Skip to main content

Filastereans and Ichthyosporeans: Models to Understand the Origin of Metazoan Multicellularity

  • Chapter
  • First Online:
Evolutionary Transitions to Multicellular Life

Part of the book series: Advances in Marine Genomics ((AMGE,volume 2))

Abstract

The origin of animals or metazoans from their unicellular ancestors is one of the most important evolutionary transitions in the history of life. To decipher the molecular mechanisms involved in this transition, it is crucial to understand both the early evolution of animals and their unicellular prehistory. Recent phylogenomic analyses have shown that there are at least three distinct unicellular or colonial lineages closely related to metazoans: choanoflagellates, ichthyosporeans and filastereans. However, until recently, choanoflagellates had been the only lineage for which an entire genome sequence was available. Moreover, the lack of transgenesis tools in any of these unicellular lineages had precluded the possibility of performing functional analyses. To better understand the unicellular prehistory of animals, we have recently obtained the genome sequences of both filastereans and ichthyosporeans. Analyses of their genomes identified many important genes for metazoan multicellularity and development, some of which are absent from the choanoflagellate genomes and thus were thought to be metazoan-specific. We have also established methods for transgenesis and gene silencing in ichthyosporeans. The combination of genomic information and molecular tools in filastereans and ichthyosporeans facilitate efficient functional analyses to understand how the key genes in the evolution of multicellularity were co-opted during the unicellular-tomulticellular transition that gave rise to metazoans. We propose that filastereans and ichthyosporeans are ideal model organisms for investigating the origin of metazoan multicellularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin M, King N (2008) The premetazoan ancestry of cadherins. Science 319:946–948

    Article  CAS  Google Scholar 

  • Arkush KD, Mendoza L, AdkisonMAet al (2003) Observations on the life stages of Sphaerothecum destruens n. g., n. sp., a mesomycetozoean fish pathogen formerly referred to as the rosette agent. J Eukaryot Microbiol 50:430–438

    Article  Google Scholar 

  • Bonner J (1998) The origins of multicellularity. Integr Biol 1:27–36

    Article  Google Scholar 

  • Cavalier-Smith T (1987) The origin of fungi and pseudofungi. In: RaynerADM, Brasier CM, Moore D (eds) Evolutionary biology of fungi. Cambridge University Press, Cambridge, pp 339–353

    Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev 73:203–266

    Article  CAS  Google Scholar 

  • Cavalier-Smith T, Allsopp MTEP (1996) Corallochytrium, an enigmatic non-flagellate protozoan related to choanoflagel-lates. Eur J Protistol 32:306–310

    Article  Google Scholar 

  • Cavalier-Smith T, Chao EE (2003) Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution. J Mol Evol 56:540–563

    Article  CAS  Google Scholar 

  • Del Campo J, Ruiz-Trillo I (2013) Environmental survey meta-analysis reveals hidden diversity among unicellular opisthokonts. Mol Biol Evol 30:802–805

    Google Scholar 

  • Elston RA, Harrell LW, Wilkinson MT (1986) Isolation and in vitro characteristics of chinook salmon (Oncorhynchus tshawytscha) rosette agent. Aquaculture 56:1–21

    Article  Google Scholar 

  • Fairclough SR, Dayel MJ, King N (2010) Multicellular development in a choanoflagellate. Curr Biol 20:R875–R876

    Article  CAS  Google Scholar 

  • Grosberg EK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst 38:621–654

    Article  Google Scholar 

  • Harrell LW, Elston RA, Scott TM et al (1986) A significant new systemic disease of net-pen reared chinook salmon (Oncorhynchus tshawytscha) brood stock. Aquaculture 55:249–262

    Article  Google Scholar 

  • James-ClarkH (1866) Note on the infusoria flagellata and the spongiae ciliatae. AmJ Sci 1:113–114

    Google Scholar 

  • Jøstensen J-P, Sperstad S, Johansen S et al (2002) Molecular-phylogenetic, structural and biochemical features of a cold-adapted, marine ichthyosporean near animal-fungal divergence, described from in vitro cultures. Eur J Protistol 38:93–104

    Article  Google Scholar 

  • Kerk D, Gee A, Standish M et al (1995) The rosette agent of chinook salmon (Oncorhynchus tshawytscha) is closely related to choanoflagellates, as determined by the phylogenetic analyses of its small ribosomal subunit RNA. Mar Biol 122:187–192

    Google Scholar 

  • Kim JA, Cho K, ShinMSet al (2008) Anovel electroporation method using a capillary and wire-type electrode. Biosens Bioelectron 23:1353–1360

    Article  CAS  Google Scholar 

  • King N (2004) The unicellular ancestry of animal development. Dev. Cell 7:313–325

    CAS  Google Scholar 

  • King N, Westbrook MJ, Young SL et al (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    Article  CAS  Google Scholar 

  • Knoll AH (2011) The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci 39:217–239

    Article  CAS  Google Scholar 

  • MarshallWL, BerbeeML (2003) Methods for introducing morpholinos into the chicken embryo. Dev Dyn 226:470–477

    Article  CAS  Google Scholar 

  • Lang BF, O’Kelly C, Nerad T et al (2002) The closest unicellular relatives of animals. Curr Biol 12:1773–1778

    Article  CAS  Google Scholar 

  • Manning G, Young SL, Miller WT et al (2008) The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci U S A 105:9674–9679

    Article  CAS  Google Scholar 

  • Marshall WL, Berbee ML (2010) Facing unknowns: living cultures (Pirum gemmata gen. nov., sp. nov., and Abeoforma whisleri, gen. nov., sp. nov.) from invertebrate digestive tracts represent an undescribed clade within the unicellular Opisthokont lineage ichthyosporea (Mesomycetozoea). Protist 162:33–57

    Article  Google Scholar 

  • Marshall WL, Berbee ML (2013) Comparative morphology and genealogical delimitation of cryptic species of sympatric isolates of Sphaeroforma (Ichthyosporea, Opisthokonta). Protist 164:287–311

    Article  Google Scholar 

  • Marshall WL, Celio G, McLaughlin DJ et al (2008) Multiple isolations of a culturable, motile Ichthyosporean (Mesomycetozoa, Opisthokonta), Creolimax fragrantissima n. gen., n. sp., from marine invertebrate digestive tracts. Protist 159:415–433

    Article  CAS  Google Scholar 

  • McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    CAS  Google Scholar 

  • McVigar AH (1982) Ichthyophonus infections of fish. In: Roberts RJ (eds) Microbial diseases of fish. Academic Press, London, p 243–269

    Google Scholar 

  • Medina M, Collins AG, Taylor JW et al (2003) Phylogeny of opisthokonta and the evolution of multicellularity and complexity in fungi and metazoa. Int J Astrobiol 2:203–211

    Article  Google Scholar 

  • Mendoza L, Taylor JW, Ajello L (2002) The class Mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. Annu Rev Microbiol 56:315–344

    Article  CAS  Google Scholar 

  • Moya A, Pereto J, GilRet al (2008) Learning howto live together: genomic insights into prokaryoteanimal symbioses. Nat Rev Genet 9:218–229

    Article  CAS  Google Scholar 

  • Paps J, Medina-Chacón LA, Marshall WL et al (2013) Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. Protist 164:2–12

    Article  Google Scholar 

  • Pekkarinen M, Lom J, Murphy CA et al (2003) Phylogenetic position and ultrastructure of two dermocystidium species (Ichthyosporea) from the common perch (Perca fluviatilis). Acta Protozool 42:287–307

    Google Scholar 

  • Ragan MA, Goggin CL, Cawthorn RJ et al (1996) A novel clade of protistan parasites near the animal-fungal divergence. Proc Natl Acad Sci U S A 93:11907–11912

    Article  CAS  Google Scholar 

  • Rokas A (2008a) The molecular origins of multicellular transitions. Curr Opin Genet Dev 18:472–478

    Article  CAS  Google Scholar 

  • Rokas A (2008b) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251

    Article  CAS  Google Scholar 

  • Ruiz-Trillo I, InagakiY, DavisLAet al (2004) Capsaspora owczarzaki is an independent opisthokont lineage. Curr Biol 14:R946–R947

    Article  CAS  Google Scholar 

  • Ruiz-Trillo I, Lane CE, Archibald JM et al (2006) Insights into the evolutionary origin and genome architecture of the unicellular opisthokonts Capsaspora owczarzaki and Sphaeroforma arctica. J Eukaryot Microbiol 53:379–384

    Article  CAS  Google Scholar 

  • Ruiz-Trillo I, Burger G, Holland PW et al (2007) The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 23:113–118

    Article  CAS  Google Scholar 

  • Sebé-Pedrós A, Ruiz-Trillo I (2010) Integrin-mediated adhesion complex: cooption of signaling systems at the dawn of Metazoa. Commun Integr Biol 3:475–477

    Article  Google Scholar 

  • Sebé-Pedrós A, Roger AJ, Lang FB et al (2010) Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci U S A 107:10142–10147

    Article  Google Scholar 

  • Sebé-Pedrós A, de Mendoza A, Lang BF et al (2011) Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 28:1241–1254

    Article  Google Scholar 

  • Sebé-Pedrós A, Zheng Y, Ruiz-Trillo I et al (2012) Premetazoan origin of the Hippo signaling pathway. Cell Rep 1:13–20

    Article  Google Scholar 

  • Sebé-Pedrós A, Irimia M, Del Campo J et al (2013) Regulated aggregative multicellularity in a close unicellular relative of metazoa. eLife 2:e01287

    Article  Google Scholar 

  • Seeber GR (1900) Un nuevo sporozuario parasito del hombre: dos casos encontrados en polypos nasals. Dissertation, Universidad Nacional de Buenos Aires

    Google Scholar 

  • Shalchian-Tabrizi K, Minge MA, Espelund M et al (2008) Multigene phylogeny of choanozoa and the origin of animals. PLoS One 3:e2098

    Article  Google Scholar 

  • Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23:93–106

    Article  CAS  Google Scholar 

  • Stibbs HH, Owczarzak A, Bayne CJ et al (1979) Schistosome sporocyst-killing amoebae isolated from Biomphalaria glabrata. J Invertebr Pathol 33:159–170

    Article  CAS  Google Scholar 

  • Suga H, Ruiz-Trillo I (2013) Development of ichthyosporeans sheds light on the origin of metazoan multicellularity. Dev Biol 377:284–292

    Article  CAS  Google Scholar 

  • Suga H, Dacre M, de Mendoza A et al (2012) Genomic survey of pre-metazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases. Sci Signal 5:ra35

    Article  Google Scholar 

  • Suga H, Chen Z, De Mendoza A et al (2013) The genome of Capsaspora reveals a complex unicellular prehistory of animals. Nat Commun 4:2325

    Article  Google Scholar 

  • Suga H, Torruella G, Burger G et al (2014) Earliest holozoan expansion of phosphotyrosine signaling. Mol Biol Evol 31:517–528

    Google Scholar 

  • TongSM (1997) Heterotrophic flagellates and other protists from SouthamptonWater, U.K. Ophelia 47:71–131

    Article  Google Scholar 

  • Torruella G, Derelle R, Paps J et al (2012) Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single copy protein domains. Mol Biol Evol 20:531–544

    Google Scholar 

  • van Hannen EJ, Mooij W, van Agterveld MP et al (1999) Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:2478–2484

    CAS  Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML et al (1993) Monophyletic origins of the metazoa: an evolutionary link with fungi. Science 260:340–342

    Article  CAS  Google Scholar 

  • Willmer P (1990) The origin of the Metazoa. In: Invertebrate relationships: pattern in animal evolution. Cambridge University Press, Cambridge, pp 163–198

    Google Scholar 

Download references

Acknowledgments

We thank theUNICORNproject for the genome sequencing. Figures reprinted from Developmental Biology, vol 377, Issue 1, H. Suga and I Ruiz-Trillo, Development of ichthyosporeans sheds light on the origin of metazoan multicellularity, © Elsevier Inc. (2013), with permission from Elsevier. This work is supported by the Marie Curie Intra-European Fellowship (H. S.), a European Research Council Starting Grant (ERC-2007-StG- 206883), and a grant (BFU2011–23434) from the Ministerio de Economía y Competitividad (MINECO) to I. R.-T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Suga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Suga, H., Ruiz-Trillo, I. (2015). Filastereans and Ichthyosporeans: Models to Understand the Origin of Metazoan Multicellularity. In: Ruiz-Trillo, I., Nedelcu, A. (eds) Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9642-2_6

Download citation

Publish with us

Policies and ethics