Skip to main content

In Situ and Remote Sensing Measurements of Aerosols

  • Chapter
  • First Online:
Atmospheric Aerosols
  • 2651 Accesses

Abstract

This chapter builds on the radiative transfer chapter to explain the foundations for aerosol remote sensing in the atmosphere. It categorizes the various passive remote sensing techniques according to the process involved (scattering, extinction or emission), the viewing geometry and the wavelength considered. The principles for aerosol remote sensing from the ground using sunphotometry and from space are then introduced with a highlight on the importance of characterizing the surface for spaceborne retrieval. This is complemented by a discussion of active remote sensing using the lidar and Raman lidar techniques. A range of instruments for in situ measurements are then presented such as the cascade impactor, particle counters, differential mobility analyzers or the single particle soot photometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Remote sensing can also use other types of waves, such as acoustic waves or gravity waves. However for the purpose of observing aerosols, only electromagnetic waves are used, hence the somewhat restrictive definition provided here.

  2. 2.

    Acronym for LIght Detection And Ranging.

  3. 3.

    Acronym for RAdiowave Detection And Ranging. Aerosols being transparent to radiowaves, radar is not a suitable technique to measure them, which is why this technique is not discussed further.

  4. 4.

    http\(:\)//aeronet.gsfc.nasa.gov.

  5. 5.

    http\(:\)//loaphotons.univ-lille1.fr.

  6. 6.

    http\(:\)//www.gaw-wdca.org.

References

  • Ackerman SA (1997) Remote sensing aerosols using satellite infrared observations. J Geophys Res 102:17069–17079. doi:10.1029/96JD03066

    Article  Google Scholar 

  • Althausen D, Müller D, Ansmann A, Wandinger U, Hube H, Clauder E, Zörner S (2000) Scanning 6-wavelength 11-channel aerosol lidar. J Atmos Ocean Technol 17:1469–1482

    Article  Google Scholar 

  • Ansmann A, Riebesell M, Weitkamp C (1990) Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt Lett 15:746–748

    Article  Google Scholar 

  • Benedetti A, Morcrette J-J, Boucher O, Dethof A, Engelen RJ, Fischer M, Flentjes H, Huneeus N, Jones L, Kaiser JW, Kinne S, Mangold A, Razinger M, Simmons AJ, Suttie M, The GEMS-AER Team (2009) Aerosol analysis and forecast in the ECMWF Integrated Forecast System. Part II\(:\) data assimilation. J Geophys Res 114:D13205. doi:10.1029/2008JD011115

    Google Scholar 

  • Deuzé J-L, Goloub P, Herman M, Marchand A, Perry G, Susana S, Tanré D (2000) Estimate of the aerosol properties over the ocean with POLDER. J Geophys Res 105:15329–15346

    Article  Google Scholar 

  • Deuzé J-L, Bréon F-M, Devaux C, Goloub P, Herman M, Lafrance B, Maignan F, Marchand A, Nadal F, Perry G, Tanré D (2001) Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J Geophys Res 106(D5):4913–4926

    Article  Google Scholar 

  • Diner DJ, Martonchik JV, Kahn RA, Pinty B, Gobron N, Nelson DL, Holben BN (2005) Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sens Environ 94:155–171

    Article  Google Scholar 

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res 105:20673–20696

    Article  Google Scholar 

  • Dubovik O, Smirnov A, Holben BN, King MD, Kaufman YJ, Eck TF, Slutsker I (2000) Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J Geophys Res 105:9791–9806. doi:10.1029/2000JD900040

    Article  Google Scholar 

  • Dubovik O, Holben B, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanré D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608

    Article  Google Scholar 

  • Fernald FG, Herman BM, Reagan JA (1972) Determination of aerosol height distribution by lidar. J Appl Meteorol 11:482–489

    Article  Google Scholar 

  • Ferrare RA, Melfi SH, Whiteman DN, Evans KD, Leifer R (1998) Raman lidar measurements of aerosol extinction and backscattering 1. Methods and comparisons. J Geophys Res 103:19663–19672

    Article  Google Scholar 

  • Gordon HR, Brown OB, Evans RH, Brown JW, Smith RC, Baker KS, Clark DK (1988) A semianalytic radiance model of ocean color. J Geophys Res 93:10909–10924. doi:10.1029/JD093iD09p10909

    Article  Google Scholar 

  • Govaerts YM, Wagner S, Lattanzio A, Watts P (2010) Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory. J Geophys Res 115:D0220–3. doi:10.1029/2009JD011779

    Google Scholar 

  • Herman M, Deuzé JL, Devaux C, Goloub P, Bréon FM, Tanré D (1997) Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements. J Geophys Res 102:17039–17049

    Article  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan J, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET—a federated instrument network and data archive for aerosol characterisation. Remote Sens Environ 66:1–16

    Article  Google Scholar 

  • Kaufman YJ, Tanré D (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans Geosci Remote Sens 30:261–270

    Article  Google Scholar 

  • Kaufman YJ,  Tanré D (1996) Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: from AVHRR to EOS-MODIS. Remote Sens Environ 55:65–79

    Article  Google Scholar 

  • Kent GS, McCormick MP, Schaffner SK (1991) Global optical climatology of the free tropospheric aerosol from 1.0-μm satellite occultation measurements. J Geophys Res 96:5249–5267

    Article  Google Scholar 

  • King MD, Byrne DM, Herman BM, Reagan JA (1978) Aerosol size distributions obtained by inversions of spectral optical depth measurements. J Atmos Sci 35:2153–2167

    Article  Google Scholar 

  • Legrand M, Bertrand JJ, Desbois M, Menenger L, Fouquart Y (1989) The potential of infrared satellite data for the retrieval of Saharan dust optical depth over Africa. J Appl Meteorol 28:309–321

    Article  Google Scholar 

  • Mishchenko MI, Travis LD (1997) Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight. J Geophys Res 102:16989–17013

    Article  Google Scholar 

  • Morcrette J-J, Boucher O, Jones L, Salmond D, Bechtold P, Beljaars A, Benedetti A, Bonet A, Kaiser JW, Razinger M, Schulz M, Serrar S, Simmons AJ, Sofiev M, Suttie M, Tompkins AM, Untch A (2009) Aerosol analysis and forecast in the ECMWF Integrated Forecast System. Forward modelling. J Geophys Res 114:D06206. doi:10.1029/2008JD011235

    Google Scholar 

  • Moteki N, Kondo Y (2007) Effects of mixing state on black carbon measurements by laser-induced incandescence. Aerosol Sci Technol 41:398–417

    Article  Google Scholar 

  • Moteki N, Kondo Y (2008) Method to measure time-dependent scattering cross sections of particles evaporating in a laser beam. J Aerosol Sci 39:348–364

    Article  Google Scholar 

  • Nakajima T, Tanaka M, Yamauchi T (1983) Retrieval of the optical properties of aerosols from aureole and extinction data. Appl Opt 22:2951–2959

    Article  Google Scholar 

  • North PRJ, Briggs SA, Plummer SE, Settle JJ (1999) Retrieval of land surface bidirectional reflectance and aerosol opacity from ATSR-2 multiangle imagery. IEEE Trans Geosci Remote Sens 37:526–537

    Article  Google Scholar 

  • Peyridieu S, Chédin A, Capelle V, Tsamalis C, Pierangelo C, Armante R, Crevoisier C, Crépeau L, Siméon M, Ducos F, Scott NA (2013) Characterisation of dust aerosols in the infrared from IASI and comparison with PARASOL, MODIS, MISR, CALIOP, and AERONET observations. Atmos Chem Phys 13:6065–6082

    Article  Google Scholar 

  • Pierangelo C, Chédin A, Heilliette S, Jacquinet-Husson N, Armante R (2004) Dust altitude and infrared optical depth from AIRS. Atmos Chem Phys 4:1813–1822

    Article  Google Scholar 

  • Rao CRN, Stowe LL, McLain EP (1989) Remote sensing of aerosols over the oceans using AVHRR data: theory, practice and applications. Int J Remote Sens 10:743–749

    Article  Google Scholar 

  • Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li R-R, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973

    Article  Google Scholar 

  • Shaw GE (1983) Sun photometry. Bull Am Meteorol Soc 64:4–10

    Article  Google Scholar 

  • Soufflet V, Tanré D, Royer A, O’Neill NT (1997) Remote sensing of aerosols over boreal forest and lake water from AVHRR data. Remote Sens Environ 60:22–34

    Article  Google Scholar 

  • Tanré D, Herman M, Deschamps P-Y, De Leffe A (1979) Atmospheric modeling for space measurements of ground reflectances including bidirectional properties. Appl Opt 18:3587–3594

    Article  Google Scholar 

  • Tanré D, Bréon F-M, Deuzé J-L, Dubovik O, Ducos F, François P, Goloub P, Herman M, Lifermann A, Waquet F (2011) Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmos Meas Tech 4:1383–1395

    Article  Google Scholar 

  • Thomas GE, Jakosky BM, West RA, Sanders RW (1983) Satellite limb-scanning thermal infrared observations of the El Chichón stratospheric aerosol\(:\) First results. Geophys Res Lett 10:997–1000

    Article  Google Scholar 

  • Twitty JT (1975) The inversion of aureole measurements to derive aerosol size distributions. J Atmos Sci 32:584–591

    Article  Google Scholar 

  • Vermote EF, Tanré D, Deuzé J-L, Herman M, Morcrette J-J (1997) Second simulation of the satellite signal in the solar spectrum: an overview. IEEE Trans Geosci Remote Sens 35:675–686

    Article  Google Scholar 

  • Wagner SC, Govaerts YM, Lattanzio A (2010) Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 2. Implementation and evaluation. J Geophys Res 115:D02204. doi:10.1029/2009JD011780

    Google Scholar 

Further Reading (Textbooks and Articles)

  • Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd edn. Wiley,New York, 504 p

    Google Scholar 

  • Kaufman YJ, Tanré D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419:215–223

    Article  Google Scholar 

  • Kokhanovsky A, de Leeuw G (eds) (2008) Satellite aerosol remote sensing over land. Springer-Verlag,Berlin and Heidelberg, 405 p

    Google Scholar 

  • Lenoble J, Remer L, Tanré D (eds) (2012) Aerosol remote sensing. Springer-Verlag, Berlin, 428 pp

    Google Scholar 

  • Stephens GL (1994) Remote sensing of the lower atmosphere, an introduction. Oxford University Press, Oxford, 523 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Boucher .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Netherlands

About this chapter

Cite this chapter

Boucher, O. (2015). In Situ and Remote Sensing Measurements of Aerosols. In: Atmospheric Aerosols. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9649-1_6

Download citation

Publish with us

Policies and ethics