Skip to main content

Simultaneous CVD Growth of Nanostructured Carbon Hybrids

  • Conference paper
  • First Online:
Nanoscience Advances in CBRN Agents Detection, Information and Energy Security

Abstract

In this work the MPCVD (microwave plasma chemical vapour deposition) conditions for the growth of nanocarbon hybrids were studied. Using a single run MPCVD procedure, nanocrystalline diamond (NCD) and carbon nanotubes (CNTs) hybrids were obtained using a continuous delivery of catalytic Fe particles. The grown films were characterized by Scanning Electron Microscopy (SEM) and μ-Raman spectroscopy, proving the coexistence of sp2 and sp3 bonded phases, either in a dense multi-layer arrangement or in a porous 3-D like morphology. Without the addition of a catalyst, NCD/carbon nanowalls (CNWs) hybrids were also synthesized. High quality and well intercalated hybrid carbon forms were successfully obtained in a simultaneous growth procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dresselhaus MS (2012) Phys Scr T146:014002

    Article  ADS  Google Scholar 

  2. Kulisch W et al (2004) Diam Relat Mater 13:1997

    Article  ADS  Google Scholar 

  3. Catledge S et al (2002) J Appl Phys 91:5347

    Article  ADS  Google Scholar 

  4. Geis MW et al (1996) Appl Phys Lett 68:2294

    Article  ADS  Google Scholar 

  5. Iakoubovskii K et al (2000) J Phys Condens Matter 12:L519

    Article  ADS  Google Scholar 

  6. Catledge SA et al (1999) J Appl Phys 86:698

    Article  ADS  Google Scholar 

  7. Jorio A, Dresselhaus M, Dresselhaus G (eds) (2007) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Berlin

    Google Scholar 

  8. Fernandes AJS et al (2009) Diam Relat Mater 18:160

    Article  ADS  MathSciNet  Google Scholar 

  9. Shankar N et al (2008) Diam Relat Mater 17:79

    Article  ADS  Google Scholar 

  10. Varshney D et al (2010) Carbon N Y 48:3353

    Article  Google Scholar 

  11. Varshney D et al (2013) Carbon N Y 63:253

    Article  Google Scholar 

  12. Zou Y et al (2012) J Appl Phys 112:044903

    Article  ADS  Google Scholar 

  13. Cheng CY et al (2012) Diam Relat Mater 27–28:40

    Article  Google Scholar 

  14. Pandey S et al (2012) Appl Phys Lett 100:043104

    Article  ADS  Google Scholar 

  15. Wade TC et al (2012) Diam Relat Mater 22:29

    Article  ADS  Google Scholar 

  16. Lee ST et al (1999) Mater Sci Eng R Rep 25:123

    Article  Google Scholar 

  17. Raina S et al (2008) Diam Relat Mater 17:896

    Article  ADS  Google Scholar 

  18. Wong YM et al (2009) Diam Relat Mater 18:563

    Article  ADS  Google Scholar 

  19. Tzeng Y et al (2014) Sci Rep 4:4531

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the SFRH/ BD/90017/2012, PTDC/CTM-NAN/117284/2010 and PEst-C/CTM/LA0025/ 2013–14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Santos, N.F., Fernandes, A.J.S., Holz, T., Silva, R.F., Costa, F.M. (2015). Simultaneous CVD Growth of Nanostructured Carbon Hybrids. In: Petkov, P., Tsiulyanu, D., Kulisch, W., Popov, C. (eds) Nanoscience Advances in CBRN Agents Detection, Information and Energy Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9697-2_12

Download citation

Publish with us

Policies and ethics