Skip to main content

Abstract

Water use impacts have two different dimensions: pollution (degradative use) and consumption (consumptive use). Degradative use is mainly tackled by impact assessment of pollutant emissions. This chapter focuses on water deprivation due to consumption. The impacts considered here address the case of ecosystems and human users being deprived of water, but also the depletion of stock resources, potentially depriving future users of water.

The short-term water cycle is dominated by evaporation from sea, precipitation on land and runoff in rivers. Groundwater and lakes play a longer-term role but are crucial for the assessment of effects of water use competition. While the global water cycle is not heavily influenced by human activities, the impacts can be significant in specific regions, and therefore regional water cycles are relevant. The temporal variability of the hydrological processes is also important for considerations of water use effects on environment.

The existing methods consider the main features of the hydrological cycle but still many improvements in the global, regionalised data are required for proper integration of relevant aspects in life cycle impact assessment (LCIA) of water use. Moreover, the available life cycle inventories have generally low data quality for the relevant flows for most processes and often lack global coverage.

The impact assessment methods can be grouped into four main categories: water scarcity as midpoint, impacts on human health, impacts on ecosystem quality, and resource depletion. They cover a variety of impact pathways, while still many important issues such as in-stream use of dams are currently missing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcamo J, Henrichs T, Rösch T (2000) World water in 2025: global modeling and scenario analysis. In: Rijsberman F (ed) World water scenarios. Earthscan Publications, London, pp 243–281

    Google Scholar 

  • Alcamo J, Doll P, Henrichs T, Kaspar F, Lehner B, Rosch T, Siebert S (2003) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrolog Sci J 48:317–337

    Article  Google Scholar 

  • Bayart JB, Bulle C, Deschenes L, Margni M, Pfister S, Vince F, Koehler A (2010) A framework for assessing off-stream freshwater use in LCA. Int J Life Cycle Assess 15:439–453. doi:10.1007/s11367-010-0172-7

    Article  CAS  Google Scholar 

  • Bayart J-B, Worbe S, Grimaud J, Aoustin E (2014) The Water Impact Index: a simplified single-indicator approach for water footprinting. Int J Life Cycle Assess 19:1336–1344. doi:10.1007/s11367-014-0732-3

    Article  Google Scholar 

  • Berger M, Finkbeiner M (2011) Correlation analysis of life cycle impact assessment indicators measuring resource use. Int J Life Cycle Assess 16:74–81

    Article  Google Scholar 

  • Berkoff J (2013) China: the south–north water transfer project – is it justified? Water Policy 5:1–28

    Google Scholar 

  • Bosch ME, Hellweg S, Huijbregts MAJ, Frischknecht R (2007) Applying cumulative exergy demand (cexd) indicators to the ecoinvent database. Int J Life Cycle Assess 12:181–190

    Article  CAS  Google Scholar 

  • Boulay A-M, Bouchard C, Bulle C, Deschênes L, Margni M (2011a) Categorizing water for LCA inventory. Int J Life Cycle Assess 16:639–651

    Article  CAS  Google Scholar 

  • Boulay A-M, Bulle C, Bayart J-B, Deschênes L, Margni M (2011b) Regional characterisation of freshwater use in LCA: modelling direct impacts on human health. Environ Sci Technol 45:8948–8957

    Article  CAS  Google Scholar 

  • de Baan L, Mutel C, Curran M, Hellweg S, Koellner T (2013) Land use in life cycle assessment: global characterisation factors based on regional and global potential species extinctions. Environ Sci Technol 7:9281–9290

    Article  Google Scholar 

  • Doll P, Fiedler K (2008) Global-scale modelling of groundwater recharge. Hydrol Earth Syst Sci 12:863–885

    Article  Google Scholar 

  • ecoinvent Centre (2010) ecoinvent data v2.2. http://www.ecoinvent.org. Accessed 20 Nov 2013

  • Falkenmark M, Rockström J (2004) Balancing water for humans and nature: the new approach in ecohydrology. Earthscan, London

    Google Scholar 

  • Fekete BM, Vörösmarty CJ, Grabs W (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem Cycles 16:15-11-15-10

    Google Scholar 

  • Frischknecht R, Steiner R, Jungbluth N (2009) The ecological scarcity method – eco-factors 2006. A method for impact assessment in LCA. Bundesamt für Umwelt (BAFU), Bern

    Google Scholar 

  • Goedkoop M, Spriensma R (2001) The eco-indicator 99: a damage oriented method for life cycle impact assessment: methodology report. Ministerie van Volkshiusvesting, RuimtelijkeOrdening en Milieubeheer, Den Haag

    Google Scholar 

  • Guinée JB (2001) Life cycle assessment: an operational guide to the ISO standards; operational annex to guide. Centre for Environmental Science, Leiden University, Leiden

    Google Scholar 

  • Hanafiah MM, Xenopoulos MA, Pfister S, Leuven RSEW, Huijbregts MAJ (2011) Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ Sci Technol 45:5272–5278. doi:10.1021/es1039634

    Article  CAS  Google Scholar 

  • Hoekstra AY, Hung PQ (2002) Virtual water trade: a quantification of virtual water flows between nations in relation to international crop trade. Value of water research report series no 11. UNESCO-IHE, Delft

    Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Earthscan, London

    Google Scholar 

  • Humbert S, Maendly R (2008) Characterisation factors for damage to aquatic biodiversity caused by water use especially from dams used for hydropower. Paper presented at the 35th LCA discussion forum, Zurich, June 5. http://www.lcainfo.ch/df/DF35/DF35_09_Humbert%20-%20CF%20for%20aquatic%20biodiv%20of%20dams.pdf. Accessed 10 Nov 2013

  • PE International (2012) GaBi 6. http://www.gabi-software.com/international/index/. Accessed June 2013

  • ISO (2013) ISO/DIS 14046 water footprint – principles, requirements and guidelines. http://www.iso.org/iso/catalogue_detail?csnumber=43263. Accessed 25 Oct 2013

  • Korzoun VI (1974) World water balance and water resources of the earth. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Korzoun VI, Budyko MI, Sokolov AA, Voskresensky KP, Konoplyantsev AA, Kalinin G et al (1978) Atlas of world water balance. USSR National Committee for the International Hydrological Decade. English translation. UNESCO, Paris

    Google Scholar 

  • Kounina A et al (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707–721. doi:10.1007/s11367-012-0519-3

    Article  CAS  Google Scholar 

  • Lin C, Suh S, Pfister S (2012) Does south-to-north water transfer reduce the environmental impact of water consumption in China? J Ind Ecol 16:647–654. doi:10.1111/j.1530-9290.2012.00500.x

    Article  Google Scholar 

  • Loubet P, Roux P, Núñez M, Belaud G, Bellon-Maurel V (2013) Assessing water deprivation at the sub-river basin scale in LCA integrating downstream cascade effects. Environ Sci Technol 47:14242–14249

    Article  CAS  Google Scholar 

  • McGlade J, Werner B, Young M et al (2012) Measuring water use in a green economy, a report of the working group on water efficiency to the international resource panel, UNEP (United Nations Environment Programme). http://www.unep.org/resourcepanel/Portals/24102/Measuring_Water.pdf. Accessed 12 Sept 2013

  • Mekonnen MM, Hoekstra AY (2011) Global water scarcity: monthly blue water footprint compared to blue water availability for the world’s major river basins. Value of Water Research Report Series No 53. UNESCO-IHE. Delft

    Google Scholar 

  • Milà i Canals L, Chenoweth J, Chapagain A, Orr S, Anton A, Clift R (2009) Assessing freshwater use impacts in LCA: part i-inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14:28–42

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resource Institute, Washington, DC

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Motoshita M, Itsubo N, Inaba A (2010a) Damage assessment of water scarcity for agricultural use. In: Proceedings of 9th international conference on EcoBalance. Tokyo, 9–12 Nov 2010

    Google Scholar 

  • Motoshita M, Itsubo N, Inaba A (2010b) Development of impact factors on damage to health by infectious diseases caused by domestic water scarcity. Int J Life Cycle Assess 16:65–73

    Article  Google Scholar 

  • Mutel CL, Pfister S, Hellweg S (2011) GIS-based regionalized life cycle assessment: how big is small enough? Methodology and case study of electricity generation. Environ Sci Technol 46:1096–1103. doi:10.1021/es203117z

    Article  Google Scholar 

  • Núñez M, Pfister S, Roux P, Anton A (2013) Estimating water consumption of potential natural vegetation on global dry lands: building an LCA framework for green water flows. Environ Sci Technol 47:12258–12265

    Article  Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  CAS  Google Scholar 

  • Pfister S, Bayer P (2013) Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J Clean Prod 73:52–62. doi:10.1016/j.jclepro.2013.11.031

    Article  Google Scholar 

  • Pfister S, Hellweg S (2009) The water ‘Shoesize’ vs. footprint of bioenergy. Proc Natl Acad Sci U S A 106:E93–E94

    Article  CAS  Google Scholar 

  • Pfister S, Hellweg S (2011) Surface water use – human health impacts. Report of the LC-IMPACT project (EC: FP7). http://www.ifu.ethz.ch/ESD/downloads/Uncertainty_water_LCIA.pdf. Accessed 14 Feb 2014

  • Pfister S, Ridoutt BG (2013) Water footprint: pitfalls on common ground. Environ Sci Technol 48:4–4

    Article  Google Scholar 

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104. doi:10.1021/es802423e

    Article  CAS  Google Scholar 

  • Pfister S, Curran M, Koehler A, Hellweg S (2010) Trade-offs between land and water use: regionalised impacts of energy crops. 7th international conference on LCA in the agri-food sector, Bari. http://www.ifu.ethz.ch/ESD/data/LCAfood2010_pfister.pdf. Accessed 14 Feb 2014

  • Pfister S, Saner D, Koehler A (2011a) The environmental relevance of freshwater consumption in global power production. Int J Life Cycle Assess 16:580–591

    Article  Google Scholar 

  • Pfister S, Bayer P, Koehler A, Hellweg S (2011b) Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ Sci Technol 45:5761–5768

    Article  CAS  Google Scholar 

  • Ridoutt B, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environ Chang 20:113–120

    Article  Google Scholar 

  • Ridoutt B, Pfister S (2013) A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. Int J Life Cycle Assess 18:204–207

    Google Scholar 

  • Rijsberman FR (2006) Water scarcity: fact or fiction? Agric Water Manag 80:5–22

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472–475

    Article  Google Scholar 

  • Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44:W09405. doi:10.1029/2007wr006331

    Google Scholar 

  • Schlenker W, Lobell DB (2010) Robust negative impacts of climate change on African agriculture. Environ Res Lett. doi:10.1088/1748-9326/5/1/014010

    Google Scholar 

  • Shiklomanov IA (1999) World water resources at the beginning of the 21st century International Hydrological Programme. State Hydrological Institute (SHI)/UNESCO, St. Petersburg

    Google Scholar 

  • Shiklomanov IA, Rodda JC (2003) World water resources at the beginning of the 21st century, International hydrology series. Cambridge University Press, Cambridge

    Google Scholar 

  • Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Doll P, Portmann FT (2010) Groundwater use for irrigation – a global inventory. Hydrol Earth Syst Sci 14:1863–1880

    Article  Google Scholar 

  • Slob W (1994) Uncertainty analysis in multiplicative models. Risk Anal 14:571–576

    Article  Google Scholar 

  • Smakhtin V, Revenga C, Doll P (2004) A pilot global assessment of environmental water requirements and scarcity. Water Int 29:307–317

    Article  CAS  Google Scholar 

  • Stewart M, Weidema B (2005) A consistent framework for assessing the impacts from resource use – A focus on resource functionality. Int J Life Cycle Assess 10:240–247

    Article  Google Scholar 

  • Tendall DM, Hellweg S, Pfister S, Huijbregts MAJ, Gaillard G (2014) Impacts of river water consumption on aquatic biodiversity in life cycle assessment – a proposed method, and a case study for Europe. Environ Sci Technol. doi:10.1021/es4048686

    Google Scholar 

  • UN (2013) The millennium development goals report. UN Department of Economic and Social Affairs, New York

    Google Scholar 

  • van Zelm R, Schipper AM, Rombouts M, Snepvangers J, Huijbregts MAJ (2011) Implementing groundwater extraction in life cycle impact assessment: Characterisation factors based on plant species richness for the netherlands. Environ Sci Technol 45:629–635

    Article  Google Scholar 

  • Verones F, Hanafiah MM, Pfister S, Huijbregts MAJ, Pelletier GJ, Koehler A (2010) Characterization factors for thermal pollution in freshwater aquatic environments. Environ Sci Technol 44:9364–9369. doi:10.1021/es102260c

    Article  CAS  Google Scholar 

  • Verones F, Bartl K, Pfister S, Jiménez Vílchez R, Hellweg S (2012) Modelling the local biodiversity impacts of agricultural water use: case study of a wetland in the coastal arid area of Peru. Environ Sci Technol 46:4966–4974

    Article  CAS  Google Scholar 

  • Verones F, Pfister S, Hellweg S (2013a) Quantifying area changes of internationally important wetlands due to water consumption in LCA. Environ Sci Technol 47:9799–9807

    Article  CAS  Google Scholar 

  • Verones F, Saner D, Pfister S, Baisero D, Rondinini C, Hellweg S (2013b) Effects of consumptive water use on biodiversity in wetlands of international importance. Environ Sci Technol 47:12248–12257

    Article  CAS  Google Scholar 

  • Vionnet S, Lessard L, Offutt A, Levova T, Humbert S (2012) Quantis water database – technical report. Quantis International Lausanne, Switzerland. Available via Quantis International: http://www.quantis-intl.com/waterdatabase.php. Accessed 2 Feb 2012

  • Voss F, Alcamo J, Arnell N, Haddeland I, Hagemann S, Lammers R, Oki T, Hanasaki N, Kim H (2008) Technical report no 1. First results from intercomparison of surface water availability modules. EU sixth framework programme (2007–2011). Integrated Project Water and Global Change (WATCH). http://www.eu-watch.org/. Accessed 21 Dec 2011

  • Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37, L20402

    Google Scholar 

  • WHO (2008) Death and DALY estimates for 2002 by cause for WHO Member States. http://www.who.int/healthinfo/bodestimates/en/index.html. Accessed 22 Feb 2008

  • Zekster IS, Everett LG (2004) Groundwater resources of the world and their use. UNESCO series on groundwater. UNESCO, Hannover

    Google Scholar 

Download references

Acknowledgement

This chapter is partially based on the report on water use impact assessment methods delivered in the PROSUITE project (Funded by the European Commission under the 7th Framework Programme). I appreciate helpful comments by Mark Huijbregts and provision of graphical material by Anna Kounina, as well as input on resource depletion by Pilar Swart, Rodrigo A. F. Alvarenga and Jo Dewulf. Language editing was done by Catherine Raptis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Pfister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pfister, S. (2015). Water Use. In: Hauschild, M., Huijbregts, M. (eds) Life Cycle Impact Assessment. LCA Compendium – The Complete World of Life Cycle Assessment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9744-3_12

Download citation

Publish with us

Policies and ethics