Skip to main content

Developmental Signalling and Emergence of Animal Multicellularity

  • Chapter
  • First Online:
Evolutionary Transitions to Multicellular Life

Part of the book series: Advances in Marine Genomics ((AMGE,volume 2))

Abstract

Five major signalling pathways (Wnt, TGF-beta, Hedgehog, Notch and FGF) orchestrate short and long range cell-to-cell communication during development of cnidarians and bilaterians, and are often involved in homologous processes. Pre-metazoan ancestry of the pathways is evidenced by presence of some components in non-metazoans: Notch and proto-Hedgehog (Hedgling) pathways components are present in choanoflagellates, and some intracellular Wnt pathway components in slime molds. In contrast, long range signalling through diffusible ligands apparently coincided with emergence of animal multicellularity. Conservation of the signalling pathways in earlier branching animal lineages (sponges, ctenophores and placozoans) varies widely. Wnt and TGF-beta pathways display strongest conservation in all lineages. In sponges, the Wnt pathway appears to be involved in patterning of the body axis, as it is in cnidarians and bilaterians. On the other hand, the Hedgehog/Hedgling pathway has been repeatedly lost, as it is absent from ctenophores and placozoans. Thus, the developmental signalling toolkits of extant animal lineages have been shaped by loss and gain of entire pathways and their selected components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamska M, Degnan SM, Green KM, Adamski M, Craigie A, Larroux C, Degnan BM (2007a) Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS One 2:e1031

    Google Scholar 

  • Adamska M, Matus DQ, Adamski M, Green K, Rokhsar DS, Martindale MQ, Degnan BM (2007b) The evolutionary origin of Hedgehog proteins. Curr Biol 17(19):R836–837

    Google Scholar 

  • Adamska M, Larroux C, Adamski M, Green K, Lovas E, Koop D, Richards GS, Zwafink C, Degnan BM (2010) Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 12(5):494–518

    Article  CAS  Google Scholar 

  • Adamska M, Degnan BM, Green K, Zwafink C (2011) What sponges can tell us about the evolution of developmental processes. Zoology (Jena) 114:1–10

    Article  Google Scholar 

  • Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138(17):3593–3612

    Article  CAS  Google Scholar 

  • Barolo S, Posakony JW (2002) Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev 16(10):1167–1181

    Article  CAS  Google Scholar 

  • Bertrand S, Iwema T, Escriva H (2014) FGF signaling emerged concomitantly with the origin of eumetazoans. Mol Biol Evol 31(2):310–318

    Article  CAS  Google Scholar 

  • Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689

    Article  CAS  Google Scholar 

  • Cho SJ, Vallès Y, Giani VC Jr, Seaver EC, Weisblat DA (2010) Evolutionary dynamics of the Wnt gene family: a lophotrochozoan perspective. Mol Biol Evol 27(7):1645–1658

    Article  CAS  Google Scholar 

  • De Robertis EM Sasai Y (1996) A common plan for dorsoventral patterning in bilateria. Nature 380(6569):37–40

    Article  CAS  Google Scholar 

  • Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ (2004) Origins of bilateral symmetry: hox and dpp expression in a sea anemone. Science 304(5675):1335–1337

    Article  CAS  Google Scholar 

  • Gazave E, Lapébie P, Richards GS, Brunet F, Ereskovsky AV, Degnan BM, Borchiellini C, Vervoort M, Renard E (2009) Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol Biol 9:249

    Article  Google Scholar 

  • Goldfarb M (2001) Signaling by fibroblast growth factors: the inside story. Sci STKE 106:pe37

    Google Scholar 

  • Harwood AJ (2008) Dictyostelium development: a prototypic Wnt pathway? Methods Mol Biol 469:21–32

    Article  CAS  Google Scholar 

  • Holland LZ, Holland NN, Schubert M (2000) Developmental expression of AmphiWnt1, an amphioxus gene in the Wnt1/wingless subfamily. Dev Genes Evol 210(10):522–524

    Article  CAS  Google Scholar 

  • Holstein TW (2012) The evolution of the Wnt pathway. Cold Spring Harb Perspect Biol 4(7):a007922

    Article  Google Scholar 

  • Huminiecki L, Goldovsky L, Freilich S, Moustakas A, Ouzounis C, Heldin CH (2009) Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom. BMC Evol Biol 9:28

    Article  Google Scholar 

  • Jager M, Dayraud C, Mialot A, Quéinnec E, le Guyader H, Manuel M (2013) Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. PLoS One 8(12):e84363

    Article  Google Scholar 

  • Jiang J, Hui CC (2008) Hedgehog signaling in development and cancer. Dev Cell 15(6):801–812

    Article  CAS  Google Scholar 

  • Käsbauer T, Towb P, Alexandrova O, David CN, Dall’armi E, Staudigl A, Stiening B, Böttger A (2007) The Notch signaling pathway in the cnidarian Hydra. Dev Biol 303(1):376–90

    Article  Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate monosiga brevicollis and the origin of metazoans. Nature 451(7180):783–788

    Article  CAS  Google Scholar 

  • Kitisin K, Saha T, Blake T, Golestaneh N, Deng M, Kim C, Tang Y, Shetty K, Mishra B, Mishra L (2007) TGF-beta signaling in development. Sci STKE 399:cm1

    Google Scholar 

  • Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160

    Article  CAS  Google Scholar 

  • Lee PN, Pang K, Matus DQ, Martindale MQ (2006) A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin Cell Dev Biol 17(2):157–167

    Article  Google Scholar 

  • Leys SP, Eerkes-Medrano D (2005) Gastrulation in calcareous sponges: in search of Haeckel’s gastraea. Integr Comp Biol 45(2):342–351

    Article  Google Scholar 

  • Manning G, Young SL, Miller WT, Zhai Y (2008) The protist, monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci U S A 105(28):9674–9679

    Article  CAS  Google Scholar 

  • Marlow H, Roettinger E, Boekhout M, Martindale MQ (2012) Functional roles of Notch signaling in the cnidarian Nematostella vectensis. Dev Biol 362(2):295–308

    Article  CAS  Google Scholar 

  • Matus DQ, Magie CR, Pang K, Martindale MQ, Thomsen GH (2008) The Hedgehog gene family of the cnidarian, nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol 313(2):501–518

    Article  CAS  Google Scholar 

  • McGlinn E, Tabin CJ (2006) Mechanistic insight into how shh patterns the vertebrate limb. Curr Opin Genet Dev 16(4):426–432

    Article  CAS  Google Scholar 

  • Müller WE, Korzhev M, Le Pennec G, Müller IM, Schröder HC (2003) Origin of metazoan stem cell system in sponges: first approach to establish the model (suberites domuncula). Biomol Eng 20(4–6):369–379

    Article  Google Scholar 

  • Münder S, Käsbauer T, Prexl A, Aufschnaiter R, Zhang X, Towb P, Böttger A (2010) Notch signalling defines critical boundary during budding in hydra. Dev Biol 344(1):331–345

    Article  Google Scholar 

  • Nichols SA, Dirks W, Pearse JS, King N (2006) Early evolution of animal cell signaling and adhesion genes. Proc Natl Acad Sci U S A 103(33):12451–12456

    Article  CAS  Google Scholar 

  • Nichols SA, Roberts BW, Richter DJ, Fairclough SR, King N (2012) Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. Proc Natl Acad Sci U S A 109(32):13046–13051

    Article  CAS  Google Scholar 

  • Nosenko T, Schreiber F, Adamska M, Adamski M, Eitel M, Hammel J, Maldonado M, Müller WE, Nickel M, Schierwater B, Vacelet J, Wiens M, Wörheide G (2013) Deep metazoan phylogeny: when different genes tell different stories. Mol Phylogenet Evol 67(1):223–233

    Article  Google Scholar 

  • Nusse R (2003) Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 130(22):5297–5305

    Article  CAS  Google Scholar 

  • Nusse R, He X, van Amerongen R (eds) (2013) Wnt Signaling Cold Spring Harbor Laboratory Press, ISBN-10: 1936113236

    Google Scholar 

  • Pang K, Ryan JF, NISC Comparative Sequencing Program, Mullikin JC, Baxevanis AD, Martindale MQ (2010) Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore mnemiopsis leidyi. Evodevo 1(1):10

    Article  CAS  Google Scholar 

  • Pang K, Ryan JF, Baxevanis AD, Martindale MQ (2011) Evolution of the TGF-β signaling pathway and its potential role in the ctenophore, Mnemiopsis leidyi. PLoS One 6(9):e24152

    Article  CAS  Google Scholar 

  • Petersen CP, Reddien PW (2009) Wnt signaling and the polarity of the primary body axis. Cell 139:1056–1068

    Article  CAS  Google Scholar 

  • Pires-daSilva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4:39–49

    Article  CAS  Google Scholar 

  • Rebscher N, Deichmann C, Sudhop S, Fritzenwanker JH, Green S, Hassel M (2009) Conserved intron positions in FGFR genes reflect the modular structure of FGFR and reveal stepwise addition of domains to an already complex ancestral FGFR. Dev Genes Evol 219(9–10):455–468

    Article  CAS  Google Scholar 

  • Rentzsch F, Fritzenwanker JH, Scholz CB, Technau U (2008) FGF signalling controls formation of the apical sensory organ in the cnidarian nematostella vectensis. Development 135(10):1761–1769

    Article  CAS  Google Scholar 

  • Richards GS, Degnan BM (2009) The dawn of developmental signaling in the metazoa. Cold Spring Harb Symp Quant Biol 74:81–90

    Article  CAS  Google Scholar 

  • Richards GS, Degnan BM (2012) The expression of Delta ligands in the sponge Amphimedon queenslandica suggests an ancient role for Notch signaling in metazoan development. Evodevo 3(1):15. doi:10.1186/2041-9139-3-15

    Article  CAS  Google Scholar 

  • Richards GS, Simionato E, Perron M, Adamska M, Vervoort M, Degnan BM (2008) Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol 18(15):1156–1161

    Article  CAS  Google Scholar 

  • Robbins DJ, Fei DL, Riobo NA (2012) The Hedgehog signal transduction network. Sci Signal 5(246):re6

    Google Scholar 

  • Roettinger E, Dahlin P, Martindale MQ (2012) A framework for the establishment of a cnidarian gene regulatory network for “Endomesoderm” specification: the inputs of ß-catenin/TCF signaling. PLoS Genet 8:e1003164

    Article  Google Scholar 

  • Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, Koch BJ, Francis WR, Havlak P, NISC Comparative Sequencing Program, Smith SA, Putnam NH, Haddock SH, Dunn CW, Wolfsberg TG, Mullikin JC, Martindale MQ, Baxevanis AD (2013) The genome of the ctenophore mnemiopsis leidyi and its implications for cell type evolution. Science 342(6164):1242592

    Article  Google Scholar 

  • Saina M, Genikhovich G, Renfer E, Technau U (2009) BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci U S A 106(44):18592–18597

    Article  CAS  Google Scholar 

  • Schierwater B (2005) My favorite animal, trichoplax adhaerens. Bioessays 27(12):1294–1302

    Article  CAS  Google Scholar 

  • Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The trichoplax genome and the nature of placozoans. Nature 454(7207):955–960

    Article  CAS  Google Scholar 

  • Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U et al (2010) The amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726

    Article  CAS  Google Scholar 

  • Sudhop S, Coulier F, Bieller A, Vogt A, Hotz T, Hassel M (2004) Signalling by the FGFR-like tyrosine kinase, kringelchen, is essential for bud detachment in hydra vulgaris. Development 131(16):4001–4011

    Article  CAS  Google Scholar 

  • Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411(6835):349–354

    Article  CAS  Google Scholar 

  • Technau U, Rudd S, Maxwell P, Gordon PM, Saina M, Grasso LC, Hayward DC, Sensen CW, Saint R, Holstein TW, Ball EE, Miller DJ (2005) Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21(12):633–639

    Article  CAS  Google Scholar 

  • Thisse B, Thisse C (2005) Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 287(2):390–402

    Article  CAS  Google Scholar 

  • Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8(6):473–479

    Article  CAS  Google Scholar 

  • Windsor PJ, Leys SP (2010) Wnt signaling and induction in the sponge aquiferous system: evidence for an ancient origin of the organizer. Evol Dev 12:481–590

    Article  Google Scholar 

  • Xing Y, Clements WK, Kimelman D, Xu W (2003) Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev 17(22):2753–2764

    Article  CAS  Google Scholar 

  • Yu JK, Meulemans D, McKeown SJ, Bronner-Fraser M (2008) Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Res 18(7):1127–1132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research in my laboratory is funded by Sars International Centre for Marine Molecular Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Adamska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Adamska, M. (2015). Developmental Signalling and Emergence of Animal Multicellularity. In: Ruiz-Trillo, I., Nedelcu, A. (eds) Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9642-2_20

Download citation

Publish with us

Policies and ethics