Skip to main content

Characterization of Graphene Produced by Electrolysis in Aqueous Electrolytes

  • Conference paper
  • First Online:
Nanoscience Advances in CBRN Agents Detection, Information and Energy Security

Abstract

This work is concerned with the production of graphene using electrolysis in aqueous electrolytes with a reverse change of the potential. As electrodes and precursors for the graphene production highly oriented graphite was used. The electrolytes used were: H2SO4 (pH = 0.5); H2SO4 + KOH (pH = 1.2) and H2SO4 + NaOH (pH = 1.2). The produced graphene samples were characterized by means of scanning and transmission electron microscope (SEM and TEM) and Raman spectroscopy. The size of the crystallites and the number of layers of the studied graphene samples was determined. It was found that by the proposed electrochemical method graphene with few layers only can be produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  ADS  Google Scholar 

  2. Rocha CG, Rümmeli MH, Ibrahim I, Sevincli H, Börrnert F, Kunstmann J, Bachmatiuk A, Pötschke M, Li W, Makharza SAM, Roche S, Büchner B, Cuniberti G (2011) In: Choi W, Lee J-W (eds) Graphene: synthesis and applications. CRC Press, Boca Raton, p 1

    Google Scholar 

  3. Cooper DR, D’Anjou B, Ghattamaneni N, Harack B, Hilke M, Horth A, Majlis N, Massicotte M, Vandsburger L, Whiteway E, Yu V (2012) International Scholarly Research Network ISRN, condensed matter physics, vol 2012, Article ID 501686, doi:10.5402/2012/501686

  4. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Nat Photonics 4:611

    Article  ADS  Google Scholar 

  5. Zhou X, Liang F (2014) Curr Med Chem 21:855

    Article  MathSciNet  Google Scholar 

  6. Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012) Mater Today 15:564

    Article  Google Scholar 

  7. Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA, Hussain MA (2013) Carbon 54:1

    Article  Google Scholar 

  8. Alanyahoğlu M, Segura JJ, Oró-Solè J, Casaň-Pastor N (2012) Carbon 50:142

    Article  Google Scholar 

  9. Morales GM, Schifani P, Ellis G, Ballesteros C, Martinez G, Barbero C, Salvagione HG (2011) Carbon 49:2809

    Article  Google Scholar 

  10. Su CY, Lu AY, Xu Y, Chen FR, Khlobystov AN, Li LJ (2011) ACS Nano 5:2332

    Article  Google Scholar 

  11. Schnyder B, Alliata D, Kötz R, Siegenthaler H (2001) Appl Surf Sci 173:221

    Article  ADS  Google Scholar 

  12. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) Adv Funct Mater 18:1518

    Article  Google Scholar 

  13. Zhu Y, Murali S, Cai W, Li X, Suk JW, Poots JR, Ruoff RS (2010) Adv Mater 22:3906

    Article  Google Scholar 

  14. Matthews MJ, Pimenta MA, Dresselhaus G, Dresselhaus MS, Endo M (1999) Phys Rev B 59:R6585

    Article  ADS  Google Scholar 

  15. Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126

    Article  ADS  Google Scholar 

  16. Zickler GA, Smarsly B, Gierlinger N, Peterlik H, Paris O (2006) Carbon 44:3239

    Article  Google Scholar 

  17. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Nano Lett 6:2667

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was done within the FP7 Project “Cost-effective sensors, interoperable with international existing ocean observing systems, to meet EU policies requirements” (Project reference 614155) and the Project “Research and development of new nanostructured sensors aimed for protection and development of environment and nature” financed by the Ministry of Environment and Physical Planning of the R. Macedonia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Petrovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Petrovski, A., Dimitrov, A., Grozdanov, A., Andonović, B., Paunović, P. (2015). Characterization of Graphene Produced by Electrolysis in Aqueous Electrolytes. In: Petkov, P., Tsiulyanu, D., Kulisch, W., Popov, C. (eds) Nanoscience Advances in CBRN Agents Detection, Information and Energy Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9697-2_11

Download citation

Publish with us

Policies and ethics