Skip to main content

Phase Transformation of RGO/SiO2 Nanocomposites Prepared by the Sol-Gel Technique

  • Conference paper
  • First Online:
  • 1195 Accesses

Abstract

In a previous paper (Shalaby A, Yaneva V, Staneva A, Aleksandrov L, Iordanova R, Dimitriev Y, Nanoscience & nanotechnology – nanostructured materials application and innovation transfer (14), ISSN 1313-8995, 2014) we studied reduced graphene oxide (RGO)/SiO2 composite material by adding a small amount of RGO to silica in order to avoid the aggregation process and to solve the problems connected with the exfoliation and distribution of the sheets inside the composites. But from a practical point we needed to study the effect of high amounts of RGO on the composites at different temperatures. The purpose of this investigation is to study the effect of RGO on phase transformations of the composites heated at 200, 400 and 800 °C. The sol-Gel method was used to obtain the RGO/SiO2 composite by mixing high amounts of RGO with tetraethyl orthosilicate (TEOS). Data are presented for the transformation of the nanocomposites with increasing temperature in air atmosphere. RGO nanosheets were prepared by chemical exfoliation of purified natural graphite using the Hummers and Offeman method (Hummers WS, Offeman RE, J Am Chem Soc 80:1339, 1958) to obtain graphite oxide. Then the material was exfoliated to reduced graphene nanosheets by ultrasonication and reduction process using sodium borohydride (NaBH4). Characterization of the material was performed by X-ray powder diffraction (XRD), infrared (IR) spectroscopy and scanning electron microscopy (SEM) analysis. In our previous studies we found that all samples with small amounts of RGO are amorphous up to 800 °C. By increasing the amount of RGO (20 %) crystal phases appear at 200, 400 and 800 °C. The carbon phases disappear above 400 °C and cristobalite is found at 800 °C. From the IR spectra it was established that the band related to Si-OH vibration is converted to a small shoulder at 400 °C, and the bands corresponding to vibrations of water molecules around 3,448 and 1,635 cm−1 were drastically reduced by increasing the temperature. The dominant band at 1,099.2 cm−1 (800 °C) is connected with the stretching vibration of Si-O bonds in SiO4 tetrahedrons. SEM images of RGO/SiO2 nanocomposites present randomly aggregated stacks of small sheets imbedded in an amorphous matrix.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shalaby A, Yaneva V, Staneva A, Aleksandrov L, Iordanova R, Dimitriev Y (2014) Nanoscience & nanotechnology – nanostructured materials application and innovation transfer 14:120

    Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  ADS  Google Scholar 

  3. Geim K (2009) Science 324:1530

    Article  ADS  Google Scholar 

  4. Krane N (2011) Selected topics in physics: physics of nanoscale carbon, Freie Universität Berlin

    Google Scholar 

  5. Meng LY, Park SJ (2012) Bull Kor Chem Soc 33:209

    Article  Google Scholar 

  6. Shao G, Lu Y, Wu F, Yang C, Zeng F, Wu Q (2012) J Mater Sci 47:4400

    Article  ADS  Google Scholar 

  7. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 422:282

    Article  ADS  Google Scholar 

  8. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906

    Article  Google Scholar 

  9. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558

    Article  Google Scholar 

  10. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) J Phys Chem C 112:8192

    Article  Google Scholar 

  11. Si Y, Samulski ET (2008) Nano Lett 8:1679

    Article  ADS  Google Scholar 

  12. Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S, Jin MH, Jeong H-K, Kim JM, Choi J-Y, Lee YH (2009) Adv Funct Mater 19:1987

    Article  Google Scholar 

  13. Vallés C, Jiménez P, Muñoz E, Benito AM, Maser WK (2011) Nanotechnological basis for advanced sensors. Springer, Dordrecht, p 143

    Chapter  Google Scholar 

  14. Machado BF, Serp P (2012) Catal Sci Technol 2:54

    Article  Google Scholar 

  15. Nemade KR, Waghuley SA (2013) Solid State Sci 22:27

    Article  ADS  Google Scholar 

  16. Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Li N (2009) Nanotechnology 20:455602

    Article  ADS  Google Scholar 

  17. Biris R, Pruneanu S, Pogacean F, Lazar MD, Borodi G, Ardelean S, Dervishi E, Watanabe F, Biris AS (2013) Int J Nanomedicine 8:1429

    Article  Google Scholar 

  18. Kumar SV, Huang NM, Lim HN, Zainy M, Harrison I, Chia CH (2013) Sensors Actuators B Chem 181:885

    Article  Google Scholar 

  19. Wu Y, Liu S, Wang H, Wang X, Zhang X, Jin G (2013) Electrochim Acta 90:210

    Article  Google Scholar 

  20. Wang J, Wang P, Cao Y, Chen J, Li W, Shao Y, Zheng Y, Li D (2013) Appl Catal B Environ 136–137:94

    Article  Google Scholar 

  21. Zhang Y, Pan C (2011) J Mater Sci 46:2622

    Article  ADS  MathSciNet  Google Scholar 

  22. Guo J, Zhu S, Chen Z, Li Y, Yu Z, Liu Q, Li J, Feng C, Zhang D (2011) Ultrason Sonochem 18:1082

    Article  Google Scholar 

  23. Chen X, He Y, Zhang Q, Li L, Hu D, Yin T (2010) J Mater Sci 45:953

    Article  ADS  Google Scholar 

  24. Xu T, Zhang L, Cheng H, Zhu Y (2011) Appl Catal B Environ 101:382

    Article  Google Scholar 

  25. Ji Z, Shen X, Song Y, Zhu G (2011) Mater Sci Eng B 176:711

    Article  Google Scholar 

  26. Wang X, Chen S (2011) Graphene-based nanocomposites, physics and applications of graphene – experiments. In: Dr. Sergey Mikhailov (ed), ISBN: 978-953-307-217-3, InTech

    Google Scholar 

  27. Vallet-Regí M, Balas F, Arcos D (2007) Angew Chem Int Ed 46:7548

    Article  Google Scholar 

  28. Dalagan JQ, Enriquez EP, Li LJ (2013) J Mater Sci 48:3415

    Article  ADS  Google Scholar 

  29. Zhanhu G (2013) Patent application publication. US20130344237 A1, Lamar University, Beaumont TX, US, 26 Dec 2013

    Google Scholar 

  30. Zhou X, Shi T (2012) Appl Surf Sci 259:566

    Article  ADS  Google Scholar 

  31. Guardia L, Suárez-García F, Paredes JI, Solís-Fernández P, Rozada R, Fernández-Merino MJ, Martínez-Alonso A, Tascón JMD (2012) Microporous Mesoporous Mater 160:18

    Article  Google Scholar 

  32. Yang S, Feng X, Wang L, Tang K, Maier J, Müllen K (2010) Angew Chem Int Ed 49:4795

    Article  Google Scholar 

  33. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  Google Scholar 

Download references

Acknowledgements

Ahmed Shalaby thanks the Erasmus Mundus MEDASTAR (Mediterranean Area for Science Technology and Research) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shalaby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Shalaby, A., Staneva, A., Aleksandrov, L., Iordanova, R., Dimitriev, Y. (2015). Phase Transformation of RGO/SiO2 Nanocomposites Prepared by the Sol-Gel Technique. In: Petkov, P., Tsiulyanu, D., Kulisch, W., Popov, C. (eds) Nanoscience Advances in CBRN Agents Detection, Information and Energy Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9697-2_26

Download citation

Publish with us

Policies and ethics