Skip to main content

The Historical Development of X-ray Absorption Fine Spectroscopy and of Its Applications to Materials Science

  • Chapter
  • First Online:
A Bridge between Conceptual Frameworks

Part of the book series: History of Mechanism and Machine Science ((HMMS,volume 27))

Abstract

This essay sketches the development of X-ray Absorption Fine Spectroscopy (XAFS) ever since the second half of the twentieth century. At that time, synchrotrons started competing with X-ray discharge tubes as the sources of the excitation able to show the pre- and near-edge structures (XANES) and extended oscillations (EXAFS) that characterize the X-ray absorption edge of solid matter. Actually, modern XAFS began to be used after 1975, when the hard-X-ray synchrotron radiation derived from storage rings took over. Ever since, XAFS have greatly contributed to both technical refinement and to theoretical development of Materials Science. Although a unified theory of X-ray fine absorption has not been reached yet, many XAFS advancements benefited from theoretical models and complex calculations made possible by continuous growth of computing power, while contributing to developing new or previously never used materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This sentence is in the autobiography Röntgen wrote at the time of the Nobel award, later translated into English and published in the Nobel Lectures (1967).

  2. 2.

    As early as on February 3, 1896, at Dartmouth Medical School and Hospital, Hanover, NH, USA, the first photographic image of the fractured wrist of a boy was taken (Spiegel 1995, p. 242) and the injured bone could be appropriately compounded: first clinical application of X-rays in the whole world.

  3. 3.

    Eine Aneinanderreihung von Flecken, die verschiedenen Wellenlängen entsprechen (Herweg 1913, p 556); un véritable spectre de raies, ayant tout à fait l’aspect des photographies de spectre lumineux, avec des raies fines or diffuses, des bandes, etc. (de Broglie 1913, p 925).

  4. 4.

    For the study of the chemistry of catalysts and other non-crystalline systems this technique may have a role comparable to that of X-ray and electron diffraction in crystalline systems (Van Nostrand 1960, p. 184). Indeed, he was wrong only in that he did not foresee that the technique could be applied just as successfully to natural samples that are significant for the oil and mining industries, and more recently to such environmental problems such as pollution by dust and aerosols.

  5. 5.

    The same paper (Eisenberger et al. 1974) shows in addition the Cu XANES spectrum recorded on a Cu-porphyrin: this is the first spectrum of an organic molecule ever recorded.

  6. 6.

    To date, there are 67 synchrotron radiation facilities (www.lightsources.org/) in operation across the world, with around 152 beam lines optimized for XAFS measurements: 61 in the Americas, 54 in Europe and 37 in Asia (H. Oyanagi, personal communication).

  7. 7.

    This acronym is credited explicitly by him to J.A. Prins (Lytle 1999, p. 130).

  8. 8.

    Synchrotron radiation revolutioned the experimental side of EXAFS, making it accessible to non-experts and attracting the largest number of users at synchrotron sources (Stern 2001, p. 51). Unfortunately, over-interpretation, in particular over-estimation of the spatial resolution, is the negative outcome of EXAFS enormous growth among such inexperienced people (ivi).

  9. 9.

    This acronym was used first by Antonio Bianconi (April 1, 1944) in 1980 while working at SSRL, Menlo Park, USA. It was published by him two years later (Bianconi et al. 1982).

References

  • Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real space multiple scattering calculation of XANES. Physical Review B 58:7565–7576

    Google Scholar 

  • Asakura K, Ijima K (2001) Polarization-dependent EXAFS studies on the structure of Mo oxides dispersed on single crystals. Journal of Electronic Spectroscopy and Related Phenomena 119:185–192

    Google Scholar 

  • Bajt S, Sutton SR, Delaney JS (1994) Microanalysis of iron oxidation states in silicates and oxides using X-ray absorption near edge structure (XANES). Geochim Cosmochochim Acta 58:5209–5214

    Google Scholar 

  • Balzarotti A, Piacentini M, Grandolfo M (1970) Measurement of the spectral distribution of the Frascati electron synchrotron radiation in the (80 ÷ 1200) Ã… region. Lettere al Nuovo Cimento s. I 3:15–18

    Google Scholar 

  • Bassett WA, Anderson AJ, Mayanovic RA, Chou I-M (2000) Hydrothermal diamond anvil cell XAFS study of first-row transition elements in aqueous solutions up to supercritical conditions. Chemical Geology 167:3–10

    Google Scholar 

  • Belli M, Scafati A, Bianconi A, Mobilio S, Palladino L, Reale A, Burattini E (1980) X-ray absorption near edge structures (XANES) in simple and complex Mn compounds. Solid State Communications 35:355–361

    Google Scholar 

  • Benfatto M, Della Longa S (2001) Geometrical fitting of experimental XANES spectra by a full multiple-scattering procedure. Journal of Synchrotron Radiation 8:1087–1094

    Google Scholar 

  • Benfatto M, Natoli CR, Bianconi A, Garcia J, Marcelli A, Fanfoni M, Davoli I (1986) Multiple scattering regime and higher order correlations in x-ray absorption spectra of liquid solutions. Physical Review B 34:5774–5781

    Google Scholar 

  • Benfatto M, Natoli CR, Brouder C, Pettifer RF, Ruiz Lopez MF (1989) Polarized curved wave EXAFS: theory and application. Physical Review B 39:1936–1939

    Google Scholar 

  • Benfatto M, Congiu Castellano A, Daniele A, Della Longa S (2001) MXAN: a new software procedure to perform fitting of experimental XANES spectra. Journal of Synchrotron Radiation 8:267–269

    Google Scholar 

  • Benfatto M, Della Longa S, Natoli CR (2003) The MXAN procedure: a new method for analysing the XANES spectra of metallo-proteins to obtain structural quantitative information. Journal of Synchrotron Radiation 10:51–57

    Google Scholar 

  • Bernieri E, Burattini E (1987) Multielectron transitions above the krypton K edge. Physical Review A 35:3322–3326

    Google Scholar 

  • Bernstein DP, Acremann Y, Scherz A, Burkhardt M, Stöhr J, Beye M, Schlotter WF, Beeck T, Sorgenfrei T, Pietzsch A, Wurth W, Föhlisch A (2009) Near edge x-ray absorption fine structure spectroscopy with x-ray free-electron lasers. Applied Physics Letters 95:134102:1–3

    Google Scholar 

  • Berry AJ, Danyushevsky LV, O’Neill HStC, Newville M, Sutton SR (2008) Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455(07377):960–964

    Google Scholar 

  • Bianconi A (1983) XANES Spectroscopy of local structures in complex systems. In: Bianconi A, Incoccia L, Stipcich S (eds) EXAFS and near-edge structure. Proceedings of the international conference, Frascati, Italy, September 13–17, 1982. Springer, Berlin, pp 118–129

    Google Scholar 

  • Bianconi A (1988) XANES spectroscopy. In: Koningsberger DC, Prins R (eds) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. (Chemical analysis 92). Wiley, New York, pp 573–662

    Google Scholar 

  • Bianconi A, Bachrach RZ (1979) Al surface relaxation using surface extended X-ray absorption fine structure. Applied Physics Letters 42:104–108

    Google Scholar 

  • Bianconi A, Marcelli A (1992) Surface X-ray absorption near-edge structure: XANES. In: Bachrach RZ (ed) Synchrotron radiation research. Advances in surface and interface science. Techniques, vol 1. Plenum, New York, pp 63–115

    Google Scholar 

  • Bianconi A, Bachrach RZ, Flodström SA (1977) Study of the initial oxidation of single crystal aluminum by inter-atomic Auger yield spectroscopy, Solid State Communications 24:539–542

    Google Scholar 

  • Bianconi A, Bachrach RZ, Flodström SA (1979) Oxygen chemisorption on Al: unoccupied extrinsic surface resonances and site-structure determination by surface soft X-ray absorption. Physical Review B 19:3879–3888

    Google Scholar 

  • Bianconi A, Dell’Ariccia M, Durham PJ, Pendry JB (1982) Multiple-scattering resonances and structural effects in the x-ray-absorption near-edge spectra of FeII and FeIII hexacyanide complexes. Physical Review B 26:6502–6508

    Google Scholar 

  • Binsted N, Campbell JW, Gurman SJ, Stephenson PC (1991) EXCURVE. SERC Daresbury Lab, Warrington

    Google Scholar 

  • Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. Schwarz, Wien

    Google Scholar 

  • Brigatti MF, Lugli C, Cibin G, Marcelli A, Giuli G, Paris E, Mottana A, Wu Z (2000) Reduction and sorption of chromium by Fe(II)-bearing phyllosilicates: chemical treatments and X-Ray absorption spectroscopy (XAS) studies. Clays and Clay Minerals 48:272–282

    Google Scholar 

  • Brigatti MF, Malferrari D, Poppi M, Mottana A, Cibin G, Marcelli A, Cinque G (2008) Interlayer potassium and its surrounding in micas: crystal chemical modeling and XANES spectroscopy. American Mineralogist 93:821–835

    Google Scholar 

  • Broglie M de (1913) Sur un nouveau procédé permettant d’obtenir la photographie des spectres des rayons Röntgen. Comptes Rendus de l’Académie des Sciences 157:924–926

    Google Scholar 

  • Brouder C (1990) Angular dependence of x-ray absorption spectra. Journal de Physique: Condensed Matter 2:701–738

    Google Scholar 

  • Brown GE Jr, Henrich V, Casey W, Clark D, Eggleston C, Felmy A, Goodman DW, Gratzel M, Maciel G, McCarthy MI, Nealson KH, Sverjensky D, Toney M, Zachara JM (1999) Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chemical Review 99:77–174

    Google Scholar 

  • Bugaev LA, Sokolenko AP, Dmitrienko HV, Flank A-M (2001) Fourier filtration of XANES as a source of quantitative information of interatomic distances and coordination numbers in crystalline minerals and amorphous compounds. Physical Review B 65:024105-1–024105-8

    Google Scholar 

  • Bunker G, Stern EA (1984) Experimental study of multiple scattering in X-ray-absorption near-edge structure. Physical Review Lettersers 52:1990–1993

    Google Scholar 

  • Cauchois Y, Bonnelle C, Missoni G (1963) Premiers spectres X du rayonnement d’orbite du synchrotron de Frascati. Comptes Rendus de l’Académie des Sciences de Paris 257:409–412

    Google Scholar 

  • Chaboy J, Marcelli A, Tyson TA (1994) Influence of double-electron transitions on the EXAFS L edges of rare-earth systems. Physical Review B 49:11652–11661

    Google Scholar 

  • Chaboy J, Tyson TA, Marcelli A (1995) Relative cross sections for bound-state double-electron LN 4,5 -edge transitions of rare earths and nonradioactive elements of the sixth row. Prensas Universitarias, Zaragoza

    Google Scholar 

  • Cibin G, Mottana A, Marcelli A, Cinque G, Xu W, Wu Z, Brigatti MF (2010) The interlayer structure of trioctahedral lithian micas: an AXANES spectroscopy study at the potassium K-edge. Am Mineral 95:1084–1094

    Google Scholar 

  • Citrin PH (1986) An overview of SEXAFS during the past decade. In: Lagarde P, Raoux D, Petiau J (eds) EXAFS and near edge structure IV, Abbaye Royale de Fontevraud, France, July 7–11, 1986. J Phys 47(12):C8, supplement, pp C8-437–472

    Google Scholar 

  • Citrin PH, Eisenberger P, Hewitt RC (1978) Extended x-ray absorption fine structure of surface atoms on single-crystal fine structure of surface atoms substrates: Iodine adsorbed on Ag(111). Physical Review Letters 41:309–312

    Google Scholar 

  • Clausena BS, Topsøe H, Hansen LB, Stoltze P, Nørskov JK (1994) Determination of metal particle size from EXAFS. Catalysis Today 24:49–55

    Google Scholar 

  • Comez L, Di Cicco A, Itié JP, Polian A (2002) High-pressure and high-temperature X-ray absorption study of liquid and solid gallium. Physical Review B65:014114-1–014114-10

    Google Scholar 

  • D’Angelo P, Petit P-E, Pavel NV (2004) Double-electron excitation channels at the Ca2 + K-edge of hydrated calcium ion. Journal of Physical Chemistry B108:11857–11865

    Google Scholar 

  • Dartyge E, Fontaine A, Tourillon G, Cortes R, Jucha A (1986) X-ray absorption spectroscopy in dispersive mode and by total reflection. Physics Letters 113A:384–388

    Google Scholar 

  • Davoli I, Thanh HN, d’Acapito F (2003) ReflEXAFS technique: a powerful tool for structural study in new materials. In: Bianconi A, Marcelli A, Saini NL (eds) CP652, X-ray and inner-shell processes. 19th international conference on X-ray and inner-shell processes, American Institute of Physics, Melville, NY, pp 388–394

    Google Scholar 

  • Dehmer JL, Dill D (1975) Shape resonances in K-shell photoionization of diatomic molecules. Physical Review Letters 35:213–215

    Google Scholar 

  • Di Cicco A (1995) EXAFS multiple-scattering data analysis: GNXAS methodology and applications. Physica B 208–209:125–128

    Google Scholar 

  • Dill D, Dehmer JL (1974) Electron-molecule scattering and molecular photo-ionization using multiple scattering method. Journal of Chemical Physics 61:694–699

    Google Scholar 

  • Doniach S, Hodgson K, Lindau I, Pianetta P, Winick H (1997) Early work with synchrotron radiation at Stanford. Journal of Synchrotron Radiation 4:380–395

    Google Scholar 

  • Durham PJ, Pendry JB, Hodge VH (1982) Calculation of X-ray absorption spectra based on the multiple scattering theory. Computer Physics Communications 25:193–205

    Google Scholar 

  • Dyar MD, Lowe EW, Guidotti CV, Delaney JS (2002) Fe3 + and Fe2 + partitioning among silicates in metapelites: a synchrotron micro-XANES study. American Mineralogist 87:514–522

    Google Scholar 

  • Ebert H (2000) Electronic structure and physical properties of solids. In: Dreysse H (ed) Lecture notes in physics 535. Springer, Berlin, pp 191–246

    Google Scholar 

  • Eisenberger P, Kincaid B, Hunter S, Sayers DE, Stern EA, Lytle F (1974) EXAFS measurements at SPEAR. In: Koch EE, Haensel R, Kunz C (eds) Vacuum ultraviolet radiation physics. Proceedings of the 4th international conference on vacuum ultraviolet radiation physics, Hamburg, July 22–26, 1974. Vierweg, Braunschweig, Pergamon, pp 806–807

    Google Scholar 

  • Fano U (1935) Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco. Nuovo Cimento 12:154–161

    MATH  Google Scholar 

  • Farges F, Brown GE Jr, Reher JJ (1996) Coordination chemistry of Ti(IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds. Geochimica et Cosmochimica Acta 60:3023–3038

    Google Scholar 

  • Fenter PA, Rivers ML, Sturchio NC, Sutton SR (2002) (eds) Applications of synchrotron radiation in low-temperature geochemistry and environmental science. Reviews of Mineralogy and Geochemistry 49. The Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  • Filipponi A, Di Cicco A (2000) GNXAS: a software package for advanced EXAFS multiple-scattering calculations and data-analysis. Task Quarterly 4:575–669

    Google Scholar 

  • Fukui K, Ogasawara H, Kotani A, Harada I, Maruyama H, Kawamura N, Kobayashi K, Chaboy J, Marcelli A (2001) X-ray magnetic circular dichroism at rare-Earth L2,3 edges in RE2Fe14B compounds (RE = a, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu). Physical Review B64:10440

    Google Scholar 

  • Greaves GN (1985) EXAFS and the structure of glass. Journal of Non-Crystalline Solids 71:203–217

    Google Scholar 

  • Greaves GN, Binstead N, Henderson CMB (1984) The environments of modifiers in oxide glasses. In: Hodgson KO, Hedman B, Penner-Hahn JE (eds) Near edge structure III. Proceeding of an international conference, Stanford, CA, July 16–20, 1984. Springer, Berlin, pp 297–301

    Google Scholar 

  • Greegor RB, Lytle FW, Ewing RC, Hasker RF (1984) EXAFS/XANES studies of metamict materials. In: Hodgson KO, Hedman B, Penner-Hahn JE (eds) Near edge structure III. Proceeding of an international conference, Stanford, CA, July 16–20, 1984. Springer, Berlin, pp 343–348

    Google Scholar 

  • Gudat W, Kunz C (1972) Close similarity between photoelectric yield and photoabsorption spectra in the soft-x-ray range. Physical Review Letters 29:169–172

    Google Scholar 

  • Gunnella R, Benfatto M, Marcelli A, Natoli CR (1990) Application of complex potential to the interpretation of XANES spectra. The case of Na K-edge in NaCl. Solid State Communications 76:109–111

    Google Scholar 

  • Hatada K, Hayakawa K, Benfatto M, Natoli CR (2010) Full-potential multiple scattering theory with space-filling cells for bound and continuum states. Journal of Physics: Condensed Matter 22(18):185501

    Google Scholar 

  • Herweg J (1913) Ãœber das Spektrum der Röntgenstrahlen. Verhandlungen der Deutschen Physikalischen Gesellschaft 15:555–556

    Google Scholar 

  • Itié JP (1992) X-ray absorption spectroscopy under high pressure. Phase Transition 39:81–98

    Google Scholar 

  • Itié JP, Polian A, Martinez-Garcia D., Briois V, Di Cicco A, Filipponi P, San Miguel A (1997) X-ray absorption spectroscopy under extreme conditions. Journal de Physique IV 7:C2–31

    Google Scholar 

  • Jaeglé P, Missoni G (1966) Coefficient d’absorption massique de l’or dans la région de longueur d’onde de 26 à 120 Å. Comptes Rendus de l’Académie des Sciences de Paris 262:71–74

    Google Scholar 

  • Jaklevic J, Kirby TA, Klein MP, Robertson AS, Brown GS, Eisenberger P (1977) Fluorescence detection of exafs: sensitivity enhancement for dilute species and thin films. Solid State Communications 23:679–682

    Google Scholar 

  • Johnston RW, Tomboulian DH (1954) Absorption spectrum of beryllium in the neighborhood of the K edge. Physical Review 94:1585–1589

    Google Scholar 

  • Joly Y (2001) X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Physical Review Letters B63:125120-1–125120-10

    Google Scholar 

  • Joly Y, Cabaret D, Renevier H, Natoli CR (1999) Electron population analysis by full-potential X-ray absorption simulations. Physical Review Letters 82:2398–2401

    Google Scholar 

  • Kincaid BM, Eisenberger P (1975) Synchrotron radiation studies of the K-edge photoabsorption spectra of Kr, Br2, and GeCl4: A comparison of theory and experiment. Physical Review Letters 34:1361–1364

    Google Scholar 

  • Kossel W (1920) Zum Bau der Röntgenspektren. Zeitschrift für Physik 1:119–134

    Google Scholar 

  • Kronig RL (1931) Zur Theorie der Feinstruktur in den Röntgenabsorptionsspektren. Zeitschrift für Physik 70:317–323

    MATH  Google Scholar 

  • Kronig RL (1932a) Zur Theorie der Feinstruktur in den Röntgenabsorptionsspektren. II. Zeitschrift für Physik 75:191–210

    MATH  Google Scholar 

  • Kronig RL (1932b) Zur Theorie der Feinstruktur in den Röntgenabsorptionsspektren. III. Zeitschrift für Physik 75:468–475

    MATH  Google Scholar 

  • Kutzler FW, Natoli CR, Misemer DK, Doniach S, Hodgson KO (1980) Use of one electron theory for the interpretation of near edge structure in K-shell X-ray absorption spectra of transition metal complexes. Journal of Chemical Physics 73:3274–3288

    Google Scholar 

  • Lama PJ, Ohnemus DC, Marcus MA (2012) The speciation of marine particulate iron adjacent to active and passive continental margins. Geochimica et Cosmochimica Acta 80:108–124

    Google Scholar 

  • Lee PA, Beni G (1977) New method for the calculation of atomic phase shifts: application to extended x-ray absorption fine structure (EXAFS) in molecules and crystals. Physical Review B15:2862–2867

    Google Scholar 

  • Lee PA, Pendry JB (1975) Theory of extended x-ray absorption fine structure. Physical Review B11:2795–2811

    Google Scholar 

  • Lee PA, Citrin PH, Eisenberger P, Kincaid BM (1981) Extended X-ray absorption fine structure—its strengths and limitations as a structural tool. Reviews of Modern Physics 53:769–806

    Google Scholar 

  • López-Flores V, Ansell S, Ramos S, Bowron DT, Díaz-Moreno S, Muñoz-Páez A (2009) Development of ReflEXAFS data analysis for deeper surface structure studies. In: 14th international conference on X-ray absorption fine structure (XAFS14). Journal of Physics: Conference Series 190:012110-2-012110-6

    Google Scholar 

  • Lukirskii AP, Brytov IA (1964) Investigation of the energy structure of Be and BeO by ultra-soft X-ray spectroscopy. Soviet Phys—Solid State 6:33–41

    Google Scholar 

  • Lytle FW (1965) X-ray absorption fine structure in crystalline and non-crystalline material; In: Prins J (ed) Physics of non-crystalline solids. North-Holland, Amsterdam, pp 12–30

    Google Scholar 

  • Lytle FW (1999) The EXAFS family tree: a personal history of the development of extended X-ray absorption fine structure. Journal of Synchrotron Radiation 6:123–134

    Google Scholar 

  • Lytle FW, Sayers D, Stern E (1975) Extended X-ray-absorption fine-structure technique. II. Experimental practice and selected results. Physical Review B11:4825–4835

    Google Scholar 

  • Manceau A, Bonnin D, Kaiser P, Frétigny C (1988) Polarized EXAFS of biotite and chlorite. Physics and Chemistry of Minerals 16:180–185

    Google Scholar 

  • Marcelli A, Cibin G, Hampai D, Giannone F, Sala M, Pignotti S, Maggi V, Marino F (2012) XRF-XANES characterization of deep ice core insoluble dust in the ppb range. Journal of Analytical Atomic Spectrometry 27:33–37

    Google Scholar 

  • Meirer F, Cabana J, Liu Y, Mehta A, Andrews JC, Pianetta P (2011) Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. Journal of Synchrotron Radiation 18:773–781

    Google Scholar 

  • Mosbah M, Duraud JP, Métrich N, Wu Z, Delaney JS, San Miguel A (1999) Micro-XANES with synchrotron radiation: a complementary tool of micro-PIXE and micro-SXRF for the determination of oxidation state of elements. Application to geological materials. Nuclear Instruments and Methods in Physical Research B158:214–220

    Google Scholar 

  • Mottana A (2003) X-ray absorption spectroscopy in mineralogy: a review. In: Bianconi A, Marcelli A, Saini NL (eds) CP652, X-ray and inner-shell processes. 19th international conference on X-ray and inner-shell processes, American Institute of Physics, Melville, NY, pp 415–437

    Google Scholar 

  • Mottana A (2004) X-ray absorption spectroscopy in mineralogy: theory and experiments in the XANES region. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy. EMU Notes in Mineralogy, 6. Eötvös University Press, Budapest, pp 465–552

    Google Scholar 

  • Mottana A (2014) 1913–2013—The centennial of X-ray absorption spectroscopy (XAS): evidences about a question still open. Journal Electron Spectroscopy Related Phenomena. doi:org/10.1016/j.elspec.2013.12.004

    Google Scholar 

  • Mottana A, Marcelli A (2013) Fifty years since the first European synchrotron radiation-derived XAFS spectrum (Frascati, 1963). Journal of Synchrotron Radiation 20:811–815

    Google Scholar 

  • Mottana A, Robert J-L, Marcelli A, Giuli G, Della Ventura A, Paris E, Wu ZY (1997) Octahedral versus tetrahedral coordination of Al in synthetic micas determined by XANES. American Mineralogist 82:497–502

    Google Scholar 

  • Müller JE, Jepsen O, Wilkins JW (1982) X-ray absorption spectra: K-edge of 3d transition metals, L-edges of 3d and 4d metals and M-edges of palladium. Solid State Communications. 42:365–368

    Google Scholar 

  • Munoz M, Argoul P, Farges F (2003) Continuous Cauchy Wavelet Transform (CCWT) analyses of EXAFS spectra: a qualitative approach. American Mineralogist 88:694–700

    Google Scholar 

  • Muñoz M, De Andrade V, Vidal O, Lewin E, Pascarelli S, Susini J (2006) Redox and speciation micromapping using dispersive X-ray absorption spectroscopy: application to iron in chlorite mineral of a metamorphic rock thin section. Geochemistry, Geophysics, Geosystems 7(11)

    Google Scholar 

  • Nakai I, Imafuku M, Akimoto J, Miyawaki R, Sugitani Y, Koto K (1987) Characterization of the amorphous state in metamict silicates and niobates by EXAFS and XANES analyses. Physics and Chemistry of Minerals 15:113–124

    Google Scholar 

  • Natoli CR (1983) Near edge absorption structure in the framework of the multiple scattering model. Potential resonance on barrier effects. In: Bianconi A, Incoccia L, Stipcich S (eds) EXAFS and near edge structure. Springer series in chemical physics 27. Springer, Berlin, pp 43–47

    Google Scholar 

  • Natoli CR (1984) Distance dependence of continuum and bound state of excitonic resonance in x-ray absorption near-edge structure (XANES). In: Hodgson KO, Hedman B, Penner-Hahn JE (eds) EXAFS and near-edge structure III. Springer, Berlin, pp 38–42

    Google Scholar 

  • Natoli CR, Benfatto M (1986) A unifying scheme of interpretation of x-ray absorption spectra based on the multiple scattering theory. In: Lagarde P, Raoux D, Petiau J (eds) EXAFS and near edge structure IV, Abbaye Royale de Fontevraud, France, July 7–11, 1986. Journal de Physique 47(12):C8, supplement., pp 11–23

    Google Scholar 

  • Natoli CR, Misemer DK, Doniach S, Kutzler FW (1980) First-principles calculation of X-ray absorption edge structure in molecular clusters. Physical Review B22:1104–1108

    Google Scholar 

  • Natoli CR, Benfatto M, Doniach S. (1986) Use of general potentials in multiple scattering theory. Physical Review A 34:4682–4694

    Google Scholar 

  • Natoli CR, Benfatto M, Brouder C, Ruiz Lopez MZ, Foulis DL (1990) Multichannel multiple-scattering theory with general potentials. Physical Review B42:1944–1968

    Google Scholar 

  • Natoli CR, Benfatto M, Della Longa S, Hatada K (2003) X-ray absorption spectroscopy: state-of-the-art analysis. Journal of Synchrotron Radiation 10:26–42

    Google Scholar 

  • Newville M (2001) EXAFS analysis using FEFF and FEFFIT. Journal of Synchrotron Radiation 8:96–100

    Google Scholar 

  • Nobel Lectures, Physics 1901–1921 (1967). Elsevier, Amsterdam

    Google Scholar 

  • Norman D (1986) X-Ray absorption spectroscopy (EXAFS and XANES) at surfaces. Journal de Physique C 19:3273–3311

    Google Scholar 

  • Paris E, Mottana A, Della Ventura G, Robert J-L (1993) Titanium valence and coordination in synthetic richterite—Ti-richterite amphiboles. A synchrotron-radiation XAS study. European Journal of Mineralogy 5:455–464

    Google Scholar 

  • Parrat LG (1959) Using of synchrotron-orbit radiation in x-ray physics. Review of Scientific Instruments 30:297–299

    Google Scholar 

  • Pascarelli S, Neisius T, De Panfiliis S (1999) Turbo-XAS: dispersive XAS using sequential acquisition. Journal of Synchrotron Radiation 6:1044–1050

    Google Scholar 

  • Pendry JB (1983) The transition region between XANES and EXAFS. In: Bianconi A, Incoccia L, Stipcich S (eds) EXAFS and near-edge structure. Proceedings of the international conference, Frascati, Italy, September 13–17, 1982. Springer, Berlin, pp 4–10

    Google Scholar 

  • Pettifer RF, Brouder C, Benfatto M, Natoli CR, Hermes C, Ruiz López MF (1990) Magic-angle theorem in powder x-ray-absorption spectroscopy. Physical Review B42:37–42

    Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation 12:537–541

    Google Scholar 

  • Rehr JJ, Albers RC (1990) Scattering-matrix formulation of curved-wave multiple-scattering theory: application to X-ray-absorption fine structure. Physical Review B41:8139–8149

    Google Scholar 

  • Rehr JJ, Albers RC (2000) Theoretical approaches to x-ray absorption fine structure. Reviews of Modern Physics 73(3):621–654

    Google Scholar 

  • Sadoc A (1986) The EXAFS of quasicrystals. In: Lagarde P, Raoux D, Petiau J (eds) EXAFS and near edge structure IV, Abbaye Royale de Fontevraud, France, July 7–11, 1986. J Phys 47(12):C8, supplement, pp 1003–1008

    Google Scholar 

  • Sagawa T, Iguchi Y, Sasanuma M, Nasu T, Yamaguchi S, Fujiwara S, Nakamura M, Ejiri A, Masuoka T, Sasaki T, Oshio T (1966) Soft X-ray absorption spectra of alkali halides. I. KCl and NaCl. Journal of the Physical Society of Japan 21:2587–2598

    Google Scholar 

  • Sayers DE, Lytle FW, Stern EA (1970) Point scattering theory of X-ray K-absorption fine structure. In: Henke BL, Newkirk JB, Mallet GR (eds) Advances in X-ray analysis 13. Plenum, London, pp 248–271

    Google Scholar 

  • Sayers DE, Stern EA, Lytle FW (1971) New technique for investigating noncrystalline structures: fourier analysis of the extended X-ray absorption fine structure. Physical Review Letters 27:1204–1208

    Google Scholar 

  • Sayers DE, Lytle FW, Stern EA (1972) Structure determination of amorphous Ge, GeO2 and GeSe by Fourier analysis of extended X-ray absorption fine structure (EXAFS). Journal of Non-Crystalline Solids8–10:401–407

    Google Scholar 

  • Schlaf R, Höpfner B, Figueroa J, Tridas E, Welter E, Köhler T, Lauermann I, Fischer Ch-H (2012) X-ray absorption measurements on an ultrasonic spray aerosol. Journal of Synchrotron Radiation 19:126–128

    Google Scholar 

  • Sherman DM, Randall SR (2003) Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio geometries and EXAFS spectroscopy. Geochimica et Cosmochimica Acta 67(22):4223–4230

    Google Scholar 

  • Shulman RG, Yafet Y, Eiserberger P, Blumberg WE (1976) Observation and interpretation of x-ray absorption edges in iron compounds and proteins. Proceedings of the National Academy of Science 73(5):1384–1388

    Google Scholar 

  • Spiegel PK (1995) The first clinical X-ray made in America—100 Years. American Journal of Radiology 164:241–243

    Google Scholar 

  • Stern EA (1974) Theory of the extended X-ray-absorption fine structure. Physical Review B10:3027–3037

    Google Scholar 

  • Stern EA (1978) Development of XAFS into a structure determination technique. In: Haase A, Landwehr G, Umbach E (eds) Röntgen centennial: X-rays in natural and life sciences. World Scientific, Singapore, pp 323–340

    Google Scholar 

  • Stern EA (2001) Musings about the development of XAFS. Journal of Synchrotron Radiation 8:49–54

    Google Scholar 

  • Stern EA, Sayers DE, Lytle FW (1975) Extended X-ray-absorption fine-structure technique. Determination of physical parameters. Physical Review B11:4836–4846

    Google Scholar 

  • Stöhr J (1986) SEXAFS: everything you always wanted to know about SEXAFS but were afraid to ask. In: Prinz R, Konigsberger D (eds) X-ray Absorption: principles and techniques of EXAFS, SEXAFS and XANES. Wiley, New York, pp 443–571

    Google Scholar 

  • Stöhr J (1992) NEXAFS Spectroscopy. Springer series in surface sciences 25. Springer, Berlin

    Google Scholar 

  • Stöhr J, Denley D, Perfetti P (1978) Surface extended x-ray absorption fine structure in the soft-x-ray region: Study of an oxidized Al surface. Physical Review B18:4132–4135

    Google Scholar 

  • Stumm von Bordwehr (1989) A history of the X-ray absorption fine structure. Annales de Physique 14:377–465

    Google Scholar 

  • Sutton SR, Bajt S, Delaney J, Schulze D, Tokunaga T (1995) Synchrotron x-ray fluorescence microprobe: quantification and mapping of mixed valence state samples using micro-XANES. Review of Scientific Instruments 66:1464–1467

    Google Scholar 

  • Sutton SR, Bertsch PM, Newville M, Rivers M, Lanzirotti A, Eng P (2002) Microfluorescence and microtomography analyses of heterogeneous earth and environmental materials. In: Fenter PA, Rivers ML, Sturchio NC, Sutton SR (eds) Applications of synchrotron radiation in low-temperature geochemistry and environmental science. Reviews in Mineralogy and Geochemistry 49. Mineralogical Society of America, Washington DC, pp 429–483

    Google Scholar 

  • Van Nostrand R (1960) The use of X-ray K-absorption edges in the study of catalytically active solids. In: Eley DD (ed) Advances in catalysis 12. Elsevier, Amsterdam, pp 149–187

    Google Scholar 

  • Waychunas GA (1987) Synchrotron radiation XANES spectroscopy of Ti in minerals: effects of Ti bonding distances, Ti valence, and site geometry on absorption edge structure. American Mineralogist 72:80–101

    Google Scholar 

  • Waychunas GA, Apted MJ, Brown GE Jr (1983) X-ray K-edge absorption spectra of Fe mineral and model compounds: I. Near-edge structure. Physics and Chemistry of Minerals 10:1–9

    Google Scholar 

  • Wilke M, Farges F, Petit P-E, Brown GE Jr, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K-XANES spectroscopic study. American Mineralogist 86:714–730

    Google Scholar 

  • Winick H, Brown G, Halbach K, Harris J (1981) Wiggler and undulator magnets. Physics Today 34(5):50–63

    Google Scholar 

  • Wong J, Maylotte DH, Lytle FW, Greegor RB, Peters RFSt (1983) EXAFS and XANES investigations of trace V and Ti in coal. In: Bianconi A, Incoccia L, Stipcich S (eds): EXAFS and near-edge structure. Proceedings of the international conference, Frascati, Italy, September 13–17, 1982. Springer, Berlin, pp 206–209

    Google Scholar 

  • Wu ZY, Xian DC, Hu TD, Xie YN, Tao Y, Natoli CR, Paris E, Marcelli A (2004) Quadrupolar transitions and medium-range-order effects in metal K-edge x-ray absorption spectra of 3d transition-metal compounds. Physical Review B70:033104

    Google Scholar 

  • Xu W, Chen D, Chu W, Wu Z, Marcelli A, Mottana A, Soldatov A, Brigatti MF (2011) Quantitative local structure determination in mica crystals: ab initio simulations of polarization XANES at the potassium K-edge. Journal of Synchrotron Radiation 18:418–426

    Google Scholar 

Download references

Acknowledgments

Our attempt at sketching the development of XAS and at clarifying more extensively its transition to XAFS up to the present time is based on more than two decades of readings and discussions with many people, whom we thank greatly for contributing to our effort. Among them, we particularly thank Antonio Bianconi , Maurizio Benfatto , Jesús Chaboy Nalda, Giannantonio Cibin, Ivan Davoli, Rino Natoli, Hiroyuki Oyanagi, Eleonora Paris, Piero Pianetta, Trevor Anthony Tyson, and Ziyu Wu. Nevertheless, the responsibility for this historical account, which necessarily involves selection and evaluation of persons and works, lies entirely upon us. We certainly have missed some related important research papers, but both the capacity of our memory and the length allowed to this contribution have limitations. We sincerely apologize to all colleagues whose worthy papers we neglected to quote.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annibale Mottana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mottana, A., Marcelli, A. (2015). The Historical Development of X-ray Absorption Fine Spectroscopy and of Its Applications to Materials Science. In: Pisano, R. (eds) A Bridge between Conceptual Frameworks. History of Mechanism and Machine Science, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9645-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9645-3_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9644-6

  • Online ISBN: 978-94-017-9645-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics