Skip to main content

Selective Antioxidative Effect of Hydrogen

  • Chapter
  • First Online:
Hydrogen Molecular Biology and Medicine

Abstract

Selective antioxidation is the mechanism underlying the biological effect of hydrogen, which has been widely recognized. We cannot fully understand this mechanism until we are familiar with radicals, reactive oxygen species, and oxidative damage. In order to let the readers have a general understanding of free radical biology, this chapter provides knowledge which is closely related to the selective antioxidation of hydrogen. If someone wants to get a more comprehensive understanding of the free radical biology, references related to free radicals will be needed.

People believe that free radicals or reactive oxygen species is a main source of sickness, which exaggerates the negative effects of free radicals or reactive oxygen species. In fact, the oxidative stress is crucial in maintaining the body’s normal function. There exist different types of free radicals or reactive oxygen species, most of which are beneficial to the body; only a small number of them that are highly reactive are key to the oxidative damage. Selective antioxidation and endogenous antioxidant are the most reliable means to resist oxidative damage. The finding of selective antioxidation and endogenous antioxidant of hydrogen will be two of the important achievements in the field of free radical biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halliwell B, Gutteridge J. Free radicals in biology and medicine. New York: Pergamon; 1985.

    Google Scholar 

  2. Rao A, HeanáKim K, HanáAhn K. A turn-on two-photon fluorescent probe for ATP and ADP. Chem Commun. 2012;48:3206–8.

    Google Scholar 

  3. Balaban RS. Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol. 1990;258:C377–89.

    Google Scholar 

  4. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    Google Scholar 

  5. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.

    Google Scholar 

  6. Hutchinson PJ, Palmer RM, Moncada S. Comparative pharmacology of EDRF and nitric oxide on vascular strips. Eur J Pharmacol. 1987;141:445–51.

    Google Scholar 

  7. Palmer RM, Ashton D, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333:664–6.

    Google Scholar 

  8. Wood AJ, Parker JD, Parker JO. Nitrate therapy for stable angina pectoris. N Engl J Med. 1998;338:520–31.

    Google Scholar 

  9. Garthwaite J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 1991;14:60–7.

    Google Scholar 

  10. Schuman EM, Madison DV. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science. 1991;254:1503–6.

    Google Scholar 

  11. Bult H, Boeckxstaens G, Pelckmans P, Jordaens F, Van Maercke Y, Herman A. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature. 1990;345:346–7.

    Google Scholar 

  12. Smet P, Jonavicius J, Marshall V, De Vente J. Distribution of nitric oxide synthase-immunoreactive nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. Neuroscience. 1996;71:337–48.

    Google Scholar 

  13. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2:907–16.

    Article  CAS  PubMed  Google Scholar 

  14. Fridovich I. Superoxide anion radical (O. 2), superoxide dismutases, and related matters. J Biol Chem. 1997;272:18515–7.

    Article  CAS  PubMed  Google Scholar 

  15. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell. 2007;26:1–14.

    Article  CAS  PubMed  Google Scholar 

  16. Babior B. The respiratory burst of phagocytes. J Clin Invest. 1984;73:599–601.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R. Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol. 2011;14:691–9.

    Article  CAS  PubMed  Google Scholar 

  18. Buonocore G, Perrone S, Tataranno ML. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin Fetal Neonatal Med. 2010;15(4);186–90.

    Article  PubMed  Google Scholar 

  19. Zoungas S, Patel A, Chalmers J, de Galan BE, Li Q, Billot L, Woodward M, Ninomiya T, Neal B, MacMahon S. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;363:1410–8.

    Google Scholar 

  20. Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47:122–9.

    Google Scholar 

  21. West JB. Joseph Priestley, oxygen, and the enlightenment. Am J Physiol Lung Cell Mol Physiol. 2014;306:L111–9.

    Article  PubMed  Google Scholar 

  22. Edwards ML. Hyperbaric oxygen therapy. Part 1: history and principles. J Vet Emerg Crit Care. 2010;20:284–8.

    Article  Google Scholar 

  23. Tidwell T. Sunlight and free radicals. Nat Chem. 2013;5:637–9.

    Article  CAS  PubMed  Google Scholar 

  24. McCord JM, Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.

    CAS  PubMed  Google Scholar 

  25. Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973;52:741–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Granger D, Höllwarth M, Parks D. Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol Scand. Supplementum 1985;548:47–63.

    Google Scholar 

  27. Harman D. Aging: a theory based on free radical and radiation chemistry. Berkeley: University of California Radiation Laboratory Berkeley; 1955.

    Google Scholar 

  28. Sohal R, Allen R. Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp Gerontol. 1990;25:499–522.

    Article  CAS  PubMed  Google Scholar 

  29. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116.

    Article  CAS  PubMed  Google Scholar 

  30. Vasanthi HR, Mukherjee S, Das DK. Potential health benefits of broccoli-a chemico-biological overview. Mini Rev Med Chem. 2009;9:749–59.

    Article  CAS  PubMed  Google Scholar 

  31. Honda Y, Honda S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 1999;13:1385–93.

    CAS  PubMed  Google Scholar 

  32. Harman D. Free radical theory of aging: an update. Ann N Y Acad Sci. 2006;1067:10–21.

    Article  CAS  PubMed  Google Scholar 

  33. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005;308:1909–11.

    Article  CAS  PubMed  Google Scholar 

  34. Pérez VI, Van Remmen H, Bokov A, Epstein CJ, Vijg J, Richardson A. The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Ageing Cell. 2009;8:73–5.

    Article  Google Scholar 

  35. Cao Z, Lindsay JG, Isaacs NW. Mitochondrial peroxiredoxins. In: Flohé L, Harris JR, editors. Peroxiredoxin systems. Berlin: Springer; 2007. pp. 295–315.

    Chapter  Google Scholar 

  36. Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet. 1998;19:171–4.

    Article  CAS  PubMed  Google Scholar 

  37. Schulz JB, Henshaw DR, Siwek D, Jenkins BG, Ferrante RJ, Cipolloni PB, Kowall NW, Rosen BR, Beal MF. Involvement of free radicals in excitotoxicity in vivo. J Neurochem. 1995;64;2239–47.

    Article  CAS  PubMed  Google Scholar 

  38. Chang KT, Min K-T. Regulation of lifespan by histone deacetylase. Ageing Res Rev. 2002;1:313–26.

    Article  CAS  PubMed  Google Scholar 

  39. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol. 2005;6:298–305.

    Article  CAS  PubMed  Google Scholar 

  40. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13:688–94.

    Article  CAS  PubMed  Google Scholar 

  41. George JF, Agarwal A. Hydrogen: another gas with therapeutic potential. Kidney Int. 2010;77:85–7.

    Google Scholar 

  42. Chen H-G, Xie K-L, Han H-Z, Wang W-N, Liu D-Q, Wang G-L, Yu Y-H. Heme oxygenase-1 mediates the anti-inflammatory effect of molecular hydrogen in LPS-stimulated RAW 264.7 macrophages. Int J Surg. 2013;11:1060–6.

    Article  PubMed  Google Scholar 

  43. Iio A, Ito M, Itoh T, Terazawa R, Fujita Y, Nozawa Y, Ohsawa I, Ohno K, Ito M. Molecular hydrogen attenuates fatty acid uptake and lipid accumulation through downregulating CD36 expression in HepG2 cells. Med Gas Res. 2013;3:6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsunori Nakao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sun, Q., Han, W., Nakao, A. (2015). Selective Antioxidative Effect of Hydrogen. In: Sun, X., Ohta, S., Nakao, A. (eds) Hydrogen Molecular Biology and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9691-0_5

Download citation

Publish with us

Policies and ethics