Skip to main content

Measurement of Intracellular Ca2+ in Human Endothelial Cells

  • Chapter
Book cover Handbook of Vascular Biology Techniques
  • 1538 Accesses

Abstract

The endothelium plays a crucial role in the regulation of vascular function and cardiovascular homeostasis. Central to this role is an elevation in intracellular Ca2+ and the subsequent activation of Ca2+-dependent signalling pathways. The regulation of intracellular Ca2+ in endothelial cells is complex with numerous ways in which Ca2+ can be released from the endoplasmic reticulum or enter the cell through Ca2+ permeable channels in the cell membrane. Often more than one mode of Ca2+ flux can occur through the activation of a single signalling pathway or through the simultaneous activation of multiple signalling pathways. Further complexities and lack of understanding have arisen due to the differences in expression and contribution of the ion channels, transporters and receptors responsible for regulating Ca2+ flux depending on age, sex, species, vascular diameter and vascular bed. It is crucial that we gain better understanding the molecular mechanisms that underpin endothelial cell function in order to prevent or reduce the adverse consequences of endothelial dysfunction, which has been associated with a variety of diseases including peripheral artery disease, diabetes, hypertension, atherosclerosis and stroke. This chapter will describe a method for measuring Ca2+ flux in endothelial cells using a multi-mode plate reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    Article  CAS  PubMed  Google Scholar 

  2. Tran QK, Ohashi K, Watanabe H (2000) Calcium signalling in endothelial cells. Cardiovasc Res 48(1):13–22

    Article  CAS  PubMed  Google Scholar 

  3. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361(6410):315–325

    Article  CAS  PubMed  Google Scholar 

  4. Moccia F, Berra-Romani R, Tanzi F (2012) Update on vascular endothelial Ca(2+) signalling: a tale of ion channels, pumps and transporters. World J Biol Chem 3(7):127–158

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ridefelt P et al (1995) PDGF-BB triggered cytoplasmic calcium responses in cells with endogenous or stably transfected PDGF beta-receptors. Growth Factors 12(3):191–201

    Article  CAS  PubMed  Google Scholar 

  6. McLaughlin AP, De Vries GW (2001) Role of PLCgamma and Ca(2+) in VEGF- and FGF-induced choroidal endothelial cell proliferation. Am J Physiol Cell Physiol 281(5):C1448–C1456

    CAS  PubMed  Google Scholar 

  7. Meyer RD, Latz C, Rahimi N (2003) Recruitment and activation of phospholipase Cgamma1 by vascular endothelial growth factor receptor-2 are required for tubulogenesis and differentiation of endothelial cells. J Biol Chem 278(18):16347–16355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wood PG, Gillespie JI (1998) Evidence for mitochondrial Ca(2+)-induced Ca2+ release in permeabilised endothelial cells. Biochem Biophys Res Commun 246(2):543–548

    Article  CAS  PubMed  Google Scholar 

  9. Falcke M et al (1999) Impact of mitochondrial Ca2+ cycling on pattern formation and stability. Biophys J 77(1):37–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Takemura H et al (1989) Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem 264(21):12266–12271

    CAS  PubMed  Google Scholar 

  11. Putney JW (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231(1):10–22

    Article  CAS  PubMed  Google Scholar 

  12. Zitt C et al (1997) Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion. J Cell Biol 138(6):1333–1341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Schaefer M et al (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275(23):17517–17526

    Article  CAS  PubMed  Google Scholar 

  14. Dietrich A et al (2007) Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 455(3):465–477

    Article  CAS  PubMed  Google Scholar 

  15. Varga-Szabo D et al (2008) Store-operated Ca(2+) entry in platelets occurs independently of transient receptor potential (TRP) C1. Pflugers Arch 457(2):377–387

    Article  CAS  PubMed  Google Scholar 

  16. Roos J et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Liou J et al (2005) STIM is a Ca2+ sensor essential for Ca2+−store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Vig M et al (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    Article  CAS  PubMed  Google Scholar 

  19. Feske S et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    Article  CAS  PubMed  Google Scholar 

  20. Zhang SL et al (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A 103(24):9357–9362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Bossu JL et al (1989) Voltage-dependent transient calcium currents in freshly dissociated capillary endothelial cells. FEBS Lett 255(2):377–380

    Article  CAS  PubMed  Google Scholar 

  22. Vinet R, Vargas FF (1999) L- and T-type voltage-gated Ca2+ currents in adrenal medulla endothelial cells. Am J Physiol 276(4 Pt 2):H1313–H1322

    CAS  PubMed  Google Scholar 

  23. Wei Z et al (2004) Ca2+ flux through voltage-gated channels with flow cessation in pulmonary microvascular endothelial cells. Microcirculation 11(6):517–526

    Article  CAS  PubMed  Google Scholar 

  24. Gahring LC et al (2005) Pro-inflammatory cytokines modify neuronal nicotinic acetylcholine receptor assembly. J Neuroimmunol 166(1–2):88–101

    Article  CAS  PubMed  Google Scholar 

  25. Arias HR et al (2009) Role of non-neuronal nicotinic acetylcholine receptors in angiogenesis. Int J Biochem Cell Biol 41(7):1441–1451

    Article  CAS  PubMed  Google Scholar 

  26. Ray FR et al (2002) Purinergic receptor distribution in endothelial cells in blood vessels: a basis for selection of coronary artery grafts. Atherosclerosis 162(1):55–61

    Article  CAS  PubMed  Google Scholar 

  27. Pulvirenti TJ et al (2000) P2X (purinergic) receptor redistribution in rabbit aorta following injury to endothelial cells and cholesterol feeding. J Neurocytol 29(9):623–631

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto K et al (2000) Fluid shear stress activates Ca(2+) influx into human endothelial cells via P2X4 purinoceptors. Circ Res 87(5):385–391

    Article  CAS  PubMed  Google Scholar 

  29. Yamamoto K et al (2003) Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am J Physiol Heart Circ Physiol 285(2):H793–H803

    Article  CAS  PubMed  Google Scholar 

  30. Bradley J, Reisert J, Frings S (2005) Regulation of cyclic nucleotide-gated channels. Curr Opin Neurobiol 15(3):343–349

    Article  CAS  PubMed  Google Scholar 

  31. Kwan HY et al (2009) Role of cyclic nucleotides in the control of cytosolic Ca2+ levels in vascular endothelial cells. Clin Exp Pharmacol Physiol 36(9):857–866

    Article  CAS  PubMed  Google Scholar 

  32. Cheng KT et al (2008) CNGA2 channels mediate adenosine-induced Ca2+ influx in vascular endothelial cells. Arterioscler Thromb Vasc Biol 28(5):913–918

    Article  CAS  PubMed  Google Scholar 

  33. Lang I et al (2008) Human fetal placental endothelial cells have a mature arterial and a juvenile venous phenotype with adipogenic and osteogenic differentiation potential. Differentiation 76(10):1031–1043

    Article  CAS  PubMed  Google Scholar 

  34. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  35. Di Virgilio F, Steinberg TH, Silverstein SC (1990) Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers. Cell Calcium 11(2–3):57–62

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jones, S. (2015). Measurement of Intracellular Ca2+ in Human Endothelial Cells. In: Slevin, M., McDowell, G. (eds) Handbook of Vascular Biology Techniques. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9716-0_9

Download citation

Publish with us

Policies and ethics