Skip to main content
  • 1594 Accesses

Abstract

The dorsal air sac assay (DASA) is a simple and convenient in vivo assay to measure angiogenesis and angiogenesis inhibition by substances of interest. In the assay, tumor cells that release angiogenic factors are placed in a diffusion chamber that consists of a plastic or rubber ring covered with cellulose membrane filters on both sides. The chamber is implanted into a dorsal air sac under the skin of mice. Angiogenic factors released from the tumor cells induce angiogenesis in the mouse air sac fascia attached to the chamber. The newly formed blood vessels are readily recognizable and these blood vessels may be quantified. The chamber-bearing mice may be treated with antiangiogenic agents by systemic administration and the degree of the angiogenesis inhibition can be measured and quantified after the mice are sacrificed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DASA:

Dorsal air sac assay

VEGF:

Vascular endothelial growth factor

mAb:

Monoclonal antibody

References

  1. Tanaka NG, Sakamoto N, Inoue K et al (1989) Antitumor effects of an antiangiogenic polysaccharide from an Arthrobacter species with or without a steroid. Cancer Res 49(23):6727–6730

    CAS  PubMed  Google Scholar 

  2. Asano M, Yukita A, Matsumoto T, Kondo S, Suzuki H (1995) Inhibition of tumor growth and metastasis by an immunoneutralizing monoclonal antibody to human vascular endothelial growth factor/vascular permeability factor121. Cancer Res 55(22):5296–5301

    CAS  PubMed  Google Scholar 

  3. Ono M, Kawahara N, Goto D et al (1996) Inhibition of tumor growth and neovascularization by an anti-gastric ulcer agent, irsogladine. Cancer Res 56(7):1512–1516

    CAS  PubMed  Google Scholar 

  4. Oikawa T, Sasaki M, Inose M et al (1997) Effects of cytogenin, a novel microbial product, on embryonic and tumor cell-induced angiogenic responses in vivo. Anticancer Res 17(3C):1881–1886

    CAS  PubMed  Google Scholar 

  5. Yonekura K, Basaki Y, Chikahisa L et al (1999) UFT and its metabolites inhibit the angiogenesis induced by murine renal cell carcinoma, as determined by a dorsal air sac assay in mice. Clin Cancer Res 5(8):2185–2191

    CAS  PubMed  Google Scholar 

  6. Ogawa H, Sato Y, Kondo M et al (2000) Combined treatment with TNP-470 and 5-fluorouracil effectively inhibits growth of murine colon cancer cells in vitro and liver metastasis in vivo. Oncol Rep 7(3):467–472

    CAS  PubMed  Google Scholar 

  7. Senzaki M, Ishida S, Yada A et al (2008) CS-706, a novel cyclooxygenase-2 selective inhibitor, prolonged the survival of tumor-bearing mice when treated alone or in combination with anti-tumor chemotherapeutic agents. Int J Cancer 122(6):1384–1390

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto K, Obara N, Ema M et al (2009) Antitumor effects of 2-oxoglutarate through inhibition of angiogenesis in a murine tumor model. Cancer Sci 100(9):1639–1647

    Article  CAS  PubMed  Google Scholar 

  9. Murakami Y, Watari K, Shibata T et al (2013) N-myc downstream-regulated gene 1 promotes tumor inflammatory angiogenesis through JNK activation and autocrine loop of interleukin-1alpha by human gastric cancer cells. J Biol Chem 288(35):25025–25037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Seon BK, Matsuno F, Haruta Y, Kondo M, Barcos M (1997) Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin. Clin Cancer Res 3(7):1031–1044

    CAS  PubMed  Google Scholar 

  11. Matsuno F, Haruta Y, Kondo M, Tsai H, Barcos M, Seon BK (1999) Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new anti-endoglin monoclonal antibodies. Clin Cancer Res 5(2):371–382

    CAS  PubMed  Google Scholar 

  12. Chetty C, Lakka SS, Bhoopathi P, Kunigal S, Geiss R, Rao JS (2008) Tissue inhibitor of metalloproteinase 3 suppresses tumor angiogenesis in matrix metalloproteinase 2-down-regulated lung cancer. Cancer Res 68(12):4736–4745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Takahashi F, Akutagawa S, Fukumoto H et al (2002) Osteopontin induces angiogenesis of murine neuroblastoma cells in mice. Int J Cancer 98(5):707–712

    Article  CAS  PubMed  Google Scholar 

  14. Hamada Y, Yuki K, Okazaki M et al (2004) Osteopontin-derived peptide SVVYGLR induces angiogenesis in vivo. Dent Mater J 23(4):650–655

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben K. Seon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seon, B.K. (2015). Dorsal Air Sac Assay. In: Slevin, M., McDowell, G. (eds) Handbook of Vascular Biology Techniques. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9716-0_13

Download citation

Publish with us

Policies and ethics