Skip to main content

The Discovery and Development of Eg5 Inhibitors for the Clinic

  • Chapter
  • First Online:
Book cover Kinesins and Cancer

Abstract

The mitotic kinesin Eg5 (also known as kinesin spindle protein, KSP, Kif11, a member of the kinesin-5 family) represents an attractive oncology drug target in the ongoing development of anti-mitotic drugs that selectively block mitosis through disruption to the mitotic spindle. In this state-of-the-art review, we outline the progress that has been made in the development of Eg5 inhibitors for clinical use. We evaluate the preclinical development and attributes of key Eg5 inhibitors that have undergone clinical evaluation or extensive preclinical optimisation, and discuss the medicinal chemistry strategies utilised in their design to overcome the challenges encountered during lead optimisation. We critically analyse the progress that has been made towards delivering clinical benefits, and the wider implications this has in the utility of mitotic kinesin inhibitors as prospective oncology drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAG:

α-1-acid glycoprotein

AML:

Acute myeloid leukemia

Basal Eg5 inhibition:

Inhibition of the basal ATPase activity of Eg5

CBR:

Clinical benefit rate

CYP:

Cytochrome P450

DMPK:

Drug metabolism and pharmacokinetics

F:

Bioavailability

fu :

Fraction unbound

hERG:

Human ether-a-go-go-related gene

HHPQ:

Hexahydropyranoquinoline

HTS:

High-throughput screening

i.p.:

Intraperitoneal

K i app :

Estimated apparent K i value

MCL-1:

Antiapoptotic protein myeloid cell leukemia 1

MDR:

Multidrug resistance

MM:

Multiple myeloma

MT:

Microtubules

MT Eg5 inhibition:

Inhibition of the microtubule stimulated ATPase activity of Eg5

MTD:

Maximum tolerated dose

NCI:

National Cancer Institute

n.i.:

No inhibition

ORR:

Overall response rate

PK:

Pharmacokinetic

PgP:

P-glycoprotein

RRMM:

Relapsed/refractory multiple myeloma

SAR:

Structure activity relationship

STLC:

S-trityl L-cysteine

References

  1. Mayer TU et al (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286:971–974

    Article  CAS  PubMed  Google Scholar 

  2. Zhu C et al (2005) Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16:3187–3199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Maliga Z, Kapoor TM, Mitchison TJ (2002) Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem Biol 9:989–996

    Article  CAS  PubMed  Google Scholar 

  4. Yan Y et al (2004) Inhibition of a mitotic motor protein: where, how, and conformational consequences. J Mol Biol 335:547–554

    Article  CAS  PubMed  Google Scholar 

  5. Bergnes G, Brejc K, Belmont L (2005) Mitotic kinesins: prospects for antimitotic drug discovery. Curr Top Med Chem 5:127–145

    Article  CAS  PubMed  Google Scholar 

  6. Knight SD, Parrish CA (2008) Recent progress in the identification and clinical evaluation of inhibitors of the mitotic kinesin KSP. Curr Top Med Chem 8:888–904

    Article  CAS  PubMed  Google Scholar 

  7. Jiang C, You Q (2013) Kinesin spindle protein inhibitors in cancer: a patent review (2008 – present). Expert Opin Ther Pat 23:1547–1560

    Article  PubMed  Google Scholar 

  8. Sakowicz R et al (2004) Antitumor activity of a kinesin inhibitor. Cancer Res 64:3276–3280

    Article  CAS  PubMed  Google Scholar 

  9. Johnson RK et al (2002) SB-715992, a potent and selective inhibitor of the mitotic kinesin KSP, demonstrates broad-spectrum activity in advanced murine tumors and human tumor xenografts. Proc Annu Meet Am Assoc Cancer Res 43:269

    Google Scholar 

  10. Chu Q et al (2003) A phase I study to determine the safety and pharmacokinetics of IV administered SB-715992, a novel kinesin spindle protein (KSP) inhibitor, in patients with solid tumors. Proc Am Soc Clin Oncol 22:525

    Google Scholar 

  11. Lad L et al (2008) Mechanism of inhibition of human KSP by Ispinesib. Biochemistry 47:3576–3585

    Article  CAS  PubMed  Google Scholar 

  12. Zhang B, Liu J-F, Xu Y, Ng S-C (2008) Crystal structure of HsEg5 in complex with clinical candidate CK0238273 provides insight into inhibitory mechanism, potency, and specificity. Biochem Biophys Res Commun 372:565–570

    Article  CAS  PubMed  Google Scholar 

  13. Talapatra SK, Schuttelkopf AW, Kozielski F (2012) The structure of the ternary Eg5-ADP-ispinesib complex. Acta Crystallogr D 68:1311–1319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Carol H et al (2009) Initial testing (stage 1) of the kinesin spindle protein inhibitor ispinesib by the pediatric preclinical testing program. Pediatr Blood Cancer 53:1255–1263

    Article  PubMed Central  PubMed  Google Scholar 

  15. Good JAD et al (2013) Optimized S-trityl-L-cysteine-based inhibitors of kinesin spindle protein with potent in vivo antitumor activity in lung cancer xenograft models. J Med Chem 56:1878–1893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rath O, Kozielski F (2012) Kinesins and cancer. Nat Rev Cancer 12:527–539

    Article  CAS  PubMed  Google Scholar 

  17. Matsuno K, Sawada J, Asai A (2008) Therapeutic potential of mitotic kinesin inhibitors in cancer. Expert Opin Ther Pat 18:253–274

    Article  CAS  Google Scholar 

  18. Bergnes G et al (2002) Mitotic kinesin-targeted antitumor agents: discovery, lead optimization and anti-tumor activity of a series of novel quinazolinones as inhibitors of kinesin spindle protein (KSP). Abstr Pap Am Chem Soc 223:B140

    Google Scholar 

  19. Holland JP, Jones MW, Cohrs S, Schibli R, Fischer E (2013) Fluorinated quinazolinones as potential radiotracers for imaging kinesin spindle protein expression. Bioorg Med Chem 21:496–507

    Article  CAS  PubMed  Google Scholar 

  20. Bergnes G et al (2002) Mitotic kinesin-targeted antitumor agents: discovery, lead optimization and anti-tumor activity of a series of novel quinazolinones as inhibitors of kinesin spindle protein (KSP). Proc Annu Meet Am Assoc Cancer Res 43:736

    Google Scholar 

  21. Wang F et al (2012) Triphenylbutanamines: kinesin spindle protein inhibitors with in vivo antitumor activity. J Med Chem 55:1511–1525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ansbro MR, Shukla S, Ambudkar SV, Yuspa SH, Li L (2013) Screening compounds with a novel high-throughput ABCB1-mediated efflux assay identifies drugs with known therapeutic targets at risk for multidrug resistance interference. PLoS One 8:e60334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Jackson JR et al (2006) A second generation KSP inhibitor, SB-743921, is a highly potent and active therapeutic in preclinical models of cancer. AACR Meet Abstr 2006:B11

    Google Scholar 

  24. Holen K et al (2011) A first in human study of SB-743921, a kinesin spindle protein inhibitor, to determine pharmacokinetics, biologic effects and establish a recommended phase II dose. Cancer Chemother Pharmacol 67:447–454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cox CD et al (2008) Kinesin spindle protein (KSP) inhibitors. 9. Discovery of (2S)-4-(2,5-difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the treatment of taxane-refractory cancer. J Med Chem 51:4239–4252

    Article  CAS  PubMed  Google Scholar 

  26. Schiemann K et al (2010) The discovery and optimization of hexahydro-2H-pyrano[3,2-c]quinolines (HHPQs) as potent and selective inhibitors of the mitotic kinesin-5. Bioorg Med Chem Lett 20:1491–1495

    Article  CAS  PubMed  Google Scholar 

  27. Kim ED et al (2010) Allosteric drug discrimination is coupled to mechanochemical changes in the kinesin-5 motor core. J Biol Chem 285:18650–18661

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Theoclitou M-E et al (2011) Discovery of (+)-N-(3-Aminopropyl)-N-[1-(5-benzyl-3-methyl-4-oxo-[1,2]thiazolo[5,4-d]pyrimidin-6-yl)-2-methylpropyl]-4-methylbenzamide (AZD4877), a kinesin spindle protein inhibitor and potential anticancer agent. J Med Chem 54:6734–6750

    Article  CAS  PubMed  Google Scholar 

  29. Kantarjian H et al (2012) Phase I/II multicenter study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of AZD4877 in patients with refractory acute myeloid leukemia. Invest New Drugs 30:1107–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Cox CD, Garbaccio RM (2010) Discovery of allosteric inhibitors of kinesin spindle protein (KSP) for the treatment of taxane-refractory cancer: MK-0731 and analogs. Anticancer Agents Med Chem 10:697–712

    Article  CAS  PubMed  Google Scholar 

  31. Cox CD et al (2005) Kinesin spindle protein (KSP) inhibitors. Part 1: the discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorg Med Chem Lett 15:2041–2045

    Article  CAS  PubMed  Google Scholar 

  32. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Fraley ME et al (2006) Kinesin spindle protein (KSP) inhibitors. Part 2: The design, synthesis, and characterization of 2,4-diaryl-2,5-dihydropyrrole inhibitors of the mitotic kinesin KSP. Bioorg Med Chem Lett 16:1775–1779

    Article  CAS  PubMed  Google Scholar 

  34. Garbaccio RM et al (2006) Kinesin spindle protein (KSP) inhibitors. Part 3: Synthesis and evaluation of phenolic 2,4-diaryl-2,5-dihydropyrroles with reduced hERG binding and employment of a phosphate prodrug strategy for aqueous solubility. Bioorg Med Chem Lett 16:1780–1783

    Article  CAS  PubMed  Google Scholar 

  35. Cox CD et al (2006) Kinesin spindle protein (KSP) inhibitors. Part 4: Structure-based design of 5-alkylamino-3,5-diaryl-4,5-dihydropyrazoles as potent, water-soluble inhibitors of the mitotic kinesin KSP. Bioorg Med Chem Lett 16:3175–3179

    Article  CAS  PubMed  Google Scholar 

  36. Cox CD et al (2007) Kinesin spindle protein (KSP) inhibitors. Part V: Discovery of 2-propylamino-2,4-diaryl-2,5-dihydropyrroles as potent, water-soluble KSP inhibitors, and modulation of their basicity by β-fluorination to overcome cellular efflux by P-glycoprotein. Bioorg Med Chem Lett 17:2697–2702

    Article  CAS  PubMed  Google Scholar 

  37. Coleman PJ et al (2007) Kinesin spindle protein (KSP) inhibitors. Part 6: Design and synthesis of 3,5-diaryl-4,5-dihydropyrazole amides as potent inhibitors of the mitotic kinesin KSP. Bioorg Med Chem Lett 17:5390–5395

    Article  CAS  PubMed  Google Scholar 

  38. Garbaccio RM et al (2007) Kinesin spindle protein (KSP) inhibitors. Part 7: Design and synthesis of 3,3-disubstituted dihydropyrazolobenzoxazines as potent inhibitors of the mitotic kinesin KSP. Bioorg Med Chem Lett 17:5671–5676

    Article  CAS  PubMed  Google Scholar 

  39. Roecker AJ et al (2007) Kinesin spindle protein (KSP) inhibitors. Part 8: Design and synthesis of 1,4-diaryl-4,5-dihydropyrazoles as potent inhibitors of the mitotic kinesin KSP. Bioorg Med Chem Lett 17:5677–5682

    Article  CAS  PubMed  Google Scholar 

  40. Cerny MA, Hanzlik RP (2005) Cyclopropylamine inactivation of cytochromes P450: Role of metabolic intermediate complexes. Arch Biochem Biophys 436:265–275

    Article  CAS  PubMed  Google Scholar 

  41. Goncharov NV, Jenkins RO, Radilov AS (2006) Toxicology of fluoroacetate: a review, with possible directions for therapy research. J Appl Toxicol 26:148–161

    Article  CAS  PubMed  Google Scholar 

  42. Holen K et al (2012) A phase I trial of MK-0731, a kinesin spindle protein (KSP) inhibitor, in patients with solid tumors. Invest New Drugs 30:1088–1095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Allen S et al (2012) The discovery and optimization of kinesin spindle protein (KSP) inhibitors: path to ARRY-520. Cambridge Healthtech Institute conference, 4 June 2012. http://arraybiopharma.com/files/1713/9810/7999/PubAttachment526.pdf

  44. Woessner R et al (2009) ARRY-520, a novel KSP inhibitor with potent activity in hematological and taxane-resistant tumor models. Anticancer Res 29:4373–4380

    CAS  PubMed  Google Scholar 

  45. Waring MJ (2010) Lipophilicity in drug discovery. Expert Opin Drug Discov 5:235–248

    Article  CAS  PubMed  Google Scholar 

  46. Lemieux C et al (2007) ARRY-520, a novel, highly selective KSP inhibitor with potent anti-proliferative activity. Proc Am Assoc Cancer Res 48:5590

    Google Scholar 

  47. Tunquist BJ, Woessner RD, Walker DH (2010) Mcl-1 stability determines mitotic cell fate of human multiple myeloma tumor cells treated with the kinesin spindle protein inhibitor ARRY-520. Mol Cancer Ther 9:2046–2056

    Article  CAS  PubMed  Google Scholar 

  48. Lonial S et al (2013) Prolonged survival and improved response rates with ARRY-520 in relapsed/refractory multiple myeloma (RRMM) patients with low α-1 acid glycoprotein (AAG) levels: results from a phase 2 study. ASH Annu Meet Abstr 122:285

    Google Scholar 

  49. Shah JJ et al (2013) Phase 1 study of the novel kinesin spindle protein inhibitor ARRY-520 + carfilzomib (car) in patients with relapsed and/or refractory multiple myeloma (RRMM). ASH Annu Meet Abstr 122:1982

    Google Scholar 

  50. Chari A et al (2013) A phase 1 study of ARRY-520 with bortezomib (BTZ) and dexamethasone (dex) in relapsed or refractory multiple myeloma (RRMM). ASH Annu Meet Abstr 122:1938

    Google Scholar 

  51. Owens B (2013) Kinesin inhibitor marches toward first-in-class pivotal trial. Nat Med 19:1550

    Article  PubMed  Google Scholar 

  52. Hollebecque A et al (2013) A phase I, dose-escalation study of the Eg5-inhibitor EMD 534085 in patients with advanced solid tumors or lymphoma. Invest New Drugs 31:1530–1538

    Google Scholar 

  53. Weisberger AS, Levine B (1954) Incorporation of radioactive L-cystine by normal and leukemic leukocytes in vivo. Blood 9:1082–1094

    CAS  PubMed  Google Scholar 

  54. Goodman L, Ross LO, Baker BR (1958) Potential anticancer agents. V. Some sulfur-substituted derivatives of cysteine. J Organ Chem 23:1251–1257

    Article  CAS  Google Scholar 

  55. Theodoropoulos D (1959) Synthesis of certain S-substituted L-cysteines. Acta Chem Scand 13:383–384

    Article  CAS  Google Scholar 

  56. Zee-Cheng K-Y, Cheng C-C (1970) Experimental antileukemic agents. Preparation and structure-activity study of S-tritylcysteine and related compounds. J Med Chem 13:414–418

    Article  CAS  PubMed  Google Scholar 

  57. DeBonis S et al (2004) In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Mol Cancer Ther 3:1079–1090

    CAS  PubMed  Google Scholar 

  58. DeBonis S et al (2008) Structure–activity relationship of S-trityl-L-cysteine analogues as inhibitors of the human mitotic kinesin Eg5. J Med Chem 51:1115–1125

    Article  CAS  PubMed  Google Scholar 

  59. Wiltshire C et al (2010) Docetaxel-resistant prostate cancer cells remain sensitive to S-trityl-l-cysteine–mediated Eg5 inhibition. Mol Cancer Ther 9:1730–1739

    Article  CAS  PubMed  Google Scholar 

  60. Zee-Cheng KY, Cheng CC (1972) Structural modification of S-trityl-L-cysteine. Preparation of some S-(substituted trityl)-L-cysteines and dipeptides of S-trityl-L-cysteine. J Med Chem 15:13–16

    Article  CAS  PubMed  Google Scholar 

  61. Kozielski F et al (2008) Proteome analysis of apoptosis signaling by S-trityl-L-cysteine, a potent reversible inhibitor of human mitotic kinesin Eg5. Proteomics 8:289–300

    Article  CAS  PubMed  Google Scholar 

  62. Ogo N et al (2007) Synthesis and biological evaluation of l-cysteine derivatives as mitotic kinesin Eg5 inhibitors. Bioorg Med Chem Lett 17:3921–3924

    Article  CAS  PubMed  Google Scholar 

  63. Kaan HYK, Ulaganathan V, Hackney DD, Kozielski F (2010) An allosteric transition trapped in an intermediate state of a new kinesin–inhibitor complex. Biochem J 425:55–60

    Article  CAS  Google Scholar 

  64. Basso AD et al (2010) SCH 2047069, a novel oral kinesin spindle protein inhibitor, shows single-agent antitumor activity and enhances the efficacy of chemotherapeutics. Mol Cancer Ther 9:2993–3002

    Article  CAS  PubMed  Google Scholar 

  65. Abualhasan MN et al (2012) Doing the methylene shuffle – further insights into the inhibition of mitotic kinesin Eg5 with S-trityl L-cysteine. Eur J Med Chem 54:483–498

    Article  CAS  PubMed  Google Scholar 

  66. Skoufias DA et al (2006) S-Trityl-L-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression. J Biol Chem 281:17559–17569

    Article  CAS  PubMed  Google Scholar 

  67. Kaan HYK et al (2011) Structure – activity relationship and multidrug resistance study of new S-trityl-L-cysteine derivatives as inhibitors of Eg5. J Med Chem 54:1576–1586

    Article  CAS  PubMed  Google Scholar 

  68. Arrowsmith J, Miller P (2013) Trial watch: phase II and phase III attrition rates 2011–2012. Nat Rev Drug Discov 12:569

    Article  CAS  PubMed  Google Scholar 

  69. Orloff J et al (2009) The future of drug development: advancing clinical trial design. Nat Rev Drug Discov 8:949–957

    CAS  PubMed  Google Scholar 

  70. Komlodi-Pasztor E, Sackett DL, Fojo AT (2012) Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale. Clin Cancer Res 18:51–63

    Article  CAS  PubMed  Google Scholar 

  71. Mitchison TJ (2012) The proliferation rate paradox in antimitotic chemotherapy. Mol Biol Cell 23:1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Tanenbaum ME et al (2009) Kif15 cooperates with Eg5 to promote bipolar spindle assembly. Curr Biol 19:1703–1711

    Article  CAS  PubMed  Google Scholar 

  73. Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9:4227–4239

    PubMed  Google Scholar 

  74. Humphries M et al (2012) Abstract 1782: human tumor explants are better predictors of clinical trial outcome than cell line xenografts for the KSP inhibitor ARRY-520. Cancer Res 72:1782

    Article  Google Scholar 

  75. Morgan P et al (2012) Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving phase II survival. Drug Discov Today 17:419–424

    Article  CAS  PubMed  Google Scholar 

  76. Good JAD (2012) The development of S-trityl L-cysteine based inhibitors of Eg5 as anticancer chemotherapeutics. PhD thesis, The Beatson Institute for Cancer Research, University of Glasgow, Glasgow

    Google Scholar 

Download references

Acknowledgments

We apologise to authors whose work we were unable to include due to limitations of space. We thank Prof. Frank Kozielski for helpful comments on the manuscript. We are grateful to Cancer Research UK for supporting the STLC programme and funding the postdoctoral positions of NGA and GB on the Small Molecule Drug Discovery Programme, in association with Prostate Cancer UK. JADG thanks the Umeå Centre for Microbial Research for funding his postdoctoral research at Umeå University.

Copyright Acknowledgements: Excerpts from this chapter appeared previously in the doctoral thesis of James A. D. Good [76]. The data appearing in Tables 2.1, 2.4 and 2.6 was adapted with permission from the cited references and is copyright American Chemical Society [15, 21, 25, 28, 58, 67]. The date appearing in Tables 2.2, 2.3 and 2.5 was adapted with permission from the cited references and is copyright Elsevier [26, 31, 3339].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James A. D. Good or Simon P. Mackay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Good, J.A.D., Berretta, G., Anthony, N.G., Mackay, S.P. (2015). The Discovery and Development of Eg5 Inhibitors for the Clinic. In: Kozielski, FSB, F. (eds) Kinesins and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9732-0_2

Download citation

Publish with us

Policies and ethics