Skip to main content

Importance of Protonation States for the Binding of Ligands to Pharmaceutical Targets

  • Conference paper
  • First Online:
  • 1058 Accesses

Abstract

Protonation states of protein residues in ligand binding sites determine the electrostatic potential, which is essential to understand the interactions of the ligand and the protein. The case of aldose reductase is shown as an example. Inhibitors bind to the active site and to the nearby selectivity pocket. The case of two inhibitors, IDD 594 and Fidarestat, is discussed. The binding properties are determined by the protonation states of the protein residues, notably of His 110, and by the protonation state of the ligand, which can change in the case of Fidarestat. In this latter case the change in the charged state of the ligand during binding, from neutral to negative, combines the advantage of strong potency (charged state) and favorable pharmacokinetics (neutral state).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303(5665):1813–1818

    Article  CAS  PubMed  Google Scholar 

  2. Goh CS, Milburn D, Gerstein M (2004) Conformational changes associated with protein-protein interactions. Curr Opin Struct Biol 14(1):104–109

    Article  CAS  PubMed  Google Scholar 

  3. Holmes KC, Angert I, Kull FJ, Jahn W, Schroder RR (2003) Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 425(6956):423–427

    Article  CAS  PubMed  Google Scholar 

  4. Boehr DD, Wright PE (2008) Biochemistry. How do proteins interact? Science 320(5882):1429–1430

    Article  CAS  PubMed  Google Scholar 

  5. Sheinerman FB, Honig B (2002) On the role of electrostatic interactions in the design of protein-protein interfaces. J Mol Biol 318(1):161–177

    Article  CAS  PubMed  Google Scholar 

  6. Bordner AJ, Abagyan R (2005) Statistical analysis and prediction of protein-protein interfaces. Proteins 60(3):353–366

    Article  CAS  PubMed  Google Scholar 

  7. Ofran Y, Rost B (2003) Predicted protein-protein interaction sites from local sequence information. FEBS Lett 544(1–3):236–239

    Article  CAS  PubMed  Google Scholar 

  8. Kellenberger E, Dejaegere A (2011) Molecular modelling of ligand-macromolecule complexes. In: Podjarny A, Dejaegere A, Kieffer B (eds) Biophyiscal approaches determining ligand binding to macromolecular targets. Royal Society of Chemistry, Cambridge, pp 300–356

    Chapter  Google Scholar 

  9. Petukh M, Stefl S, Alexov E (2013) The role of protonation states in ligand-receptor recognition and binding. Curr Pharm Des 19(23):4182–4190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267(5196):383–386

    Article  CAS  PubMed  Google Scholar 

  11. Lowman HB, Cunningham BC, Wells JA (1991) Mutational analysis and protein engineering of receptor-binding determinants in human placental lactogen. J Biol Chem 266(17): 10982–10988

    CAS  PubMed  Google Scholar 

  12. Massova I, Kollman PA (1999) Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121: 8133–8143

    Article  CAS  Google Scholar 

  13. Kangas E, Tidor B (1999) Charge optimization leads to favorable electrostatic binding free energy. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 59(5 Pt B):5958–5961

    CAS  PubMed  Google Scholar 

  14. Green DF, Tidor B (2005) Design of improved protein inhibitors of HIV-1 cell entry: optimization of electrostatic interactions at the binding interface. Proteins 60(4):644–657

    Article  CAS  PubMed  Google Scholar 

  15. Cho AE, Guallar V, Berne BJ, Friesner R (2005) Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 26(9):915–931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Donnini S, Villa A, Groenhof G, Mark AE, Wierenga RK, Juffer AH (2009) Inclusion of ionization states of ligands in affinity calculations. Proteins 76(1):138–150

    Article  CAS  PubMed  Google Scholar 

  17. Wittayanarakul K, Hannongbua S, Feig M (2008) Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors. J Comput Chem 29(5):673–685

    Article  CAS  PubMed  Google Scholar 

  18. Howard EI, Sanishvili R, Cachau RE, Mitschler A, Chevrier B, Barth P, Lamour V, Van Zandt M, Sibley E, Bon C, Moras D, Schneider TR, Joachimiak A, Podjarny AD (2004) Ultra-high resolution drug design I: human aldose reductase – inhibitor complex at 0.66 Å shows experimentally protonation states and atomic interactions which have implications for the inhibition mechanism. Proteins Struct Funct Genet 55:792–804

    Article  CAS  PubMed  Google Scholar 

  19. El-Kabbani O, Darmanin C, Schneider TR, Hazemann I, Ruiz F, Oka M, Joachimiak A, Schulze-Briese C, Tomizaki T, Mitschler A, Podjarny A (2004) Ultrahigh resolution drug design. II. Atomic resolution structures of human aldose reductase holoenzyme complexed with Fidarestat and Minalrestat: implications for the binding of cyclic imide inhibitors. Proteins 55(4):805–813

    Article  CAS  PubMed  Google Scholar 

  20. Yabe-Nishimura C (1998) Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev 50:21–33

    CAS  PubMed  Google Scholar 

  21. Wermuth B (1985) Enzymology of carbonyl metabolism 2: aldehyde dehydrogenase, aldo-keto reductase, and alcohol dehydrogenase. Alan R. Liss Inc., New York

    Google Scholar 

  22. Rondeau JM, Tete-Favier F, Podjarny A, Reymann JM, Barth P, Biellmann JF, Moras D (1992) Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Nature 355:469–472

    Article  CAS  PubMed  Google Scholar 

  23. Wilson DK, Bohren KM, Gabbay KH, Quiocho FA (1992) An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science 257(5066):81–84

    Article  CAS  PubMed  Google Scholar 

  24. Tete-Favier F, Barth P, Mitschler A, Podjarny A, Rondeau J-M, Urzhumtsev A, Biellmann J-F, Moras D (1995) Aldose reductase from pig lens. Eur J Med Chem 30S(30):589s–603s

    Google Scholar 

  25. Tarle I, Borhani DW, Wilson DK, Quiocho FA, Petrash JM (1993) Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110. J Biol Chem 268:25687–25693

    CAS  PubMed  Google Scholar 

  26. Schlegel BP, Jez JM, Penning TM (1998) Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a “push-pull” mechanism for proton transfer in aldo-keto reductases. Biochemistry 37:3538–3548

    Article  CAS  PubMed  Google Scholar 

  27. Schlegel BP, Ratnam K, Penning TM (1998) Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine. Biochemistry 37:11003–11011

    Article  CAS  PubMed  Google Scholar 

  28. Bohren KM, Grimshaw CE, Lai CJ, Harrison DH, Ringe D, Petsko GA, Gabbay KH (1994) Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry 33:2021–2032

    Article  CAS  PubMed  Google Scholar 

  29. Lee YS, Chen Z, Kador PF (1998) Molecular modeling studies of the binding modes of aldose reductase inhibitors at the active site of human aldose reductase. Bioorg Med Chem 6: 1811–1819

    Article  CAS  PubMed  Google Scholar 

  30. Muzet N, Guillot B, Jelsch C, Howard E, Lecomte C (2003) Electrostatic complementarity in an aldose reductase complex from ultra-high-resolution crystallography and first-principles calculations. Proc Natl Acad Sci U S A 100(15):8742–8747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Andre Mitschler and Alexandra Cousido-Siah for their efforts in crystallization and data collection, the SBC staff for their support in data collection; N. Muzet and B. Guillot for electrostatic calculations, and Ossama El-Kabbani for his participation in the Fidarestat project. This work was supported by the Centre National de la Recherché Scientifique (CNRS), by collaborative projects CNRS-CONICET, CNRS-CERC and CNRS-NSF (INT-9815595), by Ecos Sud, by USA Federal funds from the National Cancer Institute (Contract No. NO1-CO-12400) and the National Institutes of Health, by the Institut National de la Santé et de la Recherché Médicale and the Hôpital Universitaire de Strasbourg (H.U.S), and by the Institute for Diabetes Discovery, Inc. through a contract with the CNRS, and in part by the U.S. Department of Energy, Office of Biological and Environmental Research under contract No. W-31-109-ENG-38. EH is a member of Carrera del Investigador, CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Podjarny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Podjarny, A., Howard, E. (2015). Importance of Protonation States for the Binding of Ligands to Pharmaceutical Targets. In: Scapin, G., Patel, D., Arnold, E. (eds) Multifaceted Roles of Crystallography in Modern Drug Discovery. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9719-1_11

Download citation

Publish with us

Policies and ethics