Skip to main content

Crystallography and Biopharmaceuticals

  • Conference paper
  • First Online:
  • 1077 Accesses

Abstract

Biopharmaceuticals generally describe drugs synthesized by biotechnology rather than chemistry, and are normally macromolecules such as proteins (vaccines, antibodies, hormones) or nucleic acids (RNA, DNA), but could also include synthetic biology ambitions such as designed therapeutic microorganisms.

AstaZeneca has an experimental protein crystallography research group at each of its three research sites (Sweden, USA and UK). These groups support small molecule drug design for local projects as their main focus. AstraZeneca acquired MedImmune in 2007 as a strategic boost of its biopharmaceutical capability. Currently, there is no experimental structure capability within MedImmune.

A question arose whether the current structural support facility could address MedImmune projects with business impact. This chapter illustrates two cases where structural support provided unique information that could be incorporated into the patenting strategy in a timely fashion. These are structures of antibody-antigen complexes, which provide definitive epitope characterization. The structure of two interleukins, IL-17A and IL-15 are presented in complex with neutralizing antibodies that have been subjected to in-vitro affinity maturation. For the IL-17A antibody, the affinity maturation optimization process resulted in seven amino changes increasing affinity 6-fold and activity 30-fold. For the IL-15 antibody, there were nine amino acid changes with affinity increasing 228-fold and activity increasing a staggering 40,000-fold. We were intrigued to see whether the structures would help explain this, as well as providing the definitive epitopes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen SY et al (1994) Intracellular antibodies as a new class of therapeutic molecules for gene therapy. Hum Gene Ther 5(5):595–601

    Article  CAS  PubMed  Google Scholar 

  2. Hooks MA et al (1991) Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy 11(1):26–37

    CAS  PubMed  Google Scholar 

  3. Milstein C (1999) The hybridoma revolution: an offshoot of basic research. Bioessays 21(11):966–973

    Article  CAS  PubMed  Google Scholar 

  4. Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22

    Article  PubMed  Google Scholar 

  5. Vaughan TJ et al (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14:309–314

    Article  CAS  PubMed  Google Scholar 

  6. Strohl WR, Strohl LM (2012) Therapeutic antibody engineering: current and future advances driving the strongest growth area in the pharmaceutical industry. Woodhead Publishing, ISBN-10: 1907568379; ISBN-13: 978-1907568374

    Google Scholar 

  7. Gerhardt S et al (2009) Structure of IL-17A in complex with a potent, fully human neutralizing antibody. J Mol Biol 394:905–921

    Article  CAS  PubMed  Google Scholar 

  8. Lowe DC et al (2011) Engineering a high-affinity anti-IL-15 antibody: crystal structure reveals an α-helix in VH CDR3 as key component of paratope. J Mol Biol 406:160–175

    Article  CAS  PubMed  Google Scholar 

  9. Rouvier E et al (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 150:5445–5456

    CAS  PubMed  Google Scholar 

  10. Hymowitz SG et al (2001) IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J 20:5332–5341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Shen F, Gaffen S (2008) Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 41:92–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Miossec P (2007) Interleukin-17 in fashion, at last: ten years after its description, its cellular source has been identified. Arthritis Rheum 56:2111–2115

    Article  CAS  PubMed  Google Scholar 

  13. Witowski J et al (2004) Interleukin-17: a mediator of inflammatory responses. Cell Mol Life Sci 61:567–579

    Article  CAS  PubMed  Google Scholar 

  14. Bessis N, Boissier MC (2001) Novel pro-inflammatory interleukins: potential therapeutic targets in rheumatoid arthritis. Joint Bone Spine 68:477–481

    Article  CAS  PubMed  Google Scholar 

  15. Nakae S et al (2003) Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171:6173–6177

    Article  CAS  PubMed  Google Scholar 

  16. Lubberts E et al (2004) Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 50:650–659

    Article  CAS  PubMed  Google Scholar 

  17. Park H et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Langrish CL et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Arican O et al (2005) Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm 2005:273–279

    Article  PubMed Central  PubMed  Google Scholar 

  20. Fujino S et al (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52:65–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Furukawa K et al (2001) A role of the third complementarity determining region in the affinity maturation of an antibody. J Biol Chem 276:27622–27628

    Article  CAS  PubMed  Google Scholar 

  22. Potterton E et al (2003) A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr 59:1131–1137

    Article  PubMed  Google Scholar 

  23. Faber C et al (1998) Three-dimensional structure of a human Fab with high affinity for tetanus toxoid. Immunotechnology 3:253–270

    Article  CAS  PubMed  Google Scholar 

  24. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  25. Liu S et al (2013) Crystal structures of interleukin 17A and its complex with IL-17 receptor A. Nat Commun 4:1888. doi:10.1038/ncomms2880

    Article  PubMed  Google Scholar 

  26. Waldmann TA, Tagaya Y (1999) The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 17:19–49

    Article  CAS  PubMed  Google Scholar 

  27. Ma A et al (2006) Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 24:657–679

    Article  CAS  PubMed  Google Scholar 

  28. Giri JG et al (1994) Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J 13:2822–2830

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Fehniger TA, Caligiuri MA (2001) Interleukin 15: biology and relevance to human disease. Blood 97:14–32

    Article  CAS  PubMed  Google Scholar 

  30. Chirifu M et al (2007) Crystal structure of the IL-15–IL-15Ralpha complex, a cytokine-receptor unit presented in trans. Nat Immunol 8:1001–1007

    Article  CAS  PubMed  Google Scholar 

  31. Olsen SK et al (2007) Crystal structure of the interleukin-15: interleukin-15 receptor α complex: insights into trans and cis presentation. J Biol Chem 282:37191–37204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Many contributors enabled this work. Mark Abbott, Rick Davies, Maurice Needham, Melanie Snow, Caroline Langham, Wendy Barker, Adid Aziz, Sarah Dawson, and Malcolm Anderson at AstraZeneca prepared and characterized reagents; Fraser Welsch, Trevor Wilkinson, Tris Vaugan, Gerald Beste, Sarah Bishop, Bojana Popovich, Gareth Rees, Matthew Sleeman, Caroline Russel, David Lowe, Franco Ferraro, Debbie Patterson, Catriona Buchanon, Donna Finch and Phillip Mallinder at MedImmune Cambridge isolated and characterized the antibodies; Stefan Gerhardt and David Hargreaves at AstraZeneca did the crystallography; Steven Coales, Yoshitomo Hamura, and Steven Tuske at ExSAR provided additional epitope mapping by H/D exchange MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Pauptit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pauptit, R. (2015). Crystallography and Biopharmaceuticals. In: Scapin, G., Patel, D., Arnold, E. (eds) Multifaceted Roles of Crystallography in Modern Drug Discovery. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9719-1_4

Download citation

Publish with us

Policies and ethics