Skip to main content

The Kinesin-6 Members MKLP1, MKLP2 and MPP1

  • Chapter
  • First Online:

Abstract

The kinesin-6 or mitotic kinesin (MKLP) family comprises three members in human cells: MKLP1 (KIF23), MKLP2 (KIF20A), and MPP1 (KIF20B). All three members have been characterised primarily because of their role in cell division, where they contribute to the regulation of the cytokinetic machinery as cells exit mitosis. Here we discuss the mechanisms by which MKLP1, MKLP2 and MPP1 regulate events during cell division and in post-mitotic tissues, highlighting common themes and points of difference. We also outline the ways they are dysregulated in human cancers. Finally we discuss the different ways kinesin-6 family members are being targeted to develop novel chemotherapy and immunotherapy strategies for treating human cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15(9):467–476. doi:10.1016/j.tcb.2005.07.006

    CAS  PubMed  Google Scholar 

  2. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167(1):19–22. doi:10.1083/jcb.200408113

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Miki H, Setou M, Kaneshiro K, Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A 98(13):7004–7011. doi:10.1073/pnas.111145398

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Goodson HV, Kang SJ, Endow SA (1994) Molecular phylogeny of the kinesin family of microtubule motor proteins. J Cell Sci 107(Pt 7):1875–1884

    Google Scholar 

  5. Lawrence CJ, Malmberg RL, Muszynski MG, Dawe RK (2002) Maximum likelihood methods reveal conservation of function among closely related kinesin families. J Mol Evol 54(1):42–53. doi:10.1007/s00239-001-0016-y

    CAS  PubMed  Google Scholar 

  6. Kuriyama R, Gustus C, Terada Y, Uetake Y, Matuliene J (2002) CHO1, a mammalian kinesin-like protein, interacts with F-actin and is involved in the terminal phase of cytokinesis. J Cell Biol 156(5):783–790. doi:10.1083/jcb.200109090

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Lai F, Fernald AA, Zhao N, Le Beau MM (2000) cDNA cloning, expression pattern, genomic structure and chromosomal location of RAB6KIFL, a human kinesin-like gene. Gene 248(1–2):117–125. doi:10.1016/S0378-1119(00)00135-9

    CAS  PubMed  Google Scholar 

  8. Kamimoto T, Zama T, Aoki R, Muro Y, Hagiwara M (2001) Identification of a novel kinesin-related protein, KRMP1, as a target for mitotic peptidyl-prolyl isomerase Pin1. J Biol Chem 276(40):37520–37528. doi:10.1074/jbc.M106207200

    CAS  PubMed  Google Scholar 

  9. Abaza A, Soleilhac JM, Westendorf J, Piel M, Crevel I, Roux A, Pirollet F (2003) M phase phosphoprotein 1 is a human plus-end-directed kinesin-related protein required for cytokinesis. J Biol Chem 278(30):27844–27852. doi:10.1074/jbc.M304522200

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Hizlan D, Mishima M, Tittmann P, Gross H, Glotzer M, Hoenger A (2006) Structural analysis of the ZEN-4/CeMKLP1 motor domain and its interaction with microtubules. J Struct Biol 153(1):73–84. doi:10.1016/j.jsb.2005.10.007

    CAS  PubMed  Google Scholar 

  11. Wade RH (2002) Sequence landmark patterns identify and characterize protein families. Structure 10(10):1329–1336. doi:10.1016/S0969-2126(02)00854-7

    CAS  PubMed  Google Scholar 

  12. Kikkawa M, Okada Y, Hirokawa N (2000) 15 A resolution model of the monomeric kinesin motor, KIF1A. Cell 100(2):241–252. doi:10.1016/S0092-8674(00)81562-7

    CAS  PubMed  Google Scholar 

  13. Vale RD, Fletterick RJ (1997) The design plan of kinesin motors. Annu Rev Cell Dev Biol 13:745–777. doi:10.1146/annurev.cellbio.13.1.745

    CAS  PubMed  Google Scholar 

  14. Wade RH, Kozielski F (2000) Structural links to kinesin directionality and movement. Nat Struct Biol 7(6):456–460. doi:10.1038/75850

    CAS  PubMed  Google Scholar 

  15. White EA, Glotzer M (2012) Centralspindlin: at the heart of cytokinesis. Cytoskeleton (Hoboken) 69(11):882–892. doi:10.1002/cm.21065

    CAS  Google Scholar 

  16. Pavicic-Kaltenbrunner V, Mishima M, Glotzer M (2007) Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/MKLP1 to form the centralspindlin complex. Mol Biol Cell 18(12):4992–5003. doi:10.1091/mbc.E07-05-0468

    Google Scholar 

  17. Kuriyama R, Dragas-Granoic S, Maekawa T, Vassilev A, Khodjakov A, Kobayashi H (1994) Heterogeneity and microtubule interaction of the CHO1 antigen, a mitosis-specific kinesin-like protein. Analysis of subdomains expressed in insect sf9 cells. J Cell Sci 107(Pt 12):3485–3499

    CAS  PubMed  Google Scholar 

  18. Mishima M, Pavicic V, Gruneberg U, Nigg EA, Glotzer M (2004) Cell cycle regulation of central spindle assembly. Nature 430(7002):908–913. doi:10.1038/nature02767

    CAS  PubMed  Google Scholar 

  19. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42(1):39–50. doi:10.1016/S0092-8674(85)80099-4

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Case RB, Pierce DW, Hom-Booher N, Hart CL, Vale RD (1997) The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90(5):959–966. doi:10.1016/S0092-8674(00)80360-8

    CAS  PubMed  Google Scholar 

  21. Endow SA, Waligora KW (1998) Determinants of kinesin motor polarity. Science 281(5380):1200–1202. doi:10.1126/science.281.5380.1200

    CAS  PubMed  Google Scholar 

  22. Henningsen U, Schliwa M (1997) Reversal in the direction of movement of a molecular motor. Nature 389(6646):93–96. doi:10.1038/38022

    CAS  PubMed  Google Scholar 

  23. Rice S, Lin AW, Safer D, Hart CL, Naber N, Carragher BO, Cain SM, Pechatnikova E, Wilson-Kubalek EM, Whittaker M, Pate E, Cooke R, Taylor EW, Milligan RA, Vale RD (1999) A structural change in the kinesin motor protein that drives motility. Nature 402(6763):778–784. doi:10.1038/45483

    CAS  PubMed  Google Scholar 

  24. Hill E, Clarke M, Barr FA (2000) The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis. EMBO J 19(21):5711–5719. doi:10.1093/emboj/19.21.5711

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Adams RR, Tavares AA, Salzberg A, Bellen HJ, Glover DM (1998) Pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis. Genes Dev 12(10):1483–1494

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Powers J, Bossinger O, Rose D, Strome S, Saxton W (1998) A nematode kinesin required for cleavage furrow advancement. Curr Biol 8(20):1133–1136. doi:10.1016/S0960-9822(98)70470-1

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Raich WB, Moran AN, Rothman JH, Hardin J (1998) Cytokinesis and midzone microtubule organization in Caenorhabditis elegans require the kinesin-like protein ZEN-4. Mol Biol Cell 9(8):2037–2049. doi:10.1091/mbc.9.8.2037

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Nislow C, Sellitto C, Kuriyama R, McIntosh JR (1990) A monoclonal antibody to a mitotic microtubule-associated protein blocks mitotic progression. J Cell Biol 111(2):511–522. doi:10.1083/jcb.111.2.511

    CAS  PubMed  Google Scholar 

  29. Fontijn RD, Goud B, Echard A, Jollivet F, van Marle J, Pannekoek H, Horrevoets AJ (2001) The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol Cell Biol 21(8):2944–2955. doi:10.1128/MCB.21.8.2944-2955.2001

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Deavours BE, Walker RA (1999) Nuclear localization of C-terminal domains of the kinesin-like protein MKLP-1. Biochem Biophys Res Commun 260(3):605–608. doi:10.1006/bbrc.1999.0952

    CAS  PubMed  Google Scholar 

  31. Sellitto C, Kuriyama R (1988) Distribution of a matrix component of the midbody during the cell cycle in Chinese hamster ovary cells. J Cell Biol 106(2):431–439. doi:10.1083/jcb.106.2.431

  32. Nislow C, Lombillo VA, Kuriyama R, McIntosh JR (1992) A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359(6395):543–547. doi:10.1038/359543a0

    CAS  PubMed  Google Scholar 

  33. Kanehira M, Katagiri T, Shimo A, Takata R, Shuin T, Miki T, Fujioka T, Nakamura Y (2007) Oncogenic role of MPHOSPH1, a cancer-testis antigen specific to human bladder cancer. Cancer Res 67(7):3276–3285. doi:10.1158/0008-5472.CAN-06-3748

    CAS  PubMed  Google Scholar 

  34. Hu CK, Coughlin M, Field CM, Mitchison TJ (2008) Cell polarization during monopolar cytokinesis. J Cell Biol 181(2):195–202. doi:10.1083/jcb.200711105

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Kurasawa Y, Earnshaw WC, Mochizuki Y, Dohmae N, Todokoro K (2004) Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J 23(16):3237–3248. doi:10.1038/sj.emboj.7600347

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Glotzer M (2009) The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol 10(1):9–20. doi:10.1038/nrm2609

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Neef R, Klein UR, Kopajtich R, Barr FA (2006) Cooperation between mitotic kinesins controls the late stages of cytokinesis. Curr Biol 16(3):301–307. doi:10.1016/j.cub.2005.12.030

    CAS  PubMed  Google Scholar 

  38. Kitagawa M, Fung SY, Hameed UF, Goto H, Inagaki M, Lee SH (2014) Cdk1 coordinates timely activation of MKLP2 kinesin with relocation of the chromosome passenger complex for cytokinesis. Cell Rep 7(1):166–179. doi:10.1016/j.celrep.2014.02.034

    CAS  PubMed  Google Scholar 

  39. Hummer S, Mayer TU (2009) Cdk1 negatively regulates midzone localization of the mitotic kinesin MKLP2 and the chromosomal passenger complex. Curr Biol 19(7):607–612. doi:10.1016/j.cub.2009.02.046

    PubMed  Google Scholar 

  40. Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A, Janoueix-Lerosey I, Goud B (1998) Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279(5350):580–585. doi:10.1126/science.279.5350.580

    CAS  PubMed  Google Scholar 

  41. Fu C, Ward JJ, Loiodice I, Velve-Casquillas G, Nedelec FJ, Tran PT (2009) Phospho-regulated interaction between kinesin-6 Klp9p and microtubule bundler Ase1p promotes spindle elongation. Dev Cell 17(2):257–267. doi:10.1016/j.devcel.2009.06.012

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Nunes Bastos R, Gandhi SR, Baron RD, Gruneberg U, Nigg EA, Barr FA (2013) Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A. J Cell Biol 202(4):605–621. doi:10.1083/jcb.201301094

    PubMed Central  PubMed  Google Scholar 

  43. Barton NR, Goldstein LS (1996) Going mobile: microtubule motors and chromosome segregation. Proc Natl Acad Sci U S A 93(5):1735–1742

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Wordeman L (2010) How kinesin motor proteins drive mitotic spindle function: lessons from molecular assays. Semin Cell Dev Biol 21(3):260–268. doi:10.1016/j.semcdb.2010.01.018

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Mishima M, Kaitna S, Glotzer M (2002) Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2(1):41–54. doi:10.1016/S1534-5807(01)00110-1

    CAS  PubMed  Google Scholar 

  46. Gruneberg U, Neef R, Honda R, Nigg EA, Barr FA (2004) Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKLP2. J Cell Biol 166(2):167–172. doi:10.1083/jcb.200403084

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Yu Y, Feng YM (2010) The role of kinesin family proteins in tumorigenesis and progression: potential biomarkers and molecular targets for cancer therapy. Cancer 116(22):5150–5160. doi:10.1002/cncr.25461

    CAS  PubMed  Google Scholar 

  48. Rath O, Kozielski F (2012) Kinesins and cancer. Nat Rev Cancer 12(8):527–539. doi:10.1038/nrc3310

    CAS  PubMed  Google Scholar 

  49. Goldstein LS (1991) The kinesin superfamily: tails of functional redundancy. Trends Cell Biol 1(4):93–98. doi:10.1016/0962-8924(91)90036-9

    CAS  PubMed  Google Scholar 

  50. Endow SA (1991) The emerging kinesin family of microtubule motor proteins. Trends Biochem Sci 16(6):221–225. doi:10.1016/0968-0004(91)90089-E

    CAS  PubMed  Google Scholar 

  51. Kuriyama R, Nislow C (1992) Molecular components of the mitotic spindle. Bioessays 14(2):81–88. doi:10.1002/bies.950140203

    CAS  PubMed  Google Scholar 

  52. Matuliene J, Kuriyama R (2002) Kinesin-like protein CHO1 is required for the formation of midbody matrix and the completion of cytokinesis in mammalian cells. Mol Biol Cell 13(6):1832–1845. doi:10.1091/mbc.01-10-0504

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Zhu C, Bossy-Wetzel E, Jiang W (2005) Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells. Biochem J 389(Pt 2):373–381. doi:10.1042/BJ20050097

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Matuliene J, Kuriyama R (2004) Role of the midbody matrix in cytokinesis: RNAi and genetic rescue analysis of the mammalian motor protein CHO1. Mol Biol Cell 15(7):3083–3094. doi:10.1091/mbc.E03-12-0888

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Toure A, Dorseuil O, Morin L, Timmons P, Jegou B, Reibel L, Gacon G (1998) MgcRacGAP, a new human GTPase-activating protein for Rac and Cdc42 similar to Drosophila rotundRacGAP gene product, is expressed in male germ cells. J Biol Chem 273(11):6019–6023

    CAS  PubMed  Google Scholar 

  56. Jantsch-Plunger V, Gonczy P, Romano A, Schnabel H, Hamill D, Schnabel R, Hyman AA, Glotzer M (2000) CYK-4: a Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. J Cell Biol 149(7):1391–1404. doi:10.1083/jcb.149.7.1391

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Miyauchi K, Zhu X, Foong C, Hosoya H, Murata-Hori M (2007) Aurora B kinase activity is required to prevent polar cortical ingression during cytokinesis. Cell Cycle 6(20):2549–2553. doi:10.4161/cc.6.20.4817

    CAS  PubMed  Google Scholar 

  58. White EA, Raghuraman H, Perozo E, Glotzer M (2013) Binding of the CYK-4 subunit of the centralspindlin complex induces a large scale conformational change in the kinesin subunit. J Biol Chem 288(27):19785–19795. doi:10.1074/jbc.M113.463695

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Barr FA, Gruneberg U (2007) Cytokinesis: placing and making the final cut. Cell 131(5):847–860. doi:10.1016/j.cell.2007.11.011

    CAS  PubMed  Google Scholar 

  60. Glotzer M (2005) The molecular requirements for cytokinesis. Science 307(5716):1735–1739. doi:10.1126/science.1096896

    CAS  PubMed  Google Scholar 

  61. Kikkawa M, Sablin EP, Okada Y, Yajima H, Fletterick RJ, Hirokawa N (2001) Switch-based mechanism of kinesin motors. Nature 411(6836):439–445. doi:10.1038/35078000

    CAS  PubMed  Google Scholar 

  62. Parry DH, O’Farrell PH (2001) The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. Curr Biol 11(9):671–683. doi:10.1016/S0960-9822(01)00204-4

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Wheatley SP, Hinchcliffe EH, Glotzer M, Hyman AA, Sluder G, Wang Y (1997) CDK1 inactivation regulates anaphase spindle dynamics and cytokinesis in vivo. J Cell Biol 138(2):385–393. doi:10.1083/jcb.138.2.385

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Minestrini G, Harley AS, Glover DM (2003) Localization of Pavarotti-KLP in living Drosophila embryos suggests roles in reorganizing the cortical cytoskeleton during the mitotic cycle. Mol Biol Cell 14(10):4028–4038. doi:10.1091/mbc.E03-04-0214

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Hutterer A, Glotzer M, Mishima M (2009) Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody. Curr Biol 19(23):2043–2049. doi:10.1016/j.cub.2009.10.050

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Douglas ME, Davies T, Joseph N, Mishima M (2010) Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis. Curr Biol 20(10):927–933. doi:10.1016/j.cub.2010.03.055

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Guse A, Mishima M, Glotzer M (2005) Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr Biol 15(8):778–786. doi:10.1016/j.cub.2005.03.041

    CAS  PubMed  Google Scholar 

  68. Schumacher JM, Golden A, Donovan PJ (1998) AIR-2: an Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J Cell Biol 143(6):1635–1646. doi:10.1083/jcb.143.6.1635

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Severson AF, Hamill DR, Carter JC, Schumacher J, Bowerman B (2000) The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr Biol 10(19):1162–1171. doi:10.1016/S0960-9822(00)00715-6

    CAS  PubMed  Google Scholar 

  70. Kaitna S, Mendoza M, Jantsch-Plunger V, Glotzer M (2000) INCENP and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr Biol 10(19):1172–1181. doi:10.1016/S0960-9822(00)00721-1

    CAS  PubMed  Google Scholar 

  71. Vagnarelli P, Earnshaw WC (2004) Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma 113(5):211–222. doi:10.1007/s00412-004-0307-3

    PubMed  Google Scholar 

  72. Gruneberg U, Glotzer M, Gartner A, Nigg EA (2002) The CeCDC-14 phosphatase is required for cytokinesis in the Caenorhabditis elegans embryo. J Cell Biol 158(5):901–914. doi:10.1083/jcb.200202054

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Zhao WM, Seki A, Fang G (2006) Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. Mol Biol Cell 17(9):3881–3896. doi:10.1091/mbc.E06-01-0015

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Kamijo K, Ohara N, Abe M, Uchimura T, Hosoya H, Lee JS, Miki T (2006) Dissecting the role of Rho-mediated signaling in contractile ring formation. Mol Biol Cell 17(1):43–55. doi:10.1091/mbc.E05-06-0569

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Nishimura Y, Yonemura S (2006) Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis. J Cell Sci 119(Pt 1):104–114. doi:10.1242/ jcs.02737

    CAS  PubMed  Google Scholar 

  76. Yuce O, Piekny A, Glotzer M (2005) An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol 170(4):571–582. doi:10.1083/jcb.200501097

    PubMed Central  PubMed  Google Scholar 

  77. Simon GC, Schonteich E, Wu CC, Piekny A, Ekiert D, Yu X, Gould GW, Glotzer M, Prekeris R (2008) Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO J 27(13):1791–1803. doi:10.1038/emboj.2008.112

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Alsop GB, Zhang D (2003) Microtubules are the only structural constituent of the spindle apparatus required for induction of cell cleavage. J Cell Biol 162(3):383–390. doi:10.1083/jcb.200301073

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Bringmann H, Hyman AA (2005) A cytokinesis furrow is positioned by two consecutive signals. Nature 436(7051):731–734. doi:10.1038/nature03823

    CAS  PubMed  Google Scholar 

  80. Dechant R, Glotzer M (2003) Centrosome separation and central spindle assembly act in redundant pathways that regulate microtubule density and trigger cleavage furrow formation. Dev Cell 4(3):333–344. doi:10.1016/S1534-5807(03)00057-1

    CAS  PubMed  Google Scholar 

  81. Werner M, Munro E, Glotzer M (2007) Astral signals spatially bias cortical myosin recruitment to break symmetry and promote cytokinesis. Curr Biol 17(15):1286–1297. doi:10.1016/j.cub.2007.06.070

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Rappaport R (1985) Repeated furrow formation from a single mitotic apparatus in cylindrical sand dollar eggs. J Exp Zool 234(1):167–171. doi:10.1002/jez.1402340120

    CAS  PubMed  Google Scholar 

  83. Bastos RN, Penate X, Bates M, Hammond D, Barr FA (2012) CYK4 inhibits Rac1-dependent PAK1 and ARHGEF7 effector pathways during cytokinesis. J Cell Biol 198(5):865–880. doi:10.1083/jcb.201204107

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Bement WM, Benink HA, von Dassow G (2005) A microtubule-dependent zone of active RhoA during cleavage plane specification. J Cell Biol 170(1):91–101. doi:10.1083/jcb.200501131

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Piekny A, Werner M, Glotzer M (2005) Cytokinesis: welcome to the Rho zone. Trends Cell Biol 15(12):651–658. doi:10.1016/j.tcb.2005.10.006

    CAS  PubMed  Google Scholar 

  86. Miller AL, Bement WM (2009) Regulation of cytokinesis by Rho GTPase flux. Nat Cell Biol 11(1):71–77. doi:10.1038/ncb1814

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Prokopenko SN, Brumby A, O’Keefe L, Prior L, He Y, Saint R, Bellen HJ (1999) A putative exchange factor for Rho1 GTPase is required for initiation of cytokinesis in Drosophila. Genes Dev 13(17):2301–2314

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Tatsumoto T, Xie X, Blumenthal R, Okamoto I, Miki T (1999) Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J Cell Biol 147(5):921–928. doi:10.1083/jcb.147.5.921

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Zavortink M, Contreras N, Addy T, Bejsovec A, Saint R (2005) Tum/RacGAP50C provides a critical link between anaphase microtubules and the assembly of the contractile ring in Drosophila melanogaster. J Cell Sci 118(Pt 22):5381–5392. doi:10.1242/jcs.02652

    CAS  PubMed  Google Scholar 

  90. Somers WG, Saint R (2003) A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis. Dev Cell 4(1):29–39. doi:10.1016/S1534-5807(02)00402-1

    CAS  PubMed  Google Scholar 

  91. Chalamalasetty RB, Hummer S, Nigg EA, Sillje HH (2006) Influence of human Ect2 depletion and overexpression on cleavage furrow formation and abscission. J Cell Sci 119(Pt 14):3008–3019. doi:10.1242/ jcs.03032

    CAS  PubMed  Google Scholar 

  92. Petronczki M, Glotzer M, Kraut N, Peters JM (2007) Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev Cell 12(5):713–725. doi:10.1016/j.devcel.2007.03.013

    CAS  PubMed  Google Scholar 

  93. Burkard ME, Maciejowski J, Rodriguez-Bravo V, Repka M, Lowery DM, Clauser KR, Zhang C, Shokat KM, Carr SA, Yaffe MB, Jallepalli PV (2009) Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells. PLoS Biol 7(5):e1000111. doi:10.1371/journal.pbio.1000111

    PubMed Central  PubMed  Google Scholar 

  94. Wolfe BA, Takaki T, Petronczki M, Glotzer M (2009) Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol 7(5):e1000110. doi:10.1371/journal.pbio.1000110

    PubMed Central  PubMed  Google Scholar 

  95. Saito S, Liu XF, Kamijo K, Raziuddin R, Tatsumoto T, Okamoto I, Chen X, Lee CC, Lorenzi MV, Ohara N, Miki T (2004) Deregulation and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling pathways leading to malignant transformation. J Biol Chem 279(8):7169–7179. doi:10.1074/jbc.M306725200

    CAS  PubMed  Google Scholar 

  96. Kim JE, Billadeau DD, Chen J (2005) The tandem BRCT domains of Ect2 are required for both negative and positive regulation of Ect2 in cytokinesis. J Biol Chem 280(7):5733–5739. doi:10.1074/jbc.M409298200

    CAS  PubMed  Google Scholar 

  97. Dvorsky R, Ahmadian MR (2004) Always look on the bright site of Rho: structural implications for a conserved intermolecular interface. EMBO Rep 5(12):1130–1136. doi:10.1038/sj.embor.7400293

    PubMed Central  CAS  PubMed  Google Scholar 

  98. D’Avino PP, Savoian MS, Glover DM (2004) Mutations in sticky lead to defective organization of the contractile ring during cytokinesis and are enhanced by Rho and suppressed by Rac. J Cell Biol 166(1):61–71. doi:10.1083/jcb.200402157

    PubMed Central  PubMed  Google Scholar 

  99. Mishima M, Glotzer M (2003) Cytokinesis: a logical GAP. Curr Biol 13(15):R589–R591. doi:10.1016/S0960-9822(03)00521-9

    CAS  PubMed  Google Scholar 

  100. Glotzer M (2009) Cytokinesis: GAP gap. Curr Biol 19(4):R162–R165. doi:10.1016/j.cub.2008.12.028

    CAS  PubMed  Google Scholar 

  101. Goldstein AY, Jan YN, Luo L (2005) Function and regulation of Tumbleweed (RacGAP50C) in neuroblast proliferation and neuronal morphogenesis. Proc Natl Acad Sci U S A 102(10):3834–3839. doi:10.1073/pnas.0500748102

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Yamada T, Hikida M, Kurosaki T (2006) Regulation of cytokinesis by mgcRacGAP in B lymphocytes is independent of GAP activity. Exp Cell Res 312(18):3517–3525. doi:10.1016/j.yexcr.2006.07.026

    CAS  PubMed  Google Scholar 

  103. Canman JC, Lewellyn L, Laband K, Smerdon SJ, Desai A, Bowerman B, Oegema K (2008) Inhibition of Rac by the GAP activity of centralspindlin is essential for cytokinesis. Science 322(5907):1543–1546. doi:10.1126/science.1163086

  104. Minoshima Y, Kawashima T, Hirose K, Tonozuka Y, Kawajiri A, Bao YC, Deng X, Tatsuka M, Narumiya S, May WS Jr, Nosaka T, Semba K, Inoue T, Satoh T, Inagaki M, Kitamura T (2003) Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev Cell 4(4):549–560. doi:10.1016/S1534-5807(03)00089-3

    CAS  PubMed  Google Scholar 

  105. Hu CK, Coughlin M, Mitchison TJ (2012) Midbody assembly and its regulation during cytokinesis. Mol Biol Cell 23(6):1024–1034. doi:10.1091/mbc.E11-08-0721

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Boman AL, Kuai J, Zhu X, Chen J, Kuriyama R, Kahn RA (1999) Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) in a GTP-dependent fashion. Cell Motil Cytoskeleton 44(2):119–132. doi:10.1002/(SICI)1097-0169(199910)44:2<119::AID-CM4>3.0.CO;2-C

    CAS  PubMed  Google Scholar 

  107. Lekomtsev S, Su KC, Pye VE, Blight K, Sundaramoorthy S, Takaki T, Collinson LM, Cherepanov P, Divecha N, Petronczki M (2012) Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis. Nature 492(7428):276–279. doi:10.1038/nature11773

    CAS  PubMed  Google Scholar 

  108. D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7(5):347–358. doi:10.1038/nrm1910

    PubMed  Google Scholar 

  109. Makyio H, Ohgi M, Takei T, Takahashi S, Takatsu H, Katoh Y, Hanai A, Ueda T, Kanaho Y, Xie Y, Shin HW, Kamikubo H, Kataoka M, Kawasaki M, Kato R, Wakatsuki S, Nakayama K (2012) Structural basis for Arf6-MKLP1 complex formation on the Flemming body responsible for cytokinesis. EMBO J 31(11):2590–2603. doi:10.1038/emboj.2012.89

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Joseph N, Hutterer A, Poser I, Mishima M (2012) ARF6 GTPase protects the post-mitotic midbody from 14-3-3-mediated disintegration. EMBO J 31(11):2604–2614. doi: 10.1038/emboj.2012.139

    PubMed Central  CAS  PubMed  Google Scholar 

  111. D’Avino PP, Takeda T, Capalbo L, Zhang W, Lilley KS, Laue ED, Glover DM (2008) Interaction between Anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site. J Cell Sci 121(Pt 8):1151–1158. doi:10.1242/ jcs.026716

    PubMed  Google Scholar 

  112. Frenette P, Haines E, Loloyan M, Kinal M, Pakarian P, Piekny A (2012) An anillin-Ect2 complex stabilizes central spindle microtubules at the cortex during cytokinesis. PLoS One 7(4):e34888. doi:10.1371/journal.pone.0034888

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Fabbro M, Zhou BB, Takahashi M, Sarcevic B, Lal P, Graham ME, Gabrielli BG, Robinson PJ, Nigg EA, Ono Y, Khanna KK (2005) Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev Cell 9(4):477–488. doi:10.1016/j.devcel.2005.09.003

    CAS  PubMed  Google Scholar 

  114. Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316(5833):1908–1912. doi:10.1126/science.1143422

    CAS  PubMed  Google Scholar 

  115. Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, Sundquist WI (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26(19):4215–4227. doi:10.1038/sj.emboj.7601850

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J (2011) Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci U S A 108(12):4846–4851. doi:10.1073/pnas.1102714108

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Guizetti J, Schermelleh L, Mantler J, Maar S, Poser I, Leonhardt H, Muller-Reichert T, Gerlich DW (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331(6024):1616–1620. doi:10.1126/science.1201847

    CAS  PubMed  Google Scholar 

  118. Bastos RN, Barr FA (2010) Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J Cell Biol 191(4):751–760. doi:10.1083/jcb.201008108

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Mullins JM, Biesele JJ (1977) Terminal phase of cytokinesis in D-98 s cells. J Cell Biol 73(3):672–684. doi:10.1083/jcb.73.3.672

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Kuo TC, Chen CT, Baron D, Onder TT, Loewer S, Almeida S, Weismann CM, Xu P, Houghton JM, Gao FB, Daley GQ, Doxsey S (2011) Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 13(10):1214–1223. doi:10.1038/ncb2332

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Gromley A, Yeaman C, Rosa J, Redick S, Chen CT, Mirabelle S, Guha M, Sillibourne J, Doxsey SJ (2005) Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123(1):75–87. doi:10.1016/j.cell.2005.07.027

    CAS  PubMed  Google Scholar 

  122. Pohl C, Jentsch S (2009) Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat Cell Biol 11(1):65–70. doi:10.1038/ncb1813

    CAS  PubMed  Google Scholar 

  123. Goss JW, Toomre DK (2008) Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis. J Cell Biol 181(7):1047–1054. doi:10.1083/jcb.200712137

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Valk K, Vooder T, Kolde R, Reintam MA, Petzold C, Vilo J, Metspalu A (2010) Gene expression profiles of non-small cell lung cancer: survival prediction and new biomarkers. Oncology 79(3–4):283–292. doi:10.1159/000322116

    PubMed  Google Scholar 

  125. Takahashi S, Fusaki N, Ohta S, Iwahori Y, Iizuka Y, Inagawa K, Kawakami Y, Yoshida K, Toda M (2012) Downregulation of KIF23 suppresses glioma proliferation. J Neurooncol 106(3):519–529. doi:10.1007/s11060-011-0706-2

    CAS  PubMed  Google Scholar 

  126. Cifola I, Pietrelli A, Consolandi C, Severgnini M, Mangano E, Russo V, De Bellis G, Battaglia C (2013) Comprehensive genomic characterization of cutaneous malignant melanoma cell lines derived from metastatic lesions by whole-exome sequencing and SNP array profiling. PLoS One 8(5):e63597. doi:10.1371/journal.pone.0063597

    PubMed Central  PubMed  Google Scholar 

  127. DeRycke MS, Gunawardena SR, Middha S, Asmann YW, Schaid DJ, McDonnell SK, Riska SM, Eckloff BW, Cunningham JM, Fridley BL, Serie DJ, Bamlet WR, Cicek MS, Jenkins MA, Duggan DJ, Buchanan D, Clendenning M, Haile RW, Woods MO, Gallinger SN, Casey G, Potter JD, Newcomb PA, Le Marchand L, Lindor NM, Thibodeau SN, Goode EL (2013) Identification of novel variants in colorectal cancer families by high-throughput exome sequencing. Cancer Epidemiol Biomarkers Prev 22(7):1239–1251. doi:10.1158/1055-9965.EPI-12-1226

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Liljeholm M, Irvine AF, Vikberg AL, Norberg A, Month S, Sandstrom H, Wahlin A, Mishima M, Golovleva I (2013) Congenital dyserythropoietic anemia type III (CDA III) is caused by a mutation in kinesin family member, KIF23. Blood 121(23):4791–4799. doi:10.1182/blood-2012-10-461392

    CAS  PubMed  Google Scholar 

  129. Sandstrom H, Wahlin A, Eriksson M, Bergstrom I, Wickramasinghe SN (1994) Intravascular haemolysis and increased prevalence of myeloma and monoclonal gammopathy in congenital dyserythropoietic anaemia, type III. Eur J Haematol 52(1):42–46. doi:10.1111/j.1600-0609.1994.tb01283.x

    CAS  PubMed  Google Scholar 

  130. Fischer M, Grundke I, Sohr S, Quaas M, Hoffmann S, Knorck A, Gumhold C, Rother K (2013) p53 and cell cycle dependent transcription of kinesin family member 23 (KIF23) is controlled via a CHR promoter element bound by DREAM and MMB complexes. PLoS One 8(5):e63187. doi:10.1371/journal.pone.0063187

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Lyberopoulou A, Venieris E, Mylonis I, Chachami G, Pappas I, Simos G, Bonanou S, Georgatsou E (2007) MgcRacGAP interacts with HIF-1alpha and regulates its transcriptional activity. Cell Physiol Biochem 20(6):995–1006. doi:10.1159/000110460

    CAS  PubMed  Google Scholar 

  132. Jones WM, Chao AT, Zavortink M, Saint R, Bejsovec A (2010) Cytokinesis proteins Tum and Pav have a nuclear role in Wnt regulation. J Cell Sci 123(Pt 13):2179–2189. doi:10.1242/ jcs.067868

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Ferhat L, Cook C, Chauviere M, Harper M, Kress M, Lyons GE, Baas PW (1998) Expression of the mitotic motor protein Eg5 in postmitotic neurons: implications for neuronal development. J Neurosci 18(19):7822–7835

    CAS  PubMed  Google Scholar 

  134. Van de Putte T, Zwijsen A, Lonnoy O, Rybin V, Cozijnsen M, Francis A, Baekelandt V, Kozak CA, Zerial M, Huylebroeck D (2001) Mice with a homozygous gene trap vector insertion in mgcRacGAP die during pre-implantation development. Mech Dev 102(1–2):33–44. doi:10.1016/S0925-4773(01)00279-9

    PubMed  Google Scholar 

  135. Ferhat L, Kuriyama R, Lyons GE, Micales B, Baas PW (1998) Expression of the mitotic motor protein CHO1/MKLP1 in postmitotic neurons. Eur J Neurosci 10(4):1383–1393. doi:10.1046/j.1460-9568.1998.00159.x

    CAS  PubMed  Google Scholar 

  136. Sharp DJ, Yu W, Ferhat L, Kuriyama R, Rueger DC, Baas PW (1997) Identification of a microtubule-associated motor protein essential for dendritic differentiation. J Cell Biol 138(4):833–843. doi:10.1083/jcb.138.4.833

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Yu W, Sharp DJ, Kuriyama R, Mallik P, Baas PW (1997) Inhibition of a mitotic motor compromises the formation of dendrite-like processes from neuroblastoma cells. J Cell Biol 136(3):659–668. doi:10.1083/jcb.136.3.659

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Yu W, Cook C, Sauter C, Kuriyama R, Kaplan PL, Baas PW (2000) Depletion of a microtubule-associated motor protein induces the loss of dendritic identity. J Neurosci 20(15):5782–5791.

    CAS  PubMed  Google Scholar 

  139. Baas PW, Black MM, Banker GA (1989) Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J Cell Biol 109(6 Pt 1):3085–3094. doi:10.1083/jcb.109.6.3085

    CAS  PubMed  Google Scholar 

  140. Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A 85(21):8335–8339

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Sharp DJ, Kuriyama R, Essner R, Baas PW (1997) Expression of a minus-end-directed motor protein induces Sf9 cells to form axon-like processes with uniform microtubule polarity orientation. J Cell Sci 110(Pt 19):2373–2380

    CAS  PubMed  Google Scholar 

  142. Xu X, He C, Zhang Z, Chen Y (2006) MKLP1 requires specific domains for its dendritic targeting. J Cell Sci 119(Pt 3):452–458. doi:10.1242/ jcs.02750

    CAS  PubMed  Google Scholar 

  143. Kobayashi N, Reiser J, Kriz W, Kuriyama R, Mundel P (1998) Nonuniform microtubular polarity established by CHO1/MKLP1 motor protein is necessary for process formation of podocytes. J Cell Biol 143(7):1961–1970. doi:10.1083/jcb.143.7.1961

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Smith KR, Kieserman EK, Wang PI, Basten SG, Giles RH, Marcotte EM, Wallingford JB (2011) A role for central spindle proteins in cilia structure and function. Cytoskeleton (Hoboken) 68(2):112–124. doi:10.1002/cm.20498

    CAS  Google Scholar 

  145. Portereiko MF, Saam J, Mango SE (2004) ZEN-4/MKLP1 is required to polarize the foregut epithelium. Curr Biol 14(11):932–941. doi:10.1016/j.cub.2004.05.052

    CAS  PubMed  Google Scholar 

  146. Hardin J, King R, Thomas-Virnig C, Raich WB (2008) Zygotic loss of ZEN-4/MKLP1 results in disruption of epidermal morphogenesis in the C. elegans embryo. Dev Dyn 237(3):830–836. doi:10.1002/dvdy.21455

    CAS  PubMed  Google Scholar 

  147. Haglund K, Nezis IP, Stenmark H (2011) Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development. Commun Integr Biol 4(1):1–9. doi:10.4161/cib.4.1.13550

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Echard A, Opdam FJ, de Leeuw HJ, Jollivet F, Savelkoul P, Hendriks W, Voorberg J, Goud B, Fransen JA (2000) Alternative splicing of the human Rab6A gene generates two close but functionally different isoforms. Mol Biol Cell 11(11):3819–3833. doi:10.1091/mbc.11.11.3819

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Neef R, Preisinger C, Sutcliffe J, Kopajtich R, Nigg EA, Mayer TU, Barr FA (2003) Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 162(5):863–875. doi:10.1083/jcb.200306009

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Neef R, Gruneberg U, Kopajtich R, Li X, Nigg EA, Sillje H, Barr FA (2007) Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nat Cell Biol 9(4):436–444. doi:10.1038/ncb1557

    CAS  PubMed  Google Scholar 

  151. Elia AE, Cantley LC, Yaffe MB (2003) Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299(5610):1228–1231. doi:10.1126/science.1079079

    CAS  PubMed  Google Scholar 

  152. Elia AE, Rellos P, Haire LF, Chao JW, Ivins FJ, Hoepker K, Mohammad D, Cantley LC, Smerdon SJ, Yaffe MB (2003) The molecular basis for phosphodependent substrate targeting and regulation of Plks by the polo-box domain. Cell 115(1):83–95. doi:10.1016/S0092-8674(03)00725-6

    CAS  PubMed  Google Scholar 

  153. Liu X, Zhou T, Kuriyama R, Erikson RL (2004) Molecular interactions of polo-like-kinase 1 with the mitotic kinesin-like protein CHO1/MKLP-1. J Cell Sci 117(Pt 15):3233–3246. doi:10.1242/jcs.01173

    CAS  PubMed  Google Scholar 

  154. Li J, Wang J, Jiao H, Liao J, Xu X (2010) Cytokinesis and cancer: polo loves ROCK‘n’ Rho(A). J Genet Genomics 37(3):159–172. doi:10.1016/S1673-8527(09)60034-5

    CAS  PubMed  Google Scholar 

  155. Lowery DM, Clauser KR, Hjerrild M, Lim D, Alexander J, Kishi K, Ong SE, Gammeltoft S, Carr SA, Yaffe MB (2007) Proteomic screen defines the polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J 26(9):2262–2273. doi:10.1038/sj.emboj.7601683

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Wheatley SP, Carvalho A, Vagnarelli P, Earnshaw WC (2001) INCENP is required for proper targeting of Survivin to the centromeres and the anaphase spindle during mitosis. Curr Biol 11(11):886–890. doi:10.1016/S0960-9822(01)00238-X

    CAS  PubMed  Google Scholar 

  157. Adams RR, Maiato H, Earnshaw WC, Carmena M (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153(4):865–880. doi:10.1083/jcb.153.4.865

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Bolton MA, Lan W, Powers SE, McCleland ML, Kuang J, Stukenberg PT (2002) Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation. Mol Biol Cell 13(9):3064–3077. doi:10.1091/mbc.E02-02-0092

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Sessa F, Mapelli M, Ciferri C, Tarricone C, Areces LB, Schneider TR, Stukenberg PT, Musacchio A (2005) Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 18(3):379–391. doi:10.1016/j.molcel.2005.03.031

    CAS  PubMed  Google Scholar 

  160. Jeyaprakash AA, Klein UR, Lindner D, Ebert J, Nigg EA, Conti E (2007) Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell 131(2):271–285. doi:10.1016/j.cell.2007.07.045

    CAS  PubMed  Google Scholar 

  161. Xu Z, Ogawa H, Vagnarelli P, Bergmann JH, Hudson DF, Ruchaud S, Fukagawa T, Earnshaw WC, Samejima K (2009) INCENP-aurora B interactions modulate kinase activity and chromosome passenger complex localization. J Cell Biol 187(5):637–653. doi:10.1083/jcb.200906053

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Lee SH, McCormick F, Saya H (2010) Mad2 inhibits the mitotic kinesin MKLP2. J Cell Biol 191(6):1069–1077. doi:10.1083/jcb.201003095

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Fuller BG, Lampson MA, Foley EA, Rosasco-Nitcher S, Le KV, Tobelmann P, Brautigan DL, Stukenberg PT, Kapoor TM (2008) Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453(7198):1132–1136. doi:10.1038/nature06923

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13(12):789–803. doi:10.1038/nrm3474

    PubMed Central  CAS  PubMed  Google Scholar 

  165. van der Horst A, Lens SM (2014) Cell division: control of the chromosomal passenger complex in time and space. Chromosoma 123(1–2):25–42. doi:10.1007/s00412-013-0437-6

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Uehara R, Tsukada Y, Kamasaki T, Poser I, Yoda K, Gerlich DW, Goshima G (2013) Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase. J Cell Biol 202(4):623–636. doi:10.1083/jcb.201302123

    PubMed Central  CAS  PubMed  Google Scholar 

  167. Lewellyn L, Carvalho A, Desai A, Maddox AS, Oegema K (2011) The chromosomal passenger complex and centralspindlin independently contribute to contractile ring assembly. J Cell Biol 193(1):155–169. doi:10.1083/jcb.201008138

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Birkenfeld J, Nalbant P, Bohl BP, Pertz O, Hahn KM, Bokoch GM (2007) GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev Cell 12(5):699–712. doi:10.1016/j.devcel.2007.03.014

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Kitagawa M, Fung SY, Onishi N, Saya H, Lee SH (2013) Targeting Aurora B to the equatorial cortex by MKLP2 is required for cytokinesis. PLoS One 8(6):e64826. doi:10.1371/journal.pone.0064826

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Norden C, Mendoza M, Dobbelaere J, Kotwaliwale CV, Biggins S, Barral Y (2006) The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125(1):85–98. doi:10.1016/j.cell.2006.01.045

    CAS  PubMed  Google Scholar 

  171. Mendoza M, Norden C, Durrer K, Rauter H, Uhlmann F, Barral Y (2009) A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat Cell Biol 11(4):477–483. doi:10.1038/ncb1855

    CAS  PubMed  Google Scholar 

  172. Steigemann P, Wurzenberger C, Schmitz MH, Held M, Guizetti J, Maar S, Gerlich DW (2009) Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136(3):473–484. doi:10.1016/j.cell.2008.12.020

    PubMed  Google Scholar 

  173. Capalbo L, Montembault E, Takeda T, Bassi ZI, Glover DM, D’Avino PP (2012) The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open Biol 2(5):120070. doi:10.1098/rsob.120070

    PubMed Central  PubMed  Google Scholar 

  174. Carlton JG, Caballe A, Agromayor M, Kloc M, Martin-Serrano J (2012) ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336(6078):220–225. doi:10.1126/science.1217180

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Thoresen SB, Campsteijn C, Vietri M, Schink KO, Liestol K, Andersen JS, Raiborg C, Stenmark H (2014) ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat Cell Biol 16(6):550–560. doi:10.1038/ncb2959

    CAS  PubMed  Google Scholar 

  176. Taniuchi K, Nakagawa H, Nakamura T, Eguchi H, Ohigashi H, Ishikawa O, Katagiri T, Nakamura Y (2005) Down-regulation of RAB6KIFL/KIF20A, a kinesin involved with membrane trafficking of discs large homologue 5, can attenuate growth of pancreatic cancer cell. Cancer Res 65(1):105–112

    CAS  PubMed  Google Scholar 

  177. Lu Y, Liu P, Wen W, Grubbs CJ, Townsend RR, Malone JP, Lubet RA, You M (2010) Cross-species comparison of orthologous gene expression in human bladder cancer and carcinogen-induced rodent models. Am J Transl Res 3(1):8–27

    PubMed Central  PubMed  Google Scholar 

  178. Claerhout S, Lim JY, Choi W, Park YY, Kim K, Kim SB, Lee JS, Mills GB, Cho JY (2011) Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer. PLoS One 6(9):e24662. doi:10.1371/journal.pone.0024662

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Gasnereau I, Boissan M, Margall-Ducos G, Couchy G, Wendum D, Bourgain-Guglielmetti F, Desdouets C, Lacombe ML, Zucman-Rossi J, Sobczak-Thepot J (2012) KIF20A mRNA and its product MKLP2 are increased during hepatocyte proliferation and hepatocarcinogenesis. Am J Pathol 180(1):131–140. doi:10.1016/j.ajpath.2011.09.040

    CAS  PubMed  Google Scholar 

  180. Yamashita J, Fukushima S, Jinnin M, Honda N, Makino K, Sakai K, Masuguchi S, Inoue Y, Ihn H (2012) Kinesin family member 20A is a novel melanoma-associated antigen. Acta Derm Venereol 92(6):593–597. doi:10.2340/00015555-1416

    CAS  PubMed  Google Scholar 

  181. List A, Kurtin S, Roe DJ, Buresh A, Mahadevan D, Fuchs D, Rimsza L, Heaton R, Knight R, Zeldis JB (2005) Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 352(6):549–557. doi:10.1056/NEJMoa041668

    CAS  PubMed  Google Scholar 

  182. Matsuoka A, Tochigi A, Kishimoto M, Nakahara T, Kondo T, Tsujioka T, Tasaka T, Tohyama Y, Tohyama K (2010) Lenalidomide induces cell death in an MDS-derived cell line with deletion of chromosome 5q by inhibition of cytokinesis. Leukemia 24(4):748–755. doi:10.1038/leu.2009.296

    CAS  PubMed  Google Scholar 

  183. Groth-Pedersen L, Aits S, Corcelle-Termeau E, Petersen NH, Nylandsted J, Jaattela M (2012) Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells. PLoS One 7(10):e45381. doi:10.1371/journal.pone.0045381

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Yan GR, Zou FY, Dang BL, Zhang Y, Yu G, Liu X, He QY (2012) Genistein-induced mitotic arrest of gastric cancer cells by downregulating KIF20A, a proteomics study. Proteomics 12(14):2391–2399. doi:10.1002/pmic.201100652

    CAS  PubMed  Google Scholar 

  185. Zou JX, Duan Z, Wang J, Sokolov A, Xu J, Chen CZ, Li JJ, Chen HW (2014) Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance. Mol Cancer Res 12(4):539–549. doi:10.1158/1541-7786.MCR-13-0459

    CAS  PubMed  Google Scholar 

  186. Tcherniuk S, Skoufias DA, Labriere C, Rath O, Gueritte F, Guillou C, Kozielski F (2010) Relocation of Aurora B and survivin from centromeres to the central spindle impaired by a kinesin-specific MKLP-2 inhibitor. Angew Chem Int Ed Engl 49(44):8228–8231. doi:10.1002/anie.201003254

    CAS  PubMed  Google Scholar 

  187. Liu J, Wang QC, Cui XS, Wang ZB, Kim NH, Sun SC (2013) MKLP2 inhibitior paprotrain affects polar body extrusion during mouse oocyte maturation. Reprod Biol Endocrinol 11:117. doi:10.1186/1477-7827-11-117

    PubMed Central  PubMed  Google Scholar 

  188. Nakayama Y, Saito Y, Soeda S, Iwamoto E, Ogawa S, Yamagishi N, Kuga T, Yamaguchi N (2014) Genistein induces cytokinesis failure through RhoA delocalization and anaphase chromosome bridging. J Cell Biochem 115(4):763–771. doi:10.1002/jcb.24720

    CAS  PubMed  Google Scholar 

  189. Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yokomine K, Harao M, Inoue M, Tomita Y, Tsunoda T, Nakagawa H, Nakamura Y, Baba H, Nishimura Y (2011) Identification of HLA-A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A, overexpressed in pancreatic cancer. Br J Cancer 104(2):300–307. doi:10.1038/sj.bjc.6606052

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Osawa R, Tsunoda T, Yoshimura S, Watanabe T, Miyazawa M, Tani M, Takeda K, Nakagawa H, Nakamura Y, Yamaue H (2012) Identification of HLA-A24-restricted novel T Cell epitope peptides derived from P-cadherin and kinesin family member 20A. J Biomed Biotechnol 2012:848042. doi:10.1155/2012/848042

    PubMed Central  PubMed  Google Scholar 

  191. Asahara S, Takeda K, Yamao K, Maguchi H, Yamaue H (2013) Phase I/II clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. J Transl Med 11(1):291. doi:10.1186/1479-5876-11-291

    PubMed Central  PubMed  Google Scholar 

  192. Suzuki N, Hazama S, Ueno T, Matsui H, Shindo Y, Iida M, Yoshimura K, Yoshino S, Takeda K, Oka M (2014) A phase I clinical trial of vaccination with KIF20A-derived peptide in combination with gemcitabine for patients with advanced pancreatic cancer. J Immunother 37(1):36–42. doi:10.1097/CJI.0000000000000012

    PubMed Central  CAS  PubMed  Google Scholar 

  193. Okuyama R, Aruga A, Hatori T, Takeda K, Yamamoto M (2013) Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology 2(11):e27010. doi:10.4161/onci.27010

    PubMed Central  PubMed  Google Scholar 

  194. Aruga A, Takeshita N, Kotera Y, Okuyama R, Matsushita N, Ohta T, Takeda K, Yamamoto M (2014) Phase I clinical trial of multiple-peptide vaccination for patients with advanced biliary tract cancer. J Transl Med 12:61. doi:10.1186/1479-5876-12-61

    PubMed Central  PubMed  Google Scholar 

  195. Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuroda Y, Hirayama M, Irie A, Kawahara K, Yatsuda J, Hamada A, Jono H, Yoshida K, Tsunoda T, Kohrogi H, Yoshitake Y, Nakamura Y, Shinohara M, Nishimura Y (2013) Identification of promiscuous KIF20A long peptides bearing both CD4+ and CD8+ T-cell epitopes: KIF20A-specific CD4+ T-cell immunity in patients with malignant tumor. Clin Cancer Res 19(16):4508–4520. doi:10.1158/1078-0432.CCR-13-0197

    CAS  PubMed  Google Scholar 

  196. Melief CJ, van der Burg SH (2008) Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 8(5):351–360. doi:10.1038/nrc2373

    CAS  PubMed  Google Scholar 

  197. Reichert N, Wurster S, Ulrich T, Schmitt K, Hauser S, Probst L, Gotz R, Ceteci F, Moll R, Rapp U, Gaubatz S (2010) Lin9, a subunit of the mammalian DREAM complex, is essential for embryonic development, for survival of adult mice, and for tumor suppression. Mol Cell Biol 30(12):2896–2908. doi:10.1128/MCB.00028-10

    PubMed Central  CAS  PubMed  Google Scholar 

  198. Wonsey DR, Follettie MT (2005) Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 65(12):5181–5189. doi:10.1158/0008-5472.CAN-04-4059

    CAS  PubMed  Google Scholar 

  199. Westendorf JM, Rao PN, Gerace L (1994) Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope. Proc Natl Acad Sci U S A 91(2):714–718

    PubMed Central  CAS  PubMed  Google Scholar 

  200. Matsumoto-Taniura N, Pirollet F, Monroe R, Gerace L, Westendorf JM (1996) Identification of novel M phase phosphoproteins by expression cloning. Mol Biol Cell 7(9):1455–1469. doi:10.1091/mbc.7.9.1455

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Janisch KM, Vock VM, Fleming MS, Shrestha A, Grimsley-Myers CM, Rasoul BA, Neale SA, Cupp TD, Kinchen JM, Liem KF Jr, Dwyer ND (2013) The vertebrate-specific Kinesin-6, Kif20b, is required for normal cytokinesis of polarized cortical stem cells and cerebral cortex size. Development 140(23):4672–4682. doi:10.1242/dev.093286

    PubMed Central  CAS  PubMed  Google Scholar 

  202. Zhu C, Zhao J, Bibikova M, Leverson JD, Bossy-Wetzel E, Fan JB, Abraham RT, Jiang W (2005) Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16(7):3187–3199. doi:10.1091/mbc.E05-02-0167

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Ryo A, Liou YC, Lu KP, Wulf G (2003) Prolyl isomerase Pin1: a catalyst for oncogenesis and a potential therapeutic target in cancer. J Cell Sci 116(Pt 5):773–783. doi:10.1242/jcs.00276

    CAS  PubMed  Google Scholar 

  204. van der Horst A, Khanna KK (2009) The peptidyl-prolyl isomerase Pin1 regulates cytokinesis through Cep55. Cancer Res 69(16):6651–6659. doi:0.1158/0008-5472.CAN-09-0825

    Google Scholar 

  205. Nishiu M, Yanagawa R, Nakatsuka S, Yao M, Tsunoda T, Nakamura Y, Aozasa K (2002) Microarray analysis of gene-expression profiles in diffuse large B-cell lymphoma: identification of genes related to disease progression. Jpn J Cancer Res 93(8):894–901. doi:10.1111/j.1349-7006.2002.tb01335.x

    CAS  PubMed  Google Scholar 

  206. Liu XR, Cai Y, Cao X, Wei RC, Li HL, Zhou XM, Zhang KJ, Wu S, Qian QJ, Cheng B, Huang K, Liu XY (2012) A new oncolytic adenoviral vector carrying dual tumour suppressor genes shows potent anti-tumour effect. J Cell Mol Med 16(6):1298–1309. doi:10.1111/j.1582-4934.2011.01396.x

    CAS  PubMed  Google Scholar 

  207. Bao L, Kimzey A, Sauter G, Sowadski JM, Lu KP, Wang DG (2004) Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am J Pathol 164(5):1727–1737. doi:10.1016/S0002-9440(10)63731-5

    PubMed Central  CAS  PubMed  Google Scholar 

  208. Obara W, Ohsawa R, Kanehira M, Takata R, Tsunoda T, Yoshida K, Takeda K, Katagiri T, Nakamura Y, Fujioka T (2012) Cancer peptide vaccine therapy developed from oncoantigens identified through genome-wide expression profile analysis for bladder cancer. Jpn J Clin Oncol 42(7):591–600. doi:10.1093/jjco/hys069

    PubMed  Google Scholar 

  209. Sapir T, Levy T, Sakakibara A, Rabinkov A, Miyata T, Reiner O (2013) Shootin1 acts in concert with KIF20B to promote polarization of migrating neurons. J Neurosci 33(29):11932–11948. doi:10.1523/JNEUROSCI.5425-12.2013

    CAS  PubMed  Google Scholar 

  210. Fritzler MJ, Kerfoot SM, Feasby TE, Zochodne DW, Westendorf JM, Dalmau JO, Chan EK (2000) Autoantibodies from patients with idiopathic ataxia bind to M-phase phosphoprotein-1 (MPP1). J Investig Med 48(1):28–39

    CAS  PubMed  Google Scholar 

  211. Liu F, Arias-Vasquez A, Sleegers K, Aulchenko YS, Kayser M, Sanchez-Juan P, Feng BJ, Bertoli-Avella AM, van Swieten J, Axenovich TI, Heutink P, van Broeckhoven C, Oostra BA, van Duijn CM (2007) A genomewide screen for late-onset alzheimer disease in a genetically isolated Dutch population. Am J Hum Genet 81(1):17–31. doi:10.1086/518720

  212. Zochodne DW, Auer R, Fritzler MJ (2003) Longstanding ataxic demyelinating polyneuronopathy with a novel autoantibody. Neurology 60(1):127–129. doi:10.1212/01.WNL.0000040660.76868.3C

    PubMed  Google Scholar 

  213. Blagosklonny MV (2007) Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle 6(1):70–74. doi:10.4161/cc.6.1.3682

    CAS  PubMed  Google Scholar 

  214. Casenghi M, Mangiacasale R, Tuynder M, Caillet-Fauquet P, Elhajouji A, Lavia P, Mousset S, Kirsch-Volders M, Cundari E (1999) p53-independent apoptosis and p53-dependent block of DNA rereplication following mitotic spindle inhibition in human cells. Exp Cell Res 250(2):339–350. doi:10.1006/excr.1999.4554

    CAS  PubMed  Google Scholar 

  215. Sagona AP, Stenmark H (2010) Cytokinesis and cancer. FEBS Lett 584(12):2652–2661. doi:10.1016/j.febslet.2010.03.044

  216. Hayashi MT, Karlseder J (2013) DNA damage associated with mitosis and cytokinesis failure. Oncogene 32(39):4593–4601. doi:10.1038/onc.2012.615

    PubMed Central  CAS  PubMed  Google Scholar 

  217. Lacroix B, Maddox AS (2012) Cytokinesis, ploidy and aneuploidy. J Pathol 226(2):338–351. doi:10.1002/path.3013

    CAS  PubMed  Google Scholar 

  218. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437(7061):1043–1047. doi:10.1038/nature04217

    CAS  PubMed  Google Scholar 

  219. Lv L, Zhang T, Yi Q, Huang Y, Wang Z, Hou H, Zhang H, Zheng W, Hao Q, Guo Z, Cooke HJ, Shi Q (2012) Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells. Cell Cycle 11(15):2864–2875. doi:10.4161/cc.21196

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan D. Baron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baron, R.D., Barr, F.A. (2015). The Kinesin-6 Members MKLP1, MKLP2 and MPP1. In: Kozielski, FSB, F. (eds) Kinesins and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9732-0_12

Download citation

Publish with us

Policies and ethics