Skip to main content

Physical Controls of Nucleation, Growth and Migration of Vapor Bubbles in Partially Molten Cumulates

  • Chapter
  • First Online:
Layered Intrusions

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The interstitial melt in partially molten cumulate piles in layered intrusions must at some point reach saturation with a volatile phase such as water vapor or hydrosaline melt. A number of models have been proposed in which orthomagmatic fluids migrate through partially solidified cumulates and participate in the formation of ore deposits. Here I examine the topology of the crystal—melt—vapor system in a cumulate and relate this to the role of capillary forces in governing the size and mobility of individual vapor bubbles. Capillary forces will play a dominant role in setting the number density and sizes of bubbles. In any cumulate rock with crystals smaller than several cm in diameter, bubbles of the postcumulus aqueous phase will be unable to migrate away from their sites of nucleation and growth. Although bubble stranding does not preclude the eventual loss of volatile ­constituents from the cumulate after complete solidification, it does prevent such constituents from migrating while the system remains partially molten and therefore prohibits them from participation in magmatic-hydrothermal interactions within the magma chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagdassarov N, Dorfman A, Dingwell DB (2000) Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt. Am Mineral 85:33–40

    Google Scholar 

  • Barnes SJ (1989) Are Bushveld U-type parent magmas boninites or contaminated komatiites? Contrib Mineral Petrol 101:447–457

    Article  Google Scholar 

  • Barnes SJ, Fiorentini ML, Austin P, Gessner K, Hough RM, Squelch AP (2008) Three-dimensional morphology of magmatic sulfides sheds light on ore formation and sulfide melt migration. Geology 36:655–658

    Article  Google Scholar 

  • Barnes S-J, Maier WD, Curl EA (2010) Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: implications for the formation of platinum-group element deposits. Econ Geol 105:1491–1511

    Article  Google Scholar 

  • Boorman SL, McGuire JB, Boudreau AE, Kruger FJ (2002) Fluid overpressure in layered intrusions: formation of a breccia pipe in the Eastern Bushveld Complex, Republic of South Africa. Mineral Dep 38:356–369

    Google Scholar 

  • Boudreau AE (1999) Chromatographic separation of the platinum-group elements, gold, base metals and sulfur during degassing of a compacting and solidifying igneous crystal pile. Contrib Mineral Petrol 134:174–185

    Article  Google Scholar 

  • Boudreau AE (2004) Palladium, a program to model the chromatographic separation of the platinum-group elements, base metals and sulfur in a solidifying pile of igneous crystals. Can Mineral 42:393–403

    Article  Google Scholar 

  • Boudreau AE, McCallum IS (1992) Concentration of platinum-group elements by magmatic fluids in layered intrusions. Econ Geol 87:1830–1848

    Article  Google Scholar 

  • Boudreau AE, Philpotts AR (2002) Quantitative modeling of compaction in the Holyoke flood basalt flow, Hartford Basin, Connecticut. Contrib Mineral Petrol 144:176–184

    Article  Google Scholar 

  • Bowers TS, Helgeson HC (1983) Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O–CO2–NaCl on phase relations in geologic systems: equation of state for H2O–CO2–NaCl fluids at high pressures and temperatures. Geochim Cosmochim Acta 47:1247–1275

    Article  Google Scholar 

  • Bulau JR, Waff HS, Tyburczy JA (1979) Mechanical and thermodynamic constraints on fluid distribution in partial melts. J Geophys Res 84(B11):6102–6108

    Article  Google Scholar 

  • Bureau H, Métrich N, Pineau F, Semet MP (1998a) Magma-conduit interaction at Piton de la Fournaise volcano (Réunion Island): a melt and fluid-inclusion study. J Volcan Geoth Res 84:39–60

    Article  Google Scholar 

  • Bureau H, Pineau F, Métrich N, Semet MP, Javoy M (1998b) A melt and fluid inclusion study of the gas phase at Piton de la Fournaise volcano (Réunion Island). Chem Geol 147:115–130

    Article  Google Scholar 

  • Bryon DN, Atherton MP, Cheadle MJ, Hunter RH (1996) Melt movement and the occlusion of porosity in crystallizing granitic systems. Mineral Mag 60:163–171.

    Google Scholar 

  • Cartigny P, Pineau F, Aubaud C, Javoy M (2008) Towards a consistent mantle carbon flux estimate: insights from volatile systematics (H2O/Ce, dd, CO2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth Planet Sci Lett 265:672–685

    Article  Google Scholar 

  • Cawthorn RG (1996) Re-evaluation of magma compositions and processes in the uppermost Critical Zone of the Bushveld Complex. Mineral Mag 60:131–148

    Article  Google Scholar 

  • Cawthorn RG, Walraven F (1998) Emplacement and crystallization time for the Bushveld Complex. J Petrol 39:1669–1687

    Article  Google Scholar 

  • Cheadle MJ, Elliott MT, McKenzie D (2004) Percolation threshold and permeability of crystallizing igneous rocks: the importance of textural equilibrium. Geology 32:757–760

    Article  Google Scholar 

  • Chung H-Y, Mungall JE (2009) Physical controls on the migration of immiscible fluids through partially molten silicates, with special reference to magmatic sulfide ores. Earth Planet Sci Lett 286:14–22

    Article  Google Scholar 

  • Cluzel N, Laporte D, Provost A, Kannewischer I (2008) Kinetics of heterogeneous bubble nucleation in rhyolitic melts: implications for the number density of bubbles in volcanic conduits and for pumice textures. Contrib Mineral Petrol 156:745–763

    Article  Google Scholar 

  • Duan Z, Moller N, Weare JH (1995) Equation of state for the NaCl–H2O–CO2 system: prediction of phase equilibria and volumetric properties. Geochim Cosmochim Acta 59:2869–2882

    Article  Google Scholar 

  • Durst F (2008) Fluid mechanics. Springer, Berlin, pp 727

    Book  Google Scholar 

  • Fiorentini ML, Barnes SJ, Maier WD, Burnham OM, Heggie G (2010) Global variability in the platinum-group element contents of komatiites. J Petrol 52:83–112

    Article  Google Scholar 

  • Francis AW (1933) Wall effect in falling ball method for viscosity. Journal of Applied Physics 4:403–406.

    Google Scholar 

  • Frank FC (1968) Two-component flow model for convection in the Earth’s upper mantle. Nature 220:350–352

    Article  Google Scholar 

  • Fu L, Bienenstock A, Brennan S (2009) X-ray study of the structure of liquid water. J Chem Phys 131 doi:10.1063/1.3273874

    Google Scholar 

  • Gao S, Luo T-C, Zhang B-R, Zhang H-F, Han Y-W, Zhao Z-D, Hu Y-K (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975

    Article  Google Scholar 

  • Gardner JE (2012) Surface tension and bubble nucleation in phonolite magmas. Geochim Cosmochim Acta 76:93–102

    Article  Google Scholar 

  • Gardner JE, Denis M-H (2004) Heterogeneous bubble nucleation on Fe–Ti oxide crystals in high-silica rhyolitic melts. Geochim Cosmochim Acta 68:3587–3597

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated pressures and temperatures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Gibert F, Guillaume D, Laporte D (1998) Importance of fluid immiscibility in the H2O–NaCl–CO2 system and selective CO2 entrapment in granulites: experimental phase diagram at 5–7 kbar, 900 °C and wetting textures. Eur J Mineral 10:1109–1123

    Article  Google Scholar 

  • Gondé C, Martel C, Pichavant M, Bureau H (2011) In situ bubble vesiculation in silicic magmas. Am Mineral 96:111–124

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS (2007) Magnetite scavenging and the buoyancy of bubbles in magma. Part 2: energetics of crystal-bubble attachment in magmas. Contrib Mineral Petrol 154:479–490

    Article  Google Scholar 

  • Hadamard J (1911) Mouvement perament lent d’une sphere liquid et visqueuse dans un liquide visqueux. Compt Rend Acad Paris 152:1735–1738

    Google Scholar 

  • Hanley JJ, Mungall JE, Pettke T, Spooner ETC, Bray CJ (2008) Fluid and halide melt inclusions of magmatic origin in the ultramafic and lower banded series, Stillwater Complex, Montana, USA. J Petrol 49:1133–1160

    Article  Google Scholar 

  • Herring C (1951) Some theorems on the free energies of crystal surfaces. Phys Rev 82:87–93

    Article  Google Scholar 

  • Hess K-U, Dingwell DB (1996) Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am Mineral 81:1297–1300

    Google Scholar 

  • Hoffman DW, Cahn JW (1972) A vector thermodynamics for anisotropic surfaces I. Fundamentals and application to plane surface junctions. Surf Sci 31:368–388

    Article  Google Scholar 

  • Holness MB (2006) Melt-solid dihedral angles of common minerals in natural rocks. J Petrol 47:791–800

    Article  Google Scholar 

  • Holzheid A, Schmitz MD, Grove TL (2000) Textural equilibria of iron sulfide liquids in partially molten silicate aggregates and their relevance to core formation scenarios. J Geophys Res B 105:13555–13567

    Article  Google Scholar 

  • Holness MB (2006) Melt-solid dihedral angles of common minerals in natural rocks. Jour Petrol 47:791–800.

    Google Scholar 

  • Huraiova M, Konecny P, Konecny V, Simon K, Hurai V (1996) Mafic and salic xenoliths in late tertiary alkaline basalts: fluid inclusion and mineralogical evidence for a deep-crustal magmatic reservoir in the Western Carpathians. Eur J Mineral 8:901–916

    Article  Google Scholar 

  • Hurwitz S, Navon O (1994) Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature, and water content. Earth Planet Sci Lett 122:267–280

    Article  Google Scholar 

  • Iacono-Marziano G, Morizet Y, Le Trong E, Gaillard F (2012) New experimental data and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. Geochim Cosmochim Acta 97:1–23

    Article  Google Scholar 

  • Ikeda S, Toriumi M, Yoshida H, Shimizu I (2002) Experimental study of the textural development of igneous rocks in the late stages of crystallization: the importance of interfacial energies under non-equilibrium conditions. Contrib Mineral Petrol 142:397–415

    Article  Google Scholar 

  • Irvine TN (1970) Heat transfer during solidification of layered intrusions. I. Sheets and sills. Can J Earth Sci. 7:1031–1061.

    Google Scholar 

  • Kelton KF, Greer AL (2010) Nucleation in condensed matter applications in materials and biology. Pergamon materials series 15. 743 pp. Elsevier, New York

    Google Scholar 

  • Kendrick MA, Kamenetsky VS, Phillips D, Honda M (2012) Halogen systematics (Cl, Br, I) in mid-ocean ridge basalts: a Macquarrie Island case study. Geochim Cosmochim Acta 81:82–93

    Article  Google Scholar 

  • Kravchuk IF, Keppler H (1994) Distribution of chlorite between aqueous fluids and felsic melts at 2 kbar and 800 °C. Eur J Mineral 6:913–923

    Article  Google Scholar 

  • Krumrei TV, Pernicka E, Kalimoda M, Markl G (2007) Volatiles in a peralkaline system: abiogenic hydrocarbons and F–Cl–Br systematics in the naujaite of the Ilimaussaq intrusion, South Greenland. Lithos 95:298–314

    Article  Google Scholar 

  • Lange RL, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion, and compressibility. Rev Mineral 24:25–64

    Google Scholar 

  • Laporte D, Provost A (2000) Equilibrium geometry of a fluid phase in a polycrystalline aggregate with anisotropic surface energies: dry grain boundaries. J Geophys Res 105(B11):25937–25953

    Google Scholar 

  • Laporte D, Watson EB (1995) Experimental and theoretical constraints on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity. Chem Geol 124:161–184

    Article  Google Scholar 

  • Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:25–50

    Article  Google Scholar 

  • Liu Y, Zhang Y, Behrens H (2005) Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O–CO2 solubility in rhyolitic melts. J Volcanol Geotherm Res 143:219–235

    Article  Google Scholar 

  • Maaløe S, Scheie A (1982) The permeability controlled accumulation of primary magma. Contrib Mineral Petrol 81:350–357

    Google Scholar 

  • Mangan M, Sisson T (2000) Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet Sci Lett 183:441–455

    Article  Google Scholar 

  • Mathez EA, Webster JD (2005) Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochim Cosmochim Acta 69:1275–1286

    Article  Google Scholar 

  • Mathez EA, Hunter RH, Kinzler R (1997) Petrologic evolution of a partially molten cumulate: the Atok section of the Bushveld Complex. Contrib Mineral Petrol 129:20–34

    Article  Google Scholar 

  • McKenzie D (1984) The generation and compaction of partially molten rock. J Petrol 25:713–765

    Article  Google Scholar 

  • Meurer WP, Claeson DT (2002) Evolution of crystallizing interstitial liquid in an arc-related cumulate determined by LA ICP-MS mapping of a large amphibole oikocryst. J Petrol 43:607–629

    Article  Google Scholar 

  • Meurer WP, Klaber S, Boudreau AE (1997) Discordant bodies from olivine-bearing zones III and IV of the Stillwater Complex, Montana—evidence for postcumulus fluid migration and reaction in layered intrusions. Contrib Mineral Petrol 130:81–92

    Article  Google Scholar 

  • Meurer WP, Willmore CC, Boudreau AE (1999) Metal redistribution during fluid exsolution and migration in the middle banded series of the Stillwater Complex, Montana. Lithos 47:143–156

    Article  Google Scholar 

  • Michael P (1995) Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet Sci Lett 131:301–320

    Article  Google Scholar 

  • Minarik WG (1998) Complications to carbonate melt mobility due to the presence of an immiscible silicate melt. J Petrol 39:1965–1973

    Article  Google Scholar 

  • Mungall JE, Su Shanguo (2005) Interfacial tension between magmatic sulfide and silicate liquids: constraints on kinetics of sulfide liquation and sulfide migration through silicate rocks. Earth Planet Sci Lett 234:135–149.

    Google Scholar 

  • Navon O, Chekmir A, Lyakhovsky V (1998) Bubble growth in highly viscous melts: theory, experiments, and autoexplosivity of dome lavas. Earth Planet Sci Lett 160:763–776

    Article  Google Scholar 

  • Ni H, Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high pressure data. Chem Geol 250:68–78

    Article  Google Scholar 

  • Ochs FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 283:1314–1317

    Article  Google Scholar 

  • Price JD, Wark DA, Watson EB, Smith AM (2006) Grain-scale permeabilities of faceted polycrystalline aggregates. Geofluids 6:302–318

    Article  Google Scholar 

  • Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40:1–26

    Article  Google Scholar 

  • Sachs PM, Hansteen TH (2000) Pleistocene underplating and metasomatism of the lower continental crust: a xenolith study. J Petrol 41:331–356

    Article  Google Scholar 

  • Schafer FN, Foley SF (2002) The effect of crystal orientation on the wetting behaviour of silicate melts on the surfaces of spinel peridotite minerals. Contrib Mineral Petrol 143:254–261

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Boivin P, Medard E (2004) The nature of melt inclusions inside minerals in an ultramafic cumulate from Adak volcanic center, aleutian arc: implications for the origin of high-Al basalts. Chem Geol 203:169–179

    Article  Google Scholar 

  • Shirley DN (1986) Compaction of igneous cumulates. J Petrol 94:795–809

    Google Scholar 

  • Scoates JS, Wall CJ, Friedman RM, VanTongeren JA, Mathez EA (2012) Age of the Bushveld Complex. Goldschmidt 2012 Conference Abstracts

    Google Scholar 

  • Sparks RSJ, Huppert HE, Kerr RC, McKenzie DP, Tait SR (1985) Postcumulus processes in layered intrusions. Geol Mag 122:555–568

    Article  Google Scholar 

  • Sweeney SM, Martin CL (2003) Pore size distributions calculated from 3-D images of DEM-simulated powder compacts. Acta Material 51:3635–3649

    Article  Google Scholar 

  • Takei Y, Holtzman BK (2009) Viscous constitutive relations of solid-solid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. J Geophys Res 114:B06025. doi:10.1029/2008JB005850

    Google Scholar 

  • Tegner C, Thy P, Holness MB, Jakobsen JK, Lesher CE (2009) Differentiation and compaction in the Skaergaard intrusion. J Petrol 50:813–840

    Article  Google Scholar 

  • Tharp TM, Loucks RR, Sack RO (1998) Modeling compaction of olivine cumulates in the Muskox intrusion. Am J Sci 298:758–790

    Article  Google Scholar 

  • Toramaru A (1995) Numerical study of nucleation and growth of bubbles in viscous magmas. J Geophys Res 100(B2):1913–1931

    Article  Google Scholar 

  • Turnbull D (1950) Kinetics of heterogeneous nucleation. J Chem Phys 18:198–203

    Article  Google Scholar 

  • Unsal E, Mason G, Morrow NR, Ruth DW (2009) Bubble snap-off and capillary-back pressure during counter-current spontaneous imbibition into model pores. Langmuir 25:3387–3395

    Article  Google Scholar 

  • Upton BGJ, Semet MP, Joron J-L (2000) Cumulate clasts in the Bellecombe Ash Member, Piton de la Fournaise, Réunion Island, and their bearing on cumulative processes in the petrogenesis of the Réunion lavas. J Volc Geoth Res 104:297–318.

    Google Scholar 

  • von Bargen N, Waff HS (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J Geophys Res 91(B9):9261–9276

    Article  Google Scholar 

  • Volmer M (1939) Kinetik der Phasenbildung (Steinkopf, Leipzig), pp 438

    Google Scholar 

  • von Bargen N, Waff HS (1988) Wetting of enstatite by basaltic melt at 1350 °C and 1.0- to 2.5-GPa pressure. J Geophys Res 93(B2):1153–1158

    Article  Google Scholar 

  • Waff HS, Faul UH (1992) Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts. J Geophys Res 97(B6):9003–9014

    Article  Google Scholar 

  • Wark DA, Watson EB (1998) Grain-scale permeabilities of texturally equilibrated, monomineralic rocks. Earth Planet Sci Lett 164:591–605

    Article  Google Scholar 

  • Webster JD (1997) Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport. Geochim Cosmochim Acta 61:1017–1029

    Article  Google Scholar 

  • Webster JD (1999) Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing. Geochim Cosmochim Acta 63:729–738

    Article  Google Scholar 

  • Webster JD (2004) The exsolution of magmatic hydrosaline chloride fluids. Chem Geol 210:33–48

    Article  Google Scholar 

  • Zhang Y, Shariati M, Yortsos YC (2000) The spreading of immiscible fluids in porous media under the influence of gravity. Transp Porous Media 38:117–140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Mungall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mungall, J. (2015). Physical Controls of Nucleation, Growth and Migration of Vapor Bubbles in Partially Molten Cumulates. In: Charlier, B., Namur, O., Latypov, R., Tegner, C. (eds) Layered Intrusions. Springer Geology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9652-1_8

Download citation

Publish with us

Policies and ethics