson Science, London

    Google Scholar 

  • Hauschild MZ, Huijbregts MAJ, Jolliet O, MacLeod M, Margni M, Van de Meent D, Rosenbaum RK, McKone TE (2008a) Building a model based on scientific consensus for life cycle impact assessment of chemicals: the search for harmony and parsimony. Environ Sci Technol 42(19):7032–7037

    Article  CAS  Google Scholar 

  • Hauschild MZ, Olsen SI, Hansen E, Schmidt A (2008b) Gone…but not away—addressing the problem of long-term impacts from landfills in LCA. Int J Life Cycle Assess 13:547–554

    Article  Google Scholar 

  • Hauschild M, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18(3):683–697. doi:10.1007/s11367-012-0489-5

    Article  CAS  Google Scholar 

  • Haye S, Slaveykova VI, Payet J (2007) Terrestrial ecotoxicity and effect factors of metals in life cycle assessment (LCA). Chemosphere 68(8):1489–1496

    Article  CAS  Google Scholar 

  • Hellweg S, Frischknecht R (2004) Evaluation of long-term impacts in LCA. Int J Life Cycle Assess 9(5):339–341

    Article  Google Scholar 

  • Hellweg S, Hofstetter TB, Hungerbühler K (2003) Discounting and the environment. Should current impacts be weighted differently than impacts harming future generations? Int J Life Cycle Assess 8(1):8–18

    Google Scholar 

  • Henderson A, Hauschild M, Van de Meent D, Huijbregts MAJ, Larsen HF, Margni M, McKone TE, Payet J, Rosenbaum RK, Jolliet O (2011) USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int J Life Cycle Assess 16:701–709. doi:10.1007/s11367-011-0294-6

    Article  CAS  Google Scholar 

  • Hertwich E, Matales SF, Pease WS, McKone TE (2001) Human toxicity potentials for life-cycle assessment and toxics release inventory risk screening. Environ Toxicol Chem 20(4):928–939

    Article  CAS  Google Scholar 

  • Huijbregts M (1999) Ecotoxicological effect factors for the terrestrial environment in the frame of LCA. University of Amsterdam, Amsterdam

    Google Scholar 

  • Huijbregts MAJ, Thissen U, Guinée JB, Jager T, Kalf D, van de Meent D, Ragas AMJ, Wegener Sleeswijk A, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere 41(4):541–573

    Article  CAS  Google Scholar 

  • Huijbregts M, Hauschild MZ, Jolliet O, Margni M, McKone TE, Rosenbaum RK, van de Meent D (2010) USEtox user manual, http://www.usetox.org/sites/default/files/support-tutorials/user_manual_usetox.pdf

  • ISO 14044 (2006) International standard. Environmental management – life cycle assessment – requirements and guidelines. International Organisation for Standardisation, Geneva

    Google Scholar 

  • Itsubo N, Inaba A (2003) A new LCA method: LIME has been completed. Int J Life Cycle Assess 8(5):305

    Article  Google Scholar 

  • Jolliet O, Crettaz P (1997) Critical surface time 95: a life cycle assessment methodology including fate and exposure. Swiss Federal Institute of Technology, Institute of Soil and Water Management, Lausanne

    Google Scholar 

  • Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum RK (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324–330

    Article  Google Scholar 

  • Jolliet O, Rosenbaum RK, Chapmann P, McKone T, Margni M, Scheringer M, van Straalen N, Wania F (2006) Establishing a framework for life cycle toxicity assessment: findings of the Lausanne review workshop. Int J Life Cycle Assess 11(3):209–212

    Article  Google Scholar 

  • Kemna R, Van Elburg M, Li W, Van Holsteijn R (2005) MEEUP – Methodology report. Final version, 28-11-2005. EC, Brussels

    Google Scholar 

  • Klepper O, Bakker J, Traas TP, Van de Meent D (1998) Mapping the potentially affected fraction (PAF) of species as a basis for comparison of ecotoxicological risks between substances and regions. J Hazard Mater 61:337–344

    Article  CAS  Google Scholar 

  • Krewitt W, Mayerhofer P, Trukenmüller A, Friedrich R (1998) Application of the impact pathway analysis in the context of LCA. Int J Life Cycle Assess 3(2):86–94

    Article  CAS  Google Scholar 

  • Larsen HF, Hauschild M (2007a) Evaluation of ecotoxicity effect indicators for use in LCIA. Int J Life Cycle Assess 12(1):24–33

    Article  CAS  Google Scholar 

  • Larsen HF, Hauschild MZ (2007b) GM-troph: a low data demand ecotoxicity effect indicator for use in LCIA. Int J Life Cycle Assess 12(2):79–91

    Article  CAS  Google Scholar 

  • Ligthart T, Aboussouan L, Van de Meent D, Schönnenbeck M, Hauschild M, Delbeke K, Struijs J, Russel A, Udo de Haes H, Atherton J, van Tilborg W, Karman C, Korenromp R, Sap G, Baukloh A, Dubreuil A, Adams W, Heijungs R, Jolliet O, De Koning A, Chapmann P, Verdonck F, van der Loos R, Eikelboom R, Kuyper J (2004) Declaration of Apeldoorn on LCIA of non-ferrous metals. http://lcinitiative.unep.fr/includes/file.asp?site=lcinit&file=38D1F49D-6D64-45AE-9F64-578BA414E499

  • McKone TE (2001) Ecological toxicity potentials (ETPs) for substances released to air and surface waters. Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, 94720

    Google Scholar 

  • McKone T, Bennett D, Maddalena R (2001) CalTOX 4.0 Technical Support Document, vol 1. Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  • Newman MC, Dixon PM (1996) Ecologically meaningful estimates of lethal effect in individuals. In: Newman MC, Jagoe CH (eds) Ecotoxicology – a hierarchical treatment. Lewis, Boca Raton, pp 225–253

    Google Scholar 

  • Olsen SI, Christensen FM, Hauschild M, Pedersen F, Larsen HF, Tørsløv J (2001) Life cycle impact assessment and risk assessment of chemicals – a methodological comparison. Environ Impact Assess Rev 21(4):385

    Article  Google Scholar 

  • Owens JW (1997) Life-cycle assessment in relation to risk assessment: an evolving perspective. Risk Anal 17(3):359

    Article  Google Scholar 

  • Owsianiak M, Rosenbaum RK, Huijbregts MAJ, Hauschild MZ (2013) Addressing geographic variability in the comparative toxicity potential of copper and nickel in soils. Environ Sci Technol 47(7):3241–3250. doi:10.1021/es3037324

    CAS  Google Scholar 

  • Pant R, Van Hoof G, Schowanek D, Feijtel TCJ, De Koning A, Hauschild M, Olsen SI, Pennington DW, Rosenbaum RK (2004) Comparison between three different LCIA methods for aquatic ecotoxicity and a product environmental risk assessment: insights from a detergent case study within OMNIITOX. Int J Life Cycle Assess 9(5):295

    Article  CAS  Google Scholar 

  • Payet J (2004) Assessing toxic impacts on aquatic ecosystems in life cycle assessment (LCA). Ph.D. Diss., Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne

    Google Scholar 

  • Payet J, Jolliet O (2004) Comparative assessment of the toxic impact of metals on aquatic ecosystems: the AMI Method. In: Dubreuil A (ed) Life cycle assessment of metals: issues and research directions. SETAC, Pensacola, FL, pp 172–175

    Google Scholar 

  • Pennington DW, Payet J, Hauschild M (2004a) Aquatic ecotoxicological indicators in life-cycle assessment. Environ Toxicol Chem 23(7):1796–1807

    Article  CAS  Google Scholar 

  • Pennington DW, Rydberg T, Potting J, Finnveden G, Lindeijer E, Jolliet O, Rebitzer G (2004b) Life cycle assessment part 2: current impact assessment practice. Environ Int 30(5):721–739

    Article  CAS  Google Scholar 

  • Pennington DW, Margni M, Ammann C, Jolliet O (2005) Multimedia fate and human intake modeling: spatial versus nonspatial insights for chemical emissions in Western Europe. Environ Sci Technol 39(4):1119–1128

    Article  CAS  Google Scholar 

  • Pennington DW, Margni M, Payet J, Jolliet O (2006) Risk and regulatory hazard based toxicological effect indicators in life cycle assessment (LCA). Hum Ecol Risk Assess 12(3):450–475

    Article  CAS  Google Scholar 

  • Posthuma L, De Zwart D (2006) Predicted effects of toxicant mixtures are confirmed by changes in fish species assemblages in Ohio, USA, rivers. Environ Toxicol Chem 25(4):1094–1105. doi:10.1897/05-305r.1

    Article  CAS  Google Scholar 

  • Reid C, Bécaert V, Aubertin M, Rosenbaum RK, Deschênes L (2009) Life cycle assessment of mine tailings management in Canada. J Clean Prod 17:471–479

    Article  Google Scholar 

  • Rosenbaum RK, Margni M, Jolliet O (2007) A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. Environ Int 33(5):624–634

    Article  Google Scholar 

  • Rosenbaum RK, Bachmann TK, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, Van de Meent D, Hauschild MZ (2008) USEtox – The UNEP/SETAC-consensus model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13 (7):532–546. doi:10.1007/s11367-008-0038-4

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38(12):228A–231A

    Article  CAS  Google Scholar 

  • Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 – Models and data of the default method. Centre for Environmental assessment of products and material systems. Chalmers University of Technology, Technical Environmental Planning, Gothenburg

    Google Scholar 

  • Toffoletto L, Bulle C, Godin J, Reid C, Deschênes L (2007) LUCAS – a new LCIA method used for a Canadian-specific context. Int J Life Cycle Assess 12(2):93–102

    Article  CAS  Google Scholar 

  • Tørsløv J, Hauschild MZ, Rasmussen D (2005) Ecotoxicity. From Hauschild M, Potting J: spatial differentiation in life cycle impact assessment – The EDIP2003 methodology. Environmental News no 80. The Danish Ministry of the Environment, Environmental Protection Agency, Copenhagen

    Google Scholar 

  • Traas TP, Van de Meent D, Posthuma L, Hamers THM, Kater BJ, De Zwart D, Aldenberg T (2002) Potentially affected fraction as measure of toxic pressure on ecosystems. In: Posthuma L, Suter GWI, Traas TP (eds) Species-sensitivity distributions in ecotoxicology. Lewis, Boca Raton, pp 315–344

    Google Scholar 

  • Udo de Haes H, Jolliet O, Finnveden G, Goedkoop M, Hauschild M, Hertwich E, Hofstetter P, Klöpffer W, Krewitt W, Lindeijer E, Mueller-Wenk R, Olson S, Pennington D, Potting J, Steen B (2002) Life-cycle impact assessment: striving towards best practice. SETAC Press, Pensacola

    Google Scholar 

  • van Zelm R, Huijbregts MAJ, Harbers JV, Wintersen A, Struijs J, Posthuma L, Van de Meent D (2007) Uncertainty in msPAF-based ecotoxicological effect factors for freshwater ecosystems in life cycle impact assessment. Integr Environ Assess Manag 3(2):203–210

    Article  Google Scholar 

  • van Zelm R, Huijbregts MAJ, Van de Meent D (2009) USES-LCA 2.0-a global nested multi-media fate, exposure, and effects model. Int J Life Cycle Assess 14(3):282–284

    Article  Google Scholar 

  • Versteeg DJ, Belanger SE, Carr GJ (1999) Understanding single species and model ecosystem sensitivity. Data-based comparison. Environ Toxicol Chem 18:1329–1346

    CAS  Google Scholar 

  • Walz R, Herrchen M, Keller D, Stahl B (1996) Impact category ecotoxicity and valuation procedure, ecotoxicological impact assessment and the valuation step within LCA: pragmatic approaches. Int J Life Cycle Assess 1(4):193–198

    Article  CAS  Google Scholar 

  • Zhao W, van der Voet E, Huppes G, Zhang Y (2009) Comparative life cycle assessments of incineration and non-incineration treatments for medical waste. Int J Life Cycle Assess 14:114–121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph K. Rosenbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rosenbaum, R.K. (2015). Ecotoxicity. In: Hauschild, M., Huijbregts, M. (eds) Life Cycle Impact Assessment. LCA Compendium – The Complete World of Life Cycle Assessment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9744-3_8

Download citation

Publish with us

Policies and ethics