Geochronology of Layered Intrusions

  • James S. ScoatesEmail author
  • Corey J. Wall
Part of the Springer Geology book series (SPRINGERGEOL)


Layered intrusions crystallize mainly from basaltic magma to form large bodies of igneous rocks that exhibit prominent layering and they preserve stunning rock records of the processes by which magma evolves in crustal magma chambers. These intrusions contain world-class deposits of chromium, platinum group elements (PGE), and vanadium, metals that are vital to industry and society in general. Despite their scientific and practical importance, precise age constraints are lacking for many layered intrusions, and geochronological frameworks linking crystallization and cooling ages for the most part do not exist. This has resulted in critical knowledge gaps related to their origin and formation. This chapter provides an overview of dating methods (U–Th–Pb, 40Ar/39Ar) and mineral chronometers (e.g., zircon, baddeleyite, rutile, apatite, titanite) potentially present in layered intrusions that is coupled with field, textural, and petrographic criteria for targeting sample selection to allow for the successful implementation of geochronologic studies of layered mafic-ultramafic rocks of any age. As an application, we demonstrate how the thermal history of the Bushveld Complex is documented by mineral ages from samples of the PGE-rich Merensky Reef. High-precision U–Pb zircon ages, involving pretreatment of zircon by the chemical abrasion (annealing and leaching) or CA-TIMS technique, for two samples separated by > 300 km are indistinguishable from each other (2056.88 ± 0.41 Ma, Eastern Limb; 2057.04 ± 0.55 Ma, Western Limb; uncertainty reported as 2s) confirming synchronous crystallization of this horizon at near-solidus conditions across the intrusion. Rapid cooling (~ 125 °C/Ma) down to temperatures of ~ 400–450 °C is defined by U–Pb rutile ages from the same samples (2052.96 ± 0.61 Ma, 2053.0 ± 2.7 Ma) and a regional hydrothermal event is signaled in 40Ar/39Ar biotite ages (1999 ± 10 Ma, 2002 ± 10 Ma). The geochronology of layered intrusions, where magma differentiation processes are captured in a wide range of rock textures and structures, represents an essential tool for assessing the evolution of mafic magmatism in the Earth’s crust.


Zircon Baddeleyite Cumulates Bushveld U–Pb dating 


  1. Alapieti T (1982) The Koillismaa layered igneous complex, Finland—its structure, mineralogy and geochemistry, with emphasis on the distribution of chromium. Geol Surv Finl Bull 319:116Google Scholar
  2. Alapieti TT, Kujanpää J, Lahtinen JJ, Papunen H (1989) The Kemi stratiform chromitite deposit, northern Finland. Econ Geol 84:1057–1077 doi:10.2113/gsecongeo.84.5.1057Google Scholar
  3. Amelin Y, Zaitsev AN (2002) Precise geochronology of phoscorites and carbonatites: the critical role of U-series disequilibrium in age interpretations. Geochim Cosmochim Acta 66:2399–2419. doi:10.1016/S0016-7037(02)00831-1Google Scholar
  4. Amelin Y, Davis WJ (2006) Isotopic analysis of lead in sub-nanogram quantities by TIMS using a 202Pb–205Pb spike. J Anal At Spectrom 21:1053–1061. doi:10.1039/b606842aGoogle Scholar
  5. Amelin YV, Heaman LM, Semenov VS (1995) U-Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: implications for the timing and duration of Paleoproterozoic continental rifting. Precambrian Res 75:31–46. doi:10.1016/0301-9268(95)00015-WGoogle Scholar
  6. Ballhaus CG (1988) Potholes of the Merensky Reef at Brakspruit Shaft, Rustenburg Platinum Mines: primary disturbances in the magmatic stratigraphy. Econ Geol 83:1140–1158. doi:10.2113/gsecongeo.83.6.1140Google Scholar
  7. Ballhaus CG, Stumpfl EF (1986) Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluid inclusions. Contrib Mineral Petrol 94:193–204. doi:10.1007/BF00592936Google Scholar
  8. Barboni M, Schoene B, Ovtcharova M, Bussy F, Schaltegger GA (2013) Timing of incremental pluton construction and magmatic activity in a back-arc setting revealed by ID-TIMS U/Pb and Hf isotopes on complex zircon grains. Chem Geol 340:76–93. doi:10.1016/j.chemgeo.2012.12.011Google Scholar
  9. Barfod GH, Otero O, Albarède F (2003) Phosphate Lu-Hf geochronology. Chem Geol 200:241–253. doi:10.1016/S0009-2541(03)00202-XGoogle Scholar
  10. Barkov AY, Savchenko YE, Men’shikov YP, Barkova LP (1996) Loveringite from the Last-Yavr mafic-ultramafic intrusion, Kola Peninsula; a second occurrence in Russia. Nor Geol Tidsskr 76:115–120Google Scholar
  11. Barnes S-J, Maier WD (2002) Platinum-group elements and microstructures of normal Merensky Reef from Impala Platinum Mines, Bushveld Complex. J Petrol 43:103–128. doi:10.1093/petrology/43.1.103Google Scholar
  12. Belousova EA, Griffin WL, O-Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622. doi:10.1007/s00410-002-0364-7Google Scholar
  13. Boehnke P, Watson EB, Trial D, Harrison RM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334 doi:10.1016/j.chemgeo.2013.05.02Google Scholar
  14. Boudreau A (2011) The evolution of texture and layering in layered intrusions. Int Geol Rev 53:330–353. doi:10.1080/00206814.2010.496163Google Scholar
  15. Boudreau AE, Hoatson DM (2004) Halogen variations in the Paleoproterozoic layered mafic-ultramafic intrusions of the East Kimberley, Western Australia: implications for platinum group element mineralization. Econ Geol 99:1015–1026. doi:10.2113/gsecongeo.99.5.1015Google Scholar
  16. Boudreau AE, Mathez EA, McCallum IS (1986) Halogen geochemistry of the Stillwater and Bushveld complexes: evidence for transport of the platinum-group elements by Cl-rich fluids. J Petrol 27:967–986. doi:10.1093/petrology/27.4.967Google Scholar
  17. Bowen NL (1928) The evolution of igneous rocks. Dover Publications, New York, NY p 332Google Scholar
  18. Bowring JF, McLean NM, Bowring SA (2011) Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb_Redux. Geochem Geophys Geosystems 12:(Q0AA19), p 19. doi:10.1029/2010GC003479Google Scholar
  19. Bristow DG, Cawthorn RG, Harmer J, Lee CA, Tegner C, Vijoen MJ, Walraven F, Wilson JR (1993) Field excursion to the Bushveld Complex, 11–17th Sept 1993. Excursion guide—symposium on layering in igneous complexes, p 59Google Scholar
  20. Buchanan PC, Reimold WU, Koeberl C, Kruger FJ (2002) Geochemistry of intermediate to siliceous volcanic rocks of the Rooiberg Group, Bushveld Magmatic Province, South Africa. Contrib Mineral Petrol 144:131–143. doi:10.1007/s00410-002-0386-1Google Scholar
  21. Buick IS, Maas R, Gibson R (2001) Precise U-Pb titanite age constraints on the emplacement of the Bushveld Complex, South Africa. J Geol Soc Lond 158:3–6. doi:10.1144/jgs.158.1.3Google Scholar
  22. Buick IS, Hermann J, Maas R, Gibson RL (2007) The timing of sub-solidus hydrothermal alteration in the Central Zone, Limpopo Belt (South Africa): constraints from titanite U–Pb geochronology and REE partitioning. Lithos 98:97–117. doi:10.1016/j.lithos.2007.02.002Google Scholar
  23. Cabella R, Gazzotti M, Lucchetti G (1997) Loveringite and baddeleyite in layers of chromian spinel from the Bracco ophiolitic unit, Northern Apennines, Italy. Can Mineral 35:899–908Google Scholar
  24. Cameron EN (1979) Titanium-bearing oxide minerals of the critical zone of the eastern Bushveld Complex. Am Mineral 64:140–150Google Scholar
  25. Campbell IH (1987) Distribution of orthocumulate textures in the Jimberlana intrusion. J Geol 95:35–53Google Scholar
  26. Campbell IH, Kelly PR (1978) The geochemistry of loveringite, a uranium–rare-earth-bearing accessory phase from the Jimberlana intrusion of Western Australia. Mineral Mag 42:187–193Google Scholar
  27. Campbell IH, Naldrett AJ, Barnes SJ (1983) A model for the origin of the platinum-rich sulfide horizons in the Bushveld and Stillwater complexes. J Petrol 24:133–165. doi: 10.1093/petrology/24.2.133Google Scholar
  28. Carr HW, Groves DI, Cawthorne RG (1994) The importance of synmagmatic deformation in the formation of Merensky Reef potholes in the Bushveld Complex. Econ Geol 89:1398–1410. doi:10.2113/gsecongeo.89.6.1398Google Scholar
  29. Cassata WS, Renne PR, Shuster DL (2009) Argon diffusion in plagioclase and implications for thermochronology: a case study from the Bushveld Complex, South Africa. Geochim Cosmochim Acta 73:6600–6612. doi:10.1016/j.gca.2009.07.017Google Scholar
  30. Cathles LM, Erendi AHJ, Barrie T (1997) How long can a hydrothermal system be sustained by a single intrusive event? Econ Geol 92:766–771. doi:10.2113/gsecongeo.88.8.1977Google Scholar
  31. Cavosie AJ, Valley JW, Wilde SA, EIMF (2006) Correlated microanalysis of zircon: Trace element, δ18O, and U–Th–Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains. Geochim Cosmochim Acta 70:5601–5616. doi:10.1016/j.gca.2006.08.011Google Scholar
  32. Cawthorn RG (ed) (1996) Layered intrusions (Developments in Petrology 15). Elsevier, Amsterdam, The Netherlands p 531Google Scholar
  33. Cawthorn RG, Boerst K (2006) Origin of the pegmatitic pyroxenite in the Merensky unit, Bushveld Complex, South Africa. J Petrol 47:1509–1530. doi:10.1093/petrology/egl017Google Scholar
  34. Cawthorn RG, Walraven F (1998) Emplacement and crystallization time for the Bushveld Complex. J Petrol 39:1669–1687. doi:10.1093/petroj/39.9.1669Google Scholar
  35. Cawthorn RG, Webb SJ (2013) Cooling of the Bushveld Complex, South Africa: implications for paleomagnetic reversals. Geology 41:687–690. doi:10.1130/G34033.1Google Scholar
  36. Cawthorn RG, Barnes SJ, Ballhaus C, Malitch KN (2005) Platinum group element, chromium, and vanadium deposits in mafic and ultramafic rocks. In: Hedenquist JW et al. (eds) Economic Geology (One Hundredth Anniversary Volume), Littleton, CO pp 215–250 Society of Economic Geologists, Inc.Google Scholar
  37. Chamberlain KR, Bowring SA (2000) Apatite–feldspar U–Pb thermochronometer: a reliable, mid-range (~450°C), diffusion-controlled system. Chem Geol 172:173–200. doi:10.1016/S0009-2541(00)00242-4Google Scholar
  38. Chamberlain KR, Schmitt AK, Swapp SM, Harrison TM, Swoboda-Colberg N, Bleeker W, Peterson TD, Jefferson CW, Khudoley AK (2010) In situ U–Pb SIMS (IN-SIMS) micro-baddeleyite dating of mafic rocks: method with examples. Precambrian Res 183:379–387. doi:10.1016/j.precamres.2010.05.004Google Scholar
  39. Chang Z, Vervoort JD, McClelland WC, Knaack C (2006) U-Pb dating of zircon by LA-ICP-MS. Geochem Geophys Geosystems 7:(Q05009), p 14. doi:10.1029/2005GC001100Google Scholar
  40. Cherniak DJ (1993) Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chem Geol 110:177–194. doi:10.1016/0009-2541(93)90253-FGoogle Scholar
  41. Cherniak DJ (2000) Pb diffusion in rutile. Contrib Mineral Petrol 139:198–207Google Scholar
  42. Cherniak DJ (2010) Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts, Reviews in Mineralogy and geochemistry, Chantilly, VA vol. 72. pp 827–869. doi:10.2138/rmg.2010.72.18 The Mineralogical Society of AmericaGoogle Scholar
  43. Cherniak DJ, Watson EB (2000) Pb diffusion in zircon. Chem Geol 172:5–24. doi:10.1007/PL00007671Google Scholar
  44. Cherniak DJ, Watson EB (2003) Diffusion in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, Washington, DC vol. 53. pp 113–143. doi:10.2113/0530113 The Mineralogical Society of AmericaGoogle Scholar
  45. Cherniak DJ, Lanford WA, Ryerson FJ (1991) Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochim Cosmochim Acta 55:1663–1673. doi:10.1016/0016-7037(91)90137-TGoogle Scholar
  46. Chew DM, Petrus JA, Kamber BS (2014) U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chem Geol 363:185–199. doi:10.1016/j.chemgeo.2013.11.006Google Scholar
  47. Chiaradia M, Schaltegger U, Spiking R, Wotzlaw J-F, Ovtcharova M (2013) How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems?—an invited paper. Econ Geol 108:565–584. doi:10.2113/econgeo.108.4.565Google Scholar
  48. Chutas NI, Bates E, Prevec SA, Coleman DS, Boudreau AE (2012) Sr and Pb isotopic disequilibrium between coexisting plagioclase and orthopyroxene in the Bushveld Complex, South Africa: microdrilling and progressive leaching evidence for sub-liquidus contamination within a crystal mush. Contrib Mineral Petrol 163:653–668. doi:10.1007/s00410-011-0691-7Google Scholar
  49. Claiborne LL, Miller CF, Wooden JL (2010) Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib Mineral Petrol 160:511–531. doi:10.1007/s00410-010-0491-5Google Scholar
  50. Coggon JA, Nowell GM, Pearson DG, Oberthür T, Lorand J-P, Melcher F, Parman SW (2012) The 190Pt–186Os decay system applied to dating platinum-group element mineralization of the Bushveld Complex, South Africa. Chem Geol 302–303:48–60. doi:10.1016/j.chemgeo.2011.10.015Google Scholar
  51. Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res Suppl 89:B525–B534Google Scholar
  52. Condon D, Schoene B, Bowring S, Parrish R, Mclean N, Noble S, Crowley Q (2007) Earthtime: Isotopic tracers and optimized solutions for high-precision U-Pb ID-TIMS geochronology. American Geophysical Union, Fall Meeting 2007 [abstract #V41E-06].Google Scholar
  53. Condon DJ, McKean N, Noble SR, Bowring SA (2010) Isotopic composition (238U/235U) of some commonly used uranium reference materials. Geochim Cosmochim Acta 74:7127–7143. doi:10.1016/j.gca.2010.09.019Google Scholar
  54. Cooper KM, Kent AJR (2014) Rapid remobilization of magmatic crystals in cold storage. Nature 506:480–483. doi:10.1038/nature12991Google Scholar
  55. Corfu F, Krogh TE, Ayres LD (1985) U–Pb zircon and sphene geochronology of a composite Archean granitoid batholith, Favorable Lake area, northwestern Ontario. Can J Earth Sci 22:1436–1451. doi:10.1139/e85-150Google Scholar
  56. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, Washington, DC vol. 53. pp 469–500. doi:10.2113/0530469 The Mineralogical Society of AmericaGoogle Scholar
  57. Cottle JM, Horstwood MSA, Parrish RR (2009) A new approach to single shot laser ablation analysis and its application to in situ Pb/U geochronology. J Anal At Spectrom 24:1355–1363. doi:10.1039/B821899DGoogle Scholar
  58. Cottle JM, Kylander-Clark AR, Vrijmoed JC (2012) U-Th/Pb geochronology of detrital zircon and monazite by single shot laser ablation inductively coupled plasma mass spectrometry (SS-LA-ICPMS). Chem Geol 332–333:136–147. doi:10.1016/j.chemgeo.2012.09.035Google Scholar
  59. Cousins CA (1969) The Merensky Reef of the Bushveld Igneous Complex. In: Wilson HDB (ed) Magmatic ore deposits: a symposium. Economic Geology Publishing Company, Lancaster, PA pp 239–251Google Scholar
  60. Das A, Davis DW (2010) Response of Precambrian zircon to the chemical abrasion (CA-TIMS) method and implications for improvement of age determinations. Geochim Cosmochim Acta 74:5333–5348. doi:10.1016/j.gca.2010.06.029Google Scholar
  61. Davis DW, Sutcliffe RH (1985) U-Pb ages from the Nipigon plate and northern Lake Superior. Geol Soc Am Bull 96:1572–1579. doi:10.1130/0016-7606(1985)961572:UAFTNP>2.0.CO;2Google Scholar
  62. Davis DW, Williams IS, Krogh TE (2003) Historical developments of zircon geochronology. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, Washington, DC vol. 53. pp 145–181. doi:10.2113/0530145 The Mineralogical Society of AmericaGoogle Scholar
  63. DePaolo DJ (1985) Isotopic studies of processes in mafic magma chambers: I. The Kiglapait intrusion, Labrador. J Petrol 26:925–951. doi:10.1093/petrology/26.4.925Google Scholar
  64. DePaolo DJ, Wasserburg GJ (1979) Sm-Nd age of the Stillwater Complex and the mantle evolution curve for neodymium. Geochim Cosmochim Acta 43: 999–1008. doi:10.1016/0016-7037(79)90089-9Google Scholar
  65. Dickin AP (2005) Radiogenic isotope geology, 2nd edn. Cambridge University Press, Cambridge, UK p 512Google Scholar
  66. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274. doi:10.1007/BF00373790Google Scholar
  67. Dodson MH (1978) A linear method for second-degree interpolation in cyclical data collection. J Phys E Sci Instrum 11:296Google Scholar
  68. Eales HV, Cawthorn RG (1996) The Bushveld Complex. In: Cawthorn RG. (ed) Layered intrusions. Elsevier Science B.V., Amsterdam, pp 181–229. doi:10.1016/S0167-2894(96)80008-XGoogle Scholar
  69. Ernst RE, Buchan KL (2001) Large mafic magmatic events through time and links to mantle-plume heads. Geol Soc Am Spec Pap 352:483–575. doi:10.1130/0-8137-2352-3.483Google Scholar
  70. Ewing RC, Meldrum A, Wang L, Weber WJ, Corrales LR (2003) Radiation effects in zircon. In: Hanchar, JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, Washington, DC vol. 53. pp 387–425. doi:10.2113/0530387 The Mineralogical Society of AmericaGoogle Scholar
  71. Faure G, Mensing TM (2005) Isotopes: principles and applications, 3rd edn. Wiley, Hoboken, NJ p 928Google Scholar
  72. Fenton MD, Faure G (1969) The age of the igneous rocks of the Stillwater Complex of Montana. Geol Soc Am Bull 80:1599–1604Google Scholar
  73. Ferreira-Filho CF, Kamo SL, Fuck RA, Krogh TE, Naldrett JA (1994) Zircon and rutile U-Pb geochronology of the Niquelândia layered mafic and ultramafic intrusion, Brazil: constraints for the timing of magmatism and high grade metamorphism. Precambrian Res 68:241–255. doi:10.1016/0301-9268(94)90032-9Google Scholar
  74. Ferry JM, Watson EM (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437. doi:10.1007/s00410-007-0201-0Google Scholar
  75. Finch RJ, Hanchar JM (2003) Structure and chemistry of zircon and zircon-group minerals. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, Washington, DC vol. 53. pp 1–25. doi:10.2113/0530001 The Mineralogical Society of AmericaGoogle Scholar
  76. Fisher CM, Longerich HP, Jackson SE, Hanchar JM (2010) Data acquisition and calculation of U–Pb isotopic analyses using laser ablation (single collector) inductively coupled plasma mass spectrometry. J Anal Atomic Spectrom 25:1905–1920: doi:10.1039/c004955gGoogle Scholar
  77. Francis D (2011) Columbia Hills—an exhumed layered igneous intrusion on Mars? Earth Planet Sci Lett 310:59–64. doi:10.1016/j.epsl.2011.08.003Google Scholar
  78. French JE, Heaman LM, Chacko T (2002) Feasibility of chemical U–Th–total Pb baddeleyite dating by electron microprobe. Chem Geol 188:85–104. doi:10.1016/S0009-2541(02)00074-8Google Scholar
  79. Frei D, Gerdes A (2009) Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem Geol 261:261–270. doi:10.1016/j.chemgeo.2008.07.025Google Scholar
  80. Frost BR, Chamberlain KR, Schumacher JC (2000) Sphene (titanite): phase relations and role as a geochronometer. Chem Geol 172:131–148. doi:10.1016/S0009-2541(00)00240-0Google Scholar
  81. Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156:197–215. doi:10.1007/s00410-008-0281-5Google Scholar
  82. Fujimaki H (1986) Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contrib Mineral Petrol 94:42–45. doi:10.1007/BF00371224Google Scholar
  83. Gatehouse BM, Grey IE, Campbell IH, Kelly P (1978) The crystal structure of loveringite—a new member of the crichtonite group. Am Mineral 63:28–36Google Scholar
  84. Geisler T, Pidgeon RT, Kurtz R, Bronswijk WV, Schleicher H (2003) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 88:1496–1513Google Scholar
  85. Geisler T, Schaltegger U, Tomsachek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50. doi:10.2113/gselements.3.1.43Google Scholar
  86. Gerstenberger H, Haase G (1997) A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem Geol 136:309–312. doi:10.1016/S0009-2541(96)00033-2Google Scholar
  87. Godel B, Barnes SJ, Barnes S-J, Maier WD (2010) Platinum ore in three dimensions: insights from high-resolution X-ray computed tomography. Geology 38:1127–1130. doi:10.1130/G31265.1Google Scholar
  88. Godel B, Rudashevsky NS, Nielsen TFD, Barnes SJ, Rudashevsky VN (2014) New constraints on the origin of the Skaergaard intrusion Cu–Pd–Au mineralization: insights from high-resolution X-ray computed tomography. Lithos 190-191:27–36. doi:10.1016/j.lithos.2013.11.019Google Scholar
  89. Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S, Schwartz JJ (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib Mineral Petrol 158:757–783. doi:10.1007/s00410-009-0409-2Google Scholar
  90. Grove M, Harrison TM (1996) 40Ar diffusion in Fe-rich biotite. Am Mineral 81:940–951Google Scholar
  91. Hamilton MA, Pearson DG, Thompson RN, Kelley SP, Emeleus CH (1998) Rapid eruption of Skye lavas inferred from precise U-Pb and Ar-Ar dating of the Rum and Cuillin plutonic complexes. Nature 394:260–263. doi:10.1038/28361Google Scholar
  92. Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathololuminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chem Geol 110:1–13. doi:10.1016/0009-2541(93)90244-DGoogle Scholar
  93. Harker A (1904) The Tertiary igneous rocks of Skye. (Memoir Geological Survey United Kingdom) Glasgow p 481 James Hedderwick and SonsGoogle Scholar
  94. Harley SL, Kelly NM (2007) Zircon, tiny but timely. Elements 3:13–18. doi:10.2113/gselements.3.1.13Google Scholar
  95. Harrison TM, Zeitler PK (2005) Fundamentals of noble gas thermochronometry. In: Reiner PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations, and applications, Reviews in Mineralogy and Geochemistry, Chantilly, VA vol. 58, pp 123–149. doi:10.2138/rmg.2005.58.5 The Mineralogical Society of AmericaGoogle Scholar
  96. Haskin LA, Salpas PA (1992) Genesis of compositional characteristics of Stillwater AN-I and AN-II thick anorthosite units. Geochim Cosmochim 56:1187–212. doi:10.1016/0016-7037(92)90056-OGoogle Scholar
  97. Heaman LM, LeCheminant AN (1993) Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chem Geol 110:95–126. doi:10.1016/0009-2541(93)90249-IGoogle Scholar
  98. Heaman LM, LeCheminant AN (2000) Anomalous U–Pb systematics in mantle-derived baddeleyite xenocrysts from Ile Bizard: evidence for high temperature radon diffusion? Chem Geol 172:77–93. doi:10.1016/S0009-2541(00)00237-0Google Scholar
  99. Heaman L, Parrish R (1991) U-Pb geochronology of accessory minerals. In: Heaman L, Ludden JN (eds) Applications of radiogenic isotope systems to problems in geology. Mineralogical Association of Canada, short course handbook, Nepean, Canada vol 19. pp 59–102 Mineralogical Association of CanadaGoogle Scholar
  100. Heaman LM, Machado N, Krogh TE, Weber W (1986) Precise U-Pb zircon ages for the Molson dyke swarm and the Fox River sill: constraints for early Proterozoic crustal evolution in northeastern Manitoba, Canada. Contrib Mineral Petrol 94:82–89. doi:10.1007/BF00371229Google Scholar
  101. Hemming SR, Rasbury ET (2000) Pb isotope measurements of sanidine monitor standards: implications for provenance analysis and tephrochronology. Chem Geol 165:331–337. doi:10.1016/S0009-2541(99)00174-6Google Scholar
  102. Hess HH (1960) Stillwater igneous complex, Montana. Geol Soc Am Memoir 80:230Google Scholar
  103. Hickey KA, Barker SLL, Dipple GM, Arehart GB, Donelick RA (2014) The brevity of hydrothermal fluid flow revealed by thermal haloes around giant gold deposits: implications for Carlin-type gold systems. Econ Geol 109:1461–1487Google Scholar
  104. Hiess J, Condon, DJ, McLean N, Noble SR (2012) 238U/235U systematics in terrestrial uranium-bearing mineral. Nature 335:1610–1614. doi:10.1126/science.1215507Google Scholar
  105. Higgins MD (2011) Textural coarsening in igneous rocks. Int Geol Rev 53:354–376. doi:10.1080/00206814.2010.496177Google Scholar
  106. Higgins MD, van Breeman O (1998) The age of the Sept Iles layered mafic intrusion, Canada: implications for the Late Neoproterozoic/Cambrian history of Southeastern Canada. J Geol 106:421–432. doi:10.1086/516033Google Scholar
  107. Hirschmann MM, Renne PR, McBirney AR (1997) 40Ar/39Ar dating of the Skaergaard intrusion. Earth Planet Sci Lett 146:645–658. doi:10.1016/S0012-821X(96)00250-6Google Scholar
  108. Hoatson DM, Blake DH (eds) (2000) Geology and economic potential of the Palaeoproterozoic layered mafic-ultramafic intrusions in the East Kimberley, Western Australia. Aust Geol Surv Organ Bull 246:476Google Scholar
  109. Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Crystallogr 8:291–300. doi:10.1107/S0365110X55000947Google Scholar
  110. Holness MB, Anderson AT, Mamrtin VM, MacLennan J, Passmore E, Schwindinger K (2007) Textures in partially solidified crystalline nodules: a window into the pore structure of slowly cooled mafic intrusions. J Petrol 48:1243–1264. doi:10.1093/petrology/egm016Google Scholar
  111. Hulbert L (2005) Geology of the Muskox intrusion and associated Ni and Cu occurrences. Geological Survey of Canada, Open File 4881 (CD-ROM)Google Scholar
  112. Hunter RH (1996) Texture development in cumulate rocks. In: Cawthorn RG (ed) Layered intrusions. Elsevier Science B.V., Amsterdam, pp 103–145. doi:10.1016/S0167-2894(96)80006-6Google Scholar
  113. Ireland TR, Williams IS (2003) Considerations in zircon geochronology by SIMS. In: Hanchar JM, Hoskin PWO (eds) Zircon Reviews in mineralogy and geochemistry, Washington, DC vol. 53. pp 215–241.doi:10.2113/0530215 The Mineralogical Society of AmericaGoogle Scholar
  114. Irvine TN (1982) Terminology for layered intrusions. J Petrol 23:127–162. doi:10.1093/petrology/23.2.127-aGoogle Scholar
  115. Irvine TN (1987) Appendix I. Glossary of terms for layered intrusions. In: Parsons I (ed) Origins of igneous layering. D. Reidel Publishing Company, Dordrecht, Holland pp 641–647. doi:10.1016/S0167-2894(96)80005–4Google Scholar
  116. Ivanic TJ, Wingate MTD, Kirkland CL, Van Kranendonk MJV, Wyche S (2010) Age and significance of voluminous mafic-ultramafic magmatic events in the Murchison Domain, Yilgarn Craton. Aust J Earth Sci 57:597–614. doi:10.1080/08120099.2010.494765Google Scholar
  117. Jackson ED (1961) Primary textures and mineral associations in the Ultramafic Zone of the Stillwater Complex, Montana. U. S Geol Surv Prof Pap 358:106Google Scholar
  118. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4(5):1889–1906. doi:
  119. Jerram DA, Cheadle MJ, Philpotts AR (2003) Quantifying the building blocks of igneous rocks: are clustered crystal frameworks the foundation? J Petrol 44:2033–2051. doi:10.1093/petrology/egg069Google Scholar
  120. Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth Planet Sci Lett 144:369–387. doi:10.1016/S0012-821X(96)00180-XGoogle Scholar
  121. Kinnaird JA, Hutchinson D, Schurmann L, Nex PAM, de Lange R (2005) Petrology and mineralization of the southern PlatReef: northern limb of the Bushveld Complex, South Africa. Miner Depos 40:576–597. doi:10.1007/s00126-005-0023-9Google Scholar
  122. Kinny PD, Maas R (2003) Lu-Hf and Sm-Nd isotope systems in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, Washington, DC vol. 53. pp 327–341. doi:10.2113/0530327 The Mineralogical Society of AmericaGoogle Scholar
  123. Kosler J, Sylvester PJ (2003) Present trends and the future of zircon in geochronology: laser ablation ICPMS. In: Hanchar JM, Hoskin PWO (eds.) Zircon, Reviews in Mineralogy and Geochemistry, Washington, DC vol. 53. pp 243–275. doi:10.2113/0530243 The Mineralogical Society of AmericaGoogle Scholar
  124. Kramers J, Mouri H (2011) The geochronology of the Limpopo Complex: a controversy solved. Geol Soc Am Mem 207:85–106. doi:10.1130/2011.1207(06)Google Scholar
  125. Krogh TE (1973) A low contamination method for the hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494. doi:10.1016/0016-7037(73)90213-5Google Scholar
  126. Krogh TE (1982a) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46:637–649. doi:10.1016/0016-7037(82)90165-XGoogle Scholar
  127. Krogh TE (1982b) Improved accuracy of U-Pb zircon dating by selection of more concordant fractions using a high gradient magnetic separation technique. Geochim Cosmochim Acta 46:631–635. doi:10.1016/0016-7037(82)90164-8Google Scholar
  128. Krogh TE, Davis GL (1974) Alteration in zircons with discordant U-Pb ages. Carnegie Inst Wash Yearb 73:560–567Google Scholar
  129. Kruger FJ (2005) Filling the Bushveld Complex magma chamber: lateral expansion, roof and floor interaction, magmatic unconformities, and the formation of giant chromitite, PGE and Ti-V-magnetitite deposits. Miner Depos 40:451–472. doi:10.1007/s00126-005-0016-8Google Scholar
  130. Kruger FJ, Kamber BS, Harris PD (1998) Isotopic peculiarities of an Archaean pegmatite (Union Mine, Mica, South Africa): geochemical and geochronological implications. Precambrian Res 91:253–267. doi:10.1016/S0301-9268(98)00052-7Google Scholar
  131. Krumrei TV, Villa IM, Marks MAW, Markl G (2006) A 40Ar/39Ar and U/Pb isotopic study of the Ilimaussaq complex, South Greenland: implications for the 40K decay constant and for the duration of magmatic activity in a peralkaline complex. Chem Geol 227:258–273. doi:10.1016/j.chemgeo.2005.10.004Google Scholar
  132. Kuiper YD (2002) The interpretation of inverse isochron diagrams in 40Ar/39Ar geochronology. Earth Planet Sci Lett 203:499–506. doi:10.1016/S0012-821X(02)00833-6Google Scholar
  133. Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of Earth History. Science 320:500–504. doi:10.1126/science.1154339Google Scholar
  134. LeCheminant AN, Heaman LM (1989) Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening. Earth Planet Sci Lett 96:38–48. doi:10.1016/0012-821X(89)90122-2Google Scholar
  135. Lee JKW (1995) Multipath diffusion in geochronology. Contrib Mineral Petrol 120:60–82. doi:10.1007/BF00311008Google Scholar
  136. Lee CA (1996) A review of mineralization in the Bushveld Complex and some other layered intrusions. In Cawthorn RG (ed) Layered intrusions. Elsevier Science B.V., Amsterdam, pp 103–145. doi:10.1016/S0167-2894(96)80006-6Google Scholar
  137. Lee J-Y, Marti K, Severinghaus JP, Kawamura K, Yoo H-S, Lee JB, Kim JS (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70:4507–4512. doi:10.1016/j.gca.2006.06.1563Google Scholar
  138. Li C, Ripley EM, Merino E, Maier WD (2004) Replacement of base metal sulfides by actinolite, epidote, calcite, and magnetite in the UG2 and Merensky Reef of the Bushveld Complex, South Africa. Econ Geol 99:173–184. doi:10.2113/gsecongeo.99.1.0173Google Scholar
  139. Lindsley DH, Brown GM, Muir ID (1969) Conditions of the ferrowollastonite-ferrohedenbergite inversion in the Skaergaard intrusion. East Greenland. Mineral Soc Am Spec Pap 2:193–201Google Scholar
  140. Ludwig KR (2003) Isoplot/Ex 3.00, a Geochronological Toolkit for Microsoft Excel: Berkeley Geochronology CenterGoogle Scholar
  141. Lumpkin GR (1999) Physical and chemical characteristics of baddeleyite (monoclinic zirconia) in natural environments: an overview and case study. J Nucl Mater 274:206–217Google Scholar
  142. Luvizotto GL, Zack T, Meyer HP, Ludwig T, Triebold S, Kronz A, Münker C, Stockli DF, Prowatke S, Klemme S, Jacob DE, von Eynatten H (2009) Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem Geol 261:346–369. doi:10.1016/j.chemgeo.2008.04.012Google Scholar
  143. Mackie RA, Scoates JS, Weis D (2009) Age and Nd–Hf isotopic constraints on the origin of marginal rocks from the Muskox layered intrusion (Nunavut, Canada) and implications for the evolution of the 1.27 Ga Mackenzie large igneous province. Precambrian Res 172:46–66. doi:10.1016/j.precamres.2009.03.007Google Scholar
  144. Maier WD, Barnes S-J, Gartz V, Andrews G (2003) Pt-Pd Reefs in magnetites of the Stella layered intrusion, South Africa: a world of new exploration opportunities for platinum group elements. Geology 31:885–888. doi:10.1130/G19746.1Google Scholar
  145. Maier WD, Barnes S-J, Groves DI (2013) The Bushveld Complex, South Africa: formation of platinum-palladium, chrome- and vanadium-rich layers via hydrodynamic sorting of a mobilized cumulate slurry in a large, relatively slowly cooling, subsiding magma chamber. Mineral Depos 48:1–56. doi:10.1007/s00126-012-0436-1Google Scholar
  146. Mapeo RBM, Kampunzu AB, Ramokate LV, Corfu F, Key RM (2004) Bushveld-age magmatism in southeastern Botswana: Evidence from U-Pb zircon and titanite geochronology of the Moshaneng Complex. S Afr J Geol 107:219–232. doi:10.2113/107.1-2.219Google Scholar
  147. Mark DF, Stuart FM, de Podesta M (2011) New high-precision measurements of the isotopic composition of atmospheric argon. Geochim Cosmochim Acta 75:7494–7501. doi:10.1016/j.gca.2011.09.042.Google Scholar
  148. Mathez EA (1995) Magmatic metasomatism and formation of the Merensky reef, Bushveld Complex. Contrib Mineral Petrol 119:277–286. doi:10.1007/BF00307287Google Scholar
  149. Mathez EA, VanTongeren JA, Schweitzer J (2013) On the relationships between the Bushveld Complex and its felsic roof rocks, part 1: petrogenesis of Rooiberg and related felsites. Contrib Mineral Petrol 166:435–449. doi:10.1007/s00410-013-0884-3Google Scholar
  150. Mattinson JM (2005) Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66. doi:10.1016/j.chemgeo.2005.03.011Google Scholar
  151. Mattinson JM (2013) Revolution and evolution: 100 years of U-Pb geochronology. Elements 8, 53–57. doi: 10.2113/gselements.9.1.53Google Scholar
  152. McBirney AR, Creaser RA (2003) The Skaergaard Layered Series, Part VII: Sr and Nd isotopes. J Petrol 44:757–771. doi:10.1093/petrology/44.4.757Google Scholar
  153. McCallum IS (1996) The Stillwater Complex. In: Cawthorn RG (ed) Layered intrusions. Elsevier, Amsterdam, pp 441–484. doi:10.1016/S0167-2894(96)80015-7Google Scholar
  154. McCourt S, Armstrong RA (1998) SHRIMP U–Pb zircon geochronology of granites from the Central Zone, Limpopo Belt, southern Africa: implications for the age of the Limpopo Orogeny. S Afr J Geol 101:329–338Google Scholar
  155. McDougall I., Harrison T.M. (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, New York, NY pp 269Google Scholar
  156. McLean NM, Bowring JF, S. A. Bowring (2011) An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation. Geochem Geophys Geosyst 12(Q0AA18):1–26. doi:10.1029/2010GC003478.Google Scholar
  157. McLelland JM, Chiarenzelli J (1990) Isotopic constraints on emplacement age of anorthositic rocks of the Marcy massif, Adirondack Mtns., New York. J Geol 98:19–41Google Scholar
  158. Meinhold G (2010) Rutile and its applications in earth sciences. Earth-Sci Rev 102:1–28. doi:10.1016/j.earscirev.2010.06.001Google Scholar
  159. Meurer WP, Boudreau AE (1996) Petrology and mineral compositions of the Middle Banded Series of the Stillwater Complex, Montana. J Petrol 37:583–607Google Scholar
  160. Meurer WP, Boudreau AE (1998) Compaction of igneous cumulates. Part I. Whole-rock compositions as an indicator of the trapped liquid proportions in the Stillwater Complex, Montana. J Geol 106:281–292. doi:10.1086/516022Google Scholar
  161. Meurer WP, Meurer MES (2006) Using apatite to dispel the ‘‘trapped liquid’’ concept and to understand the loss of interstitial liquid by compaction in mafic cumulates: an example from the Stillwater Complex, Montana. Contrib Mineral Petrol 151:187–201. doi:10.1007/s00410-005-0054-3Google Scholar
  162. Meurer WP, Willmore CC, Boudreau AE (1999) Metal redistribution during fluid exsolution and migration in the Middle Banded series of the Stillwater Complex, Montana. Lithos 47:143–156. doi:10.1016/S0024-4937(99)00012-2Google Scholar
  163. Mezger K, Hanson GN, Bohlen SR (1989) High-precision U-Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth Planet Sci Lett 96:106–118. doi:10.1016/0012-821X(89)90126-XGoogle Scholar
  164. Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geotherm Res 167:282–299. doi:10.1016/j.jvolgeores.2007.04.019Google Scholar
  165. Min K, Mundil R, Renne PR, Ludwig KR (2000) A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim Cosmochim Acta 64:73–98. doi:10.1016/S0016-7037(99)00204-5Google Scholar
  166. Minor DR, Mukasa SB (1997) Zircon U-Pb and hornblende 40Ar –39Ar ages for the Dufek layered mafic intrusion, Antarctica: implications for the age of the Ferrar large igneous province. Geochim Cosmochim Acta 61:2497–2504. doi:10.1016/S0016-7037(97)00098-7Google Scholar
  167. Mitchell AA, Scoon RN (2007) The Merensky Reef at Winnaarshoek, Eastern Bushveld Complex: a primary magmatic hypothesis based on a wide reef facies. Econ Geol 102:971–1009. doi:10.2113/gsecongeo.102.5.971Google Scholar
  168. Mitchell AA, Scoon RN (2012) The PlatReef of the Bushveld Complex, South Africa: a new hypothesis of multiple, non-sequential magma replenishment based on observations at the Akanani Project, north-west of Mokopane. S Afr J Geol 115:535–550. doi:10.2113/gssajg.115.4.535Google Scholar
  169. Mondal SK, Ripley EM, Li C, Frei R (2006) The genesis of Archaean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum Craton, India. Precambrian Research 148:45–66. doi:10.1016/j.precamres.2006.04.001Google Scholar
  170. Morisset C-E, Scoates JS, Weis D, Friedman RM (2009) U-Pb and 40Ar/39Ar geochronology of the Saint-Urbain and Lac Allard (Havre-Saint-Pierre) anorthosites and their associated Fe–Ti oxide ores, Québec: Evidence for emplacement and slow cooling during the collisional Ottawan orogeny in the Grenville Province. Precambrian Res 174:95–116. doi:10.1016/j.precamres.2009.06.009Google Scholar
  171. Morrison DA, Davis DW, Wooden JL, Gogard DD, Maczuga DE, Phinney WC, Ashwal LD (1985) Age of the Mulcahy Lake intrusion, northwest Ontario, and implications for the evolution of greenstone-granite terrains. Earth Planet Sci Lett 73:306–316. doi:10.1016/0012-821X(85)90079-2Google Scholar
  172. Morse SA (1986) Convection in aid of adcumulus growth. J Petrol 27:1183–1214. doi:10.1093/petrology/27.5.1183Google Scholar
  173. Morse SA (2008) Toward a thermal model for the Skaergaard liquidus. Am Mineral 93:248–251. doi:10.2138/am.2008.2792Google Scholar
  174. Moser DE (1997) Dating the shock wave and thermal imprint of the giant Vredefort impact, South Africa. Geology 25:7–10. doi:10.1130/0091-7613(1997)0252.3.CO;2Google Scholar
  175. Naldrett AJ, Wilson A, Kinnaird J, Chunnett G (2009) PGE tenor and metal ratios within and below the Merensky Reef, Bushveld Complex: implications for its genesis. J Petrol 50:625–659. doi:10.1093/petrology/egp015Google Scholar
  176. Nardi LVS, Formoso MLL, Müller IF, Fontana E, Jarvis K, Lamarao C (2013) Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. Chem Geol 335:1–7. doi:10.1016/j.chemgeo.2012.10.043Google Scholar
  177. Nasdala L, Zhang M, Kempe U, Panczer G, Gaft M, Andrut M, Plötze M (2003) Spectroscopic methods applied to zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, Washington, DC vol. 53. pp 427–467. doi:10.2113/0530427 The Mineralogical Society of AmericaGoogle Scholar
  178. Nasdala L, Hanchar JM, Kronz A, Whitehouse MJ (2005) Long-term stability of alpha particle damage in natural zircon. Chem Geol 220:83–103. doi:10.1016/j.chemgeo.2005.03.012Google Scholar
  179. Nemchin AA, Horstwood MSA, Whitehouse MJ (2013) High-spatial-resolution geochronology. Elements 9:31–37. doi:10.2113/gselements.9.1.31Google Scholar
  180. Nilsen O, Corfu F, Roberts D (2007) Silurian gabbro-diorite-trondhjemite plutons in the Trondheim Nappe Complex, Caledonides, Norway: petrology and U-Pb geochronology. Nor J Geol 87:329–342Google Scholar
  181. Nomade S, Renne PR, Merkle RKW (2004) 40Ar/39Ar age constraints on ore deposition and cooling of the Bushveld Complex, South Africa. J Geol Soc Lond 161:411–420. doi:10.1144/0016764903-065Google Scholar
  182. Norman MD, Nemchin AA (2014) A 4.2 billion year old impact basin on the Moon: U–Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth Planet Sci Lett 388:387–398. doi:10.1016/j.epsl.2013.11.040Google Scholar
  183. Nunes PD (1981) The age of the Stillwater complex—a comparison of U-Pb zircon and Sm-Nd isochron systematics. Geochim Cosmochim Acta 45:1961–1963. doi:10.1016/0016-7037(81)90028-4Google Scholar
  184. Nunes PD, Tilton GR (1971) Uranium-lead ages of minerals from the Stillwater igneous complex and associated rocks, Montana. Geol Soc Am Bull 82:2231–2250Google Scholar
  185. Nutman AP, McGregor VR, Friend CRL, Bennett VC, Kinny PD (1996) The Itsaq gneiss complex of southern West Greenland; the world’s most extensive record of early crustal evolution (3900-3600 Ma). Precambrian Res 78:1–39Google Scholar
  186. Oberthür T, Davis DW, Blenkinsop TG, Höhndorf A (2002) Precise U-Pb mineral ages, Rb-Sr and Sm-Nd systematics for the Great Dyke, Zimbabwe—constraints on late Archean events in the Zimbabwe craton and Limpopo belt. Precambrian Res 113:293–305. doi:10.1016/S0301-9268(01)00215-7Google Scholar
  187. O’Neil J, Maurice C, Stevenson RK, Larocque J, Cloquet C, David J, Francis D (2007) The geology of the 3·8 Ga Nuvvuagittuk (Porpoise Cove) Greenstone Belt, northern Superior Province, Canada. In: Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Elsevier, Amsterdam, pp. 219–250Google Scholar
  188. O’Neil, J, Francis D, Carlson RW (2011) Implications of the Nuvvuagittuq greenstone belt for the formation of Earth’s early crust. J Petrol 52:985–1009. doi:10.1093/petrology/egr014Google Scholar
  189. O’Neil, J, Carlson RW, Paquette J-L, Francis D (2012) Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambrian Res 220-221:23–44. doi:10.1016/j.precamres.2012.07.009Google Scholar
  190. Olsson JR, Söderlund U, Klausen MB, Ernst RE (2010) U–Pb baddeleyite ages linking major Archean dyke swarms to volcanic-rift forming events in the Kaapvaal craton (South Africa), and a precise age for the Bushveld Complex. Precambrian Res 183:490–500. doi:10.1016/j.precamres.2010.07.009Google Scholar
  191. Paces JB, Miller JD Jr (1993) Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, Petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. J Geophys Res 98(B4):13,997–14,013Google Scholar
  192. Page RW, Hoatson DM (2000) Geochronology of the mafic-ultramafic intrusions. In: Hoatson DM, Blake DH (eds) Geology and economic potential of the Paleoproterozoic layered mafic-ultramafic intrusions in the East Kimberley, Western Australia. AGSO Bulletin 246:163–172Google Scholar
  193. Parrish RR (1987) An improved micro-capsule for zircon dissolution in U–Pb geochronology. Chem Geol Isot Geosci Sect 66:99–102. doi:10.1016/0168-9622(87)90032-7Google Scholar
  194. Parrish RR, Noble SR (2003) Zircon U-Th-Pb geochronology by isotope dilution—thermal ionization mass spectrometry (ID-TIMS). In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, Washington, DC vol. 53. pp 183–213. doi:10.2113/0530183 The Mineralogical Society of AmericaGoogle Scholar
  195. Parsons I (ed) (1987) Origins of igneous layering. NATO ASI series C 196. D. Reidel Publishing Company, Dordrecht, Holland p 666Google Scholar
  196. Pasteels P, Demaiffe D, Michot J (1979) U-Pb and Rb-Sr geochronology of the eastern part of the south Rogaland igneous complex, southern Norway. Lithos 12:199–208. doi:10.1016/0024-4937(79)90004-5Google Scholar
  197. Patchett PJ, Kouvo O, Hedge CE, Tatsumoto M (1981) Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib Mineral Petrol 78:279–297. doi:10.1007/BF00398923Google Scholar
  198. Pitra P, de Waal SA (2001) High-temperature, low-pressure metamorphism and development of prograde symplectites, Marble Hall Fragment, Bushveld Complex (South Africa). J Metamorph Petrol 19:311–325Google Scholar
  199. Polat A, Frei R, Scherstén A, Appel PWU (2010) New age (ca. 2790 Ma), mantle source composition and geodynamic constraints on the Archean Fiskenaesset anorthosite complex, SW Greenland. Chem Geol 277:1–20. doi:10.1016/j.chemgeo.2010.06.016Google Scholar
  200. Premo WR, Helz RT, Zientek ML, Langston RB (1990) U-Pb and Sm-Nd ages for the Stillwater Complex and its associated sills and dikes, Beartooth Mountains, Montana: Identification of a parent magma? Geology 18:1065–1068. doi:10.1130/0091-7613(1990)018 2.3.CO;2Google Scholar
  201. Prendergast MD (2008) Archean komatiitic sill-hosted chromite deposits in the Zimbabwe craton. Econ Geol 103:981–1004. doi:10.2113/gsecongeo.103.5.981Google Scholar
  202. Prevec SA, Ashwal LD, Mkaza MS (2005) Mineral disequilibrium in the Merensky Reef, western Bushveld Complex, South Africa: new Sm–Nd isotopic evidence. Contrib Mineral Petrol 149:306–315. doi:10.1007/s00410-005-0650-2Google Scholar
  203. Pupin JP (1980) Zircon and granite petrology. Contrib Mineral and Petrol 73:207–220. doi:10.1007/BF00381441Google Scholar
  204. Rajesh HM, Chisonga BC, Shindo K, Beukes NJ, Armstrong RA (2013) Petrographic, geochemical and SHRIMP U–Pb titanite age characterization of the Thabazimbi mafic sills: Extended time frame and a unifying petrogenetic model for the Bushveld Large Igneous Province. Precambrian Res 230:79–102. doi:10.1016/j.precamres.2013.02.002Google Scholar
  205. Rasmussen B, Fletcher IR (2004) Zirconolite: a new U-Pb chronometer for mafic igneous rocks. Geology 32:785–788. doi:10.1130/G20658.1Google Scholar
  206. Renne PR, Swisher CC, Deino AL, Karner DB, Owens T, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152. doi:10.1016/S0009-2541(97)00159-9Google Scholar
  207. Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367. doi: 10.1016/j.gca.2010.06.017.Google Scholar
  208. Renne PR, Balco G, Ludwig KR, Mundil R, Mon K (2011) Response to the comment by W.H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P.R. Renne et al. (2010). Geochim Cosmochim Acta 75:5097–5100. doi:10.1016/j.gca.2011.06.021Google Scholar
  209. Rioux M, Bowring S, Dudas F, Hanson R (2010) Characterizing the U–Pb systematics of baddeleyite through chemical abrasion: application of multi-step digestion methods to baddeleyite geochronology. Contrib Mineral Petrol 160:777–801. doi:10.1007/s00410-010-0507-1Google Scholar
  210. Rios S, Salje EKH, Zhang M, Ewing RC (2000) Amorphization in zircon: evidence for direct impact damage. J Phys Condens Matter 12:2401–2412. doi:10.1088/0953-8984/12/11/306Google Scholar
  211. Roddick JC (1987) Generalized numerical error analysis with application to geochronology and thermodynamics. Geochim Cosmochim Acta 51:2129–2135. doi:10.1016/0016-7037(87)90261-4Google Scholar
  212. Roelofse F, Ashwal LD (2012) The Lower Main Zone in the Northern Limb of the Bushveld Complex—a >1.3 km thick sequence of intruded and variably contaminated crystal mushes. J Petrol 53:1449–1476. doi:10.1093/petrology/egs022Google Scholar
  213. Rollinson H, Appel PWU, Frei R (2002) A metamorphosed, Early Archean chromitite from West Greenland: Implications for the genesis of Archean anorthositic chromitites. J Petrol 43:2143–2170. doi:10.1093/petrology/43.11.2143Google Scholar
  214. Saleeby JB (1992) Age and tectonic setting of the Duke Island ultramafic intrusion, southeast Alaska. Can J Earth Sci 29:506–522Google Scholar
  215. Scherer EE, Münker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687. doi:10.1126/science.1061372Google Scholar
  216. Scherer EE, Whitehouse MJ, Münker C (2007) Zircon as a monitor of crustal growth. Elements 3:19–24. doi:10.2113/gselements.3.1.19Google Scholar
  217. Schmitt AK, Chamberlain KR, Swapp SM, Harrison TM (2010) In situ U–Pb dating of micro-baddeleyite by secondary ion mass spectrometry. Chem Geol 269:386–395. doi:10.1016/j.chemgeo.2009.10.013Google Scholar
  218. Schmitt AK, Perfit MR, Rubin KH, Stockli DF, Smith MC, Cotsonika LA, Zellmer GF, Ridley WI, Lovera OM (2011) Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology. Earth Planet Sci Lett 302:349–358. doi:10.1016/j.epsl.2010.12.022Google Scholar
  219. Schmitz MD, Bowring SA (2003) Constraints on the thermal evolution of continental lithosphere from U-Pb accessory mineral thermochronometry of lower crustal xenoliths, southern Africa. Contrib Mineral Petrol 144:592–618. doi:10.1007/s00410-002-0419-9Google Scholar
  220. Schmitz MD, Kuiper KF (2013) High-precision geochronology. Elements 9:25–30. doi: 10.2113/gselements.9.1.25Google Scholar
  221. Schmitz MD, Schoene B (2007) Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometry data. Geochem Geophys Geosyst 8(Q0800):1–20 doi:10.1029/2006GC001492Google Scholar
  222. Schmitz MD, Bowring SA, Ireland TR (2003) Evaluation of Duluth Complex anorthositic series (AS3) zircon as a U-Pb geochronological standard: new high-precision isotope dilution thermal ionization mass spectrometry results. Geochim Cosmochim Acta 67:3665–3672. doi:10.1016/S0016-7037(03)00200-XGoogle Scholar
  223. Schoenberg R, Kruger FJ, Nägler TF, Meisel T, Kramers JD (1999) PGE enrichment in chromitite layers and the Merensky Reef of the western Bushveld Complex; a Re–Os and Rb–Sr isotope study. Earth Planet Sci Lett 172:49–64. doi:10.1016/S0012-821X(99)00198-3Google Scholar
  224. Schoene B (2014) U-Th-Pb geochronology. Treatise on geochemistry, 2nd edn. Amsterdam, The Netherlands pp 341–378. doi:10.1016/B978-0-08-095975-7.00310-7 Elsevier Ltd.Google Scholar
  225. Schoene B, Crowley JL, Condon DJ, Schmitz MD, Bowring SA (2006) Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochim Cosmochim Acta 70:426–445. doi:10.1016/j.gca.2005.09.007Google Scholar
  226. Schoene B, Latkoczy C, Schaltegger U, Günther D (2010) A new method integrating high-precision U–Pb geochronology with zircon trace element analysis (U–Pb TIMS-TEA). Geochim Cosmochim Acta 74:7144–7159. doi:10.1016/j.gca.2010.09.016Google Scholar
  227. Schwartz JJ, John BE, Cheadle MJ, Miranda EA, Grimes CB, Wooden JL, Dick HJB (2005) Dating the growth of oceanic crust at a slow-spreading ridge. Science 310:654–657. doi:10.1126/science.1116349Google Scholar
  228. Scoates RFJ (1990) The Fox River Sill, Northeastern Manitoba—a major stratiform intrusion. Manitoba Energy and Mines, Geological Report GR82-3, p 192Google Scholar
  229. Scoates JS, Chamberlain KA (1995) Baddeleyite (ZrO2) and zircon (ZrSiO4) from anorthositic rocks in the Laramie anorthosite complex, Wyoming: petrologic consequences and U-Pb ages. Am Mineral 80:1319–1329Google Scholar
  230. Scoates JS, Chamberlain KA (2003) Geochronologic, geochemical and isotopic constraints on the origin of monzonitic and related rocks in the Laramie anorthosite complex, Wyoming, USA. Precambrian Res 124:269–304. doi:10.1016/S0301-9268(03)00089-5Google Scholar
  231. Scoates JS, Friedman RM (2008) Precise age of the platiniferous Merensky Reef, Bushveld Complex, South Africa, by the U-Pb zircon chemical abrasion ID-TIMS technique. Econ Geol 103:465–471. doi:10.2113/gsecongeo.103.3.465Google Scholar
  232. Scoates JS, Scoates RFJ (2013) Age of the Bird River Sill, Southeastern Manitoba, Canada, with implications for the secular variation of layered intrusion-hosted stratiform chromite mineralization. Econ Geol 108:895–907. doi:10.2113/econgeo.108.4.895Google Scholar
  233. Scoates JS, Weis D, Williams GA, Henriques F, Tam L (2006) Initial lead isotopic compositions of plagioclase feldspar: leaching experiments, residue imaging, and applications. Geological Association of Canada-Mineralogical Association of Canada annual meeting, May 14-17, 2006, Montréal (abstract)Google Scholar
  234. Scoates JS, Weis D, Franssens M, Mattielli N, Annell H, Frey FA, Nicolaysen K, Giret A (2007) The Val gabbro plutonic suite: a sub-volcanic intrusion emplaced at the end of flood basalt volcanism on the Kerguelen Archipelago. J Petrol 49:79–105. doi:10.1093/petrology/egm071Google Scholar
  235. Scoates JS, Wall CJ, Friedman RM, Booth K, Scoates RFJ, Couëslan C, Macek J (2010) Recent progress in determining the precise age of ultramafic sills and mafic dikes associated with mineralization in the Thompson Nickel Belt, Manitoba, Canada. 11th international platinum symposium, Ontario Geological Survey, Miscellaneous Release Data 269:1–4Google Scholar
  236. Scoates JS, Wall CJ, Friedman RM, Chamberlain KR (2011) Revisiting the age of the Merensky Reef, Bushveld Complex. Goldschmidt conference abstracts (Prague), Mineralogical Magazine 75 (3), p. 1831 (abstract)Google Scholar
  237. Scoates JS, Wall CJ, Friedman RM, VanTongeren JA, Mathez EA (2012) Age of the Bushveld Complex. Goldschmidt conference abstracts (Montreal), Mineralogical Magazine 76, p. 2348 (abstract)Google Scholar
  238. Silver LT, Deutsch S (1963) Uranium-lead isotopic variations in zircons: a case study. J Geol 71:721–758Google Scholar
  239. Smith CH (1962) Notes on the Muskox intrusion, Coppermine River area, District of Mackenzie. Geol Surv of Can Pap 61–25, p 16Google Scholar
  240. Smith SS, Basson IJ (2006) Shape and distribution analysis of Merensky Reef potholing, Northam Platinum Mine, western Bushveld Complex: implications for pothole formation and growth. Miner Depos 41:281–295. doi:10.1007/s00126-006-0059-5Google Scholar
  241. Smith DS, Basson IJ, Reid DL (2003) Normal reef subfacies of the Merensky reef at Northam platinum mine, Zwartklip facies, Western Bushveld Complex, South Africa. Canadian Mineral 42:243–260. doi:10.2113/gscanmin.42.2.243Google Scholar
  242. Smith ME, Chamberlain KR, Singer BS, Carroll AR (2010) Eocene clocks agree: coeval 40Ar/39Ar, U-Pb, and astronomical ages from the Green River Formation. Geology 38:527–530. doi:10.1130/G30630.1Google Scholar
  243. Söderlund U, Hofmann A, Klausen MB, Olsson JR, Ernst RE, Persson PO (2010) Towards a complete magmatic barcode for the Zimbabwe craton: Baddeleyite U–Pb dating of regional dolerite dyke swarms and sill complexes. Precambrian Res 183:388–398.Google Scholar
  244. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by two-stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012-821X(75)90088-6Google Scholar
  245. Stewart BW, DePaolo DJ (1990) Isotopic studies of processes in mafic magma chambers: II. The Skaergaard Intrusion, East Greenland. Contrib Mineral Petrol 104:125–141Google Scholar
  246. Stewart BW, DePaolo DJ (1996) Isotopic studies of processes in mafic magma chambers: III. The Muskox intrusion, Northwest Territories, Canada. In: Basu A, Hart S (eds) Earth processes: reading the isotopic code, vol. 95. Geophysical Monograph, American Geophysical Union, Washington, DC pp 277–292Google Scholar
  247. Storey M, Duncan RA, Swisher CC III (2007) Paleocene-Eocene Thermal Maximum and the opening of the Northeast Atlantic. Science 316:587–589. doi:10.1126/science.1135274Google Scholar
  248. Tam LJ (2005) Pb and Sr isotopic compositions and trace element concentrations of plagioclase from the Merensky Reef in the Rustenburg sector of the Bushveld Complex, South Africa. Unpublished BSc thesis, University of British Columbia, p 86Google Scholar
  249. Tarkian M, Mutanen T (1987) Loveringite from the Koitelainen layered intrusion, Northern Finland. Mineral Petrol 37:37–50Google Scholar
  250. Tegner C, Duncan RA, Bernstein S, Brooks CK, Bird DK, Storey M (1998) 40Ar –39Ar geochronology of Tertiary mafic intrusions along the East Greenland rifted margin: relation to flood basalts and the Iceland hotspot track. Earth Planet Sci Lett 156:75–99. doi:10.1016/S0012-821X(97)00206-9Google Scholar
  251. Tera F, Wasserburg GJ (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 17:281–304. doi:10.1016/0012-821X(72)90128-8Google Scholar
  252. Tilton GR, Davis GL, Wetherill GW, Aldrich LT (1957) Isotopic ages of zircon from granites and pegmatites. Trans Am Geophys Union 38:360–371Google Scholar
  253. Turner S, Costa F (2007) Measuring timescales of magmatic evolution. Elements 3:267–272. doi:10.2113/gselements.3.4.267Google Scholar
  254. Turtle EP, Pierazzo E, O’Brien DP (2003) Numerical modeling of impact heating and cooling of the Vredefort impact structure. Meteorit Planet Sci 38:293–303. doi:10.1111/j.1945-5100.2003.tb00265.xGoogle Scholar
  255. Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, Washington, DC vol. 53, pp 343–385. doi:10.2113/0530343 The Mineralogical Society of AmericaGoogle Scholar
  256. Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580. doi:10.1007/s00410-005-0025-8Google Scholar
  257. Vavra G (1993) A guide to quantitative morphology of accessory zircon. Chem Geol 110:15–28. doi:10.1016/0009-2541(93)90245-EGoogle Scholar
  258. Vermaak CF (1976) The Merensky Reef—thoughts on its environment and genesis. Econ Geol 71:1270–1298. doi:10.2113/gsecongeo.71.7.1270Google Scholar
  259. Wagner PA (1929) The platinum deposits and mines of South Africa. Oliver and Boyd, Edinburgh, p 326Google Scholar
  260. Wager LR, Brown GM (1967) Layered igneous rocks. Oliver & Boyd, Edinburgh, Great Britain p 588Google Scholar
  261. Wager LR, Brown GM, Wadsworth WJ (1960) Types of igneous cumulates. J Petrol 1:73–85. doi:10.1093/petrology/1.1.73Google Scholar
  262. Wall CJ (2009) Uranium-lead geochronology of granophyres from the Archean Stillwater Complex, Montana (USA): characterization of uranium-bearing accessory minerals (zircon, titanite, rutile) and preliminary dating results. Unpublished B. Sc. Honours Thesis, University of British Columbia, 60 pagesGoogle Scholar
  263. Wall CJ, Scoates JS, Friedman RM, Meurer WP (2010) Refining the precise age and duration of magmatism related to the Stillwater Complex. 11th international platinum symposium, Ontario Geological Survey, Miscellaneous Release–Data 269:1–4Google Scholar
  264. Wall CJ, Scoates JS, Friedman RM, Meurer WP (2013) Identifying the timing of magma inputs and hiatuses during emplacement and crystallization of the Stillwater complex by high-precision U-Pb geochronology. William Smith Meeting of the Geological Society of London, London, UK, June 25–27, 2013 (abstract)Google Scholar
  265. Walraven F (1997) Geochronology of the Rooiberg Group, Transvaal Supergroup, South Africa. Economic Geology Research Unit Information Circular, University of Witwatersrand, 316, p 21Google Scholar
  266. Walraven F, Hattingh E (1993) Geochronology of the Nebo granite, Bushveld Complex. S Afr J Geol 96:31–41Google Scholar
  267. Walraven F, Armstrong RA, Kruger FJ (1990) A chronostratigraphic framework for the north-central Kaapvaal craton, the Bushveld Complex and the Vredefort structure. Tectonophysics 171:23-48Google Scholar
  268. Watson EB, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am Mineral 80:1179-1187Google Scholar
  269. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151: 413–433. doi:10.1007/s00410-006-0068-5Google Scholar
  270. Webb SJ, Cawthorn RG, Nguuri T, James D (2004) Gravity modeling of Bushveld Complex connectivity supported by Southern African seismic experiment results. S Afr J Geology 107:207–218. doi:10.2113/107.1-2.207Google Scholar
  271. Wendt I, Carl C (1991) The statistical distribution of the mean squared weighted deviation. Chem Geol 86:275–285. doi:10.1016/0168-9622(91)90010-TGoogle Scholar
  272. Wetherill GW (1956) Discordant uranium–lead ages. Trans Am Geophys Union 37:320–326Google Scholar
  273. White WM (2013) Geochemistry. Wiley-Blackwell, West Sussex, UK p 668.Google Scholar
  274. Williams IS, Compston W, Collerson KD, Arriens PA, Lovering JF (1983) A reassessment of the age of the Windmill metamorphics, Casey area. In: Oliver RL, James PR, Jago JB (eds) Antarctic earth science. Australian Academy of Science, Canberra, pp 73–76Google Scholar
  275. Wotzlaw J-F, Bindeman IN, Schaltegger U, Brooks CK, Naslund HR (2012) High resolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex. Earth Planet Sci Lett 355-356:199–212. doi:10.1016/j.epsl.2012.08.042Google Scholar
  276. Yudovskaya M, Kinnaird J, Naldrett AJ, Rodionov N, Antonov A, Simakin S, Kuzmin D (2013) Trace-element study and age dating of zircon from chromitites of the Bushveld Complex (South Africa). Mineral Petrol 107:915–942. doi:10.1007/s00710-013-0269-3Google Scholar
  277. Zaccarini F, Stumpfl EF, Garuti G (2004) Zirconolite and Zr-Th-U minerals in chromitites of the Finero Complex, Western Alps, Italy: evidence for carbonatite-type metasomatism in a subcontinental mantle plume. Can Mineral 42:1825–1845. doi:10.2113/gscanmin.42.6.1825Google Scholar
  278. Zientek ML, Corson SR, West RD (2005) Geochemical surveys of soil and talus fines and the discovery of the J-M Reef, Stillwater Complex, Montana (Chapter 18). In: Mungall JE (ed) Exploration for platinum-group element deposits, vol. 5. Mineralogical Association of Canada, Short Course Series, pp 391–407Google Scholar
  279. Zirakparvar NA, Mathez EA, Scoates JS, Wall CJ 2014 Zircon Hf isotope evidence for an enriched mantle source for the Bushveld Igneous Complex. Contrib Mineral Petrol 168:1050. doi:10.1007/s00410-014-1050-2Google Scholar
  280. Zhong H, Zhu W-G (2006) Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province, SW China. Miner Depos 41:599–606. doi:10.1007/s00126-006-0081-7Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Earth, Ocean & Atmospheric SciencesPacific Centre for Isotopic and Geochemical Research, University of British ColumbiaVancouverCanada

Personalised recommendations