Skip to main content

Timing the Origins of Multicellular Eukaryotes Through Phylogenomics and Relaxed Molecular Clock Analyses

  • Chapter
  • First Online:
Book cover Evolutionary Transitions to Multicellular Life

Part of the book series: Advances in Marine Genomics ((AMGE,volume 2))

Abstract

Multicellularity has evolved many times during eukaryote evolution. Deciphering the evolutionary transitions to multicellularity requires a robust deep phylogeny of eukaryotes to clarify the relationships amongst multicellular groups and determine their closest unicellular relatives. Here we review progress in understanding the phylogenetic relationships amongst multicellular and unicellular eukaryotes, as well as estimates of the ages of multicellular groups based on relaxed molecular clock (RMC) analyses. In addition, we present an RMC analysis of a large phylogenomic dataset to estimate the divergence dates of select major eukaryotic multicellular groups. Our analyses (and other recent studies) tentatively suggest that multicellular eukaryotes such as Metazoa, Fungi and two of the major multicellular red algal taxa first emerged in the mid-Neoproterozoic, whereas the dictyostelids arose in the Paleozoic. We also hypothesize that the first multicellular organisms emerged within 300–600 Myr after the Last Eukaryotic Common Ancestor. The age of land plants is less clear and is highly dependent on methodology, the genes analyzed, and the nature of fossil constraints. In general, there is great variability in all these age estimates, and their credible intervals frequently span hundreds of millions of years. These estimates are highly sensitive to both the models and methods of RMC analysis, as well as the manner in which fossil calibrations are treated in these analyses. As paleontological investigations continue to fill out the Proterozoic fossil record, genomic data is gathered from a greater diversity of eukaryotes and RMC methodology improves, we may converge on more precise estimates of the ages of multicellular eukaryotes that can be correlated with Earth’s ancient geochemical record.

*Susan C. Sharpe and Laura Eme have contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl SM, Simpson AGB, Heiss A, et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59(5):429–493. doi:10.1111/j.1550-7408.2012.00644.x

    Article  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert I, et al (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290(5493):972–977. doi:10.1126/science.290.5493.972

    Article  CAS  Google Scholar 

  • BeakesGW, Glockling SL, Sekimoto S (2012) The evolutionary phylogeny of the oomycete “fungi”. Protoplasma 249(1):3–19. doi:10.1007/s00709-011-0269-2

    Article  Google Scholar 

  • Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103(7):999–1004 doi:10.1093/aob/mcp044

    Article  CAS  Google Scholar 

  • Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi—how close are we? Fungal Biol Rev 24(1–2):1–16. doi:10.1016/j.fbr.2010.03.001

    Article  Google Scholar 

  • Berney C, Pawlowski J (2006) A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc Biol Sci 273(1596):1867–1872 doi:10.1098/rspb.2006.3537

    Article  CAS  Google Scholar 

  • Bonner JT (1998) The origins of multicellularity. Integr Biol: Issues News Rev 1(1):2736. doi:10.1002/(SICI)1520-6602(1998)1:1&<27::AID-INBI4>3.0.CO;2-6

    Google Scholar 

  • Brown MW, Silberman JD (2013) The non-dictyostelid sorocarpic amoebae. In: Romeralo M, Baldauf S, Escalante R (eds) Dictyostelids. Springer, pp 219–242

    Google Scholar 

  • Brown MW, Spiegel FW, Silberman JD (2009) Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evolut 26(12):2699–2709. doi:10.1093/molbev/msp185

    Article  CAS  Google Scholar 

  • Brown MW, Silberman JD, Spiegel FW (2011) “Slime Molds” among the Tubulinea (Amoebozoa): molecular systematics and taxonomy of Copromyxa. Protist 162(2):277–287. doi:10.1016/j.protis.2010.09.003

    Article  Google Scholar 

  • Brown MW, Kolisko M, Silberman JD, et al (2012a) Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Curr Biol 22(12):1123–1127. doi:10.1016/j.cub.2012.04.021

    Google Scholar 

  • Brown MW, Silberman JD, Spiegel FW (2012b) A contemporary evaluation of the acrasids (Acrasidae, Heterolobosea, Excavata). Eur J Protistol 48(2):103–123. doi:10.1016/j.ejop.2011.10.001

    Google Scholar 

  • Brown MW, Sharpe SC, Silberman JD, et al (2013) Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci 280(1769):20131755. doi:10.1098/rspb.2013.1755

    Article  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Minge M, et al (2007) Phylogenomics Reshuffles the Eukaryotic supergroups. PLoS ONE 2(8). doi:10.1371/journal.pone.0000790

    Google Scholar 

  • Burki F, Okamoto N, Pombert JF, et al (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci 1736(279):2246–2254. doi:10.1098/rspb.2011.2301

    Article  Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26(3): 386–404

    Article  Google Scholar 

  • Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52(Pt 1):7–76

    CAS  Google Scholar 

  • Cavalier-Smith T (2012) Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 49(2):115–178. doi:10.1016/j.ejop.2012.06.001

    Google Scholar 

  • Cavalier-Smith T, Chao EE (1996) Molecular phylogeny of the free-living archezoan Trepomonas agilis and the nature of the first eukaryote. J Mol Evol 43(6):551–562. doi:10.1007/BF02202103

    Article  CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE (2010) Phylogeny and evolution of apusomonadida (protozoa: apusozoa): new genera and species. Protist 161(4):549–576. doi:10.1016/j.protis.2010.04.002

    Article  Google Scholar 

  • Clarke JT, Warnock R, Donoghue PC (2011) Establishing a time‐scale for plant evolution. New Phytol 192(1):266–301. doi:10.1111/j.1469-8137.2011.03794.x

    Article  Google Scholar 

  • Cock JM, Sterck L, Rouzé P, et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465(7298):617–621. doi:10.1038/nature09016

    Article  CAS  Google Scholar 

  • Cohen PA, Knoll AH, Kodner RB (2009) Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proc Natl Acad Sci USA 106(16):6519–6524. doi:10.1073/pnas.0902322106

    Article  CAS  Google Scholar 

  • Dentzien-Dias PC, Poinar G, Jr, de Figueiredo AE, et al (2013) Tapeworm eggs in a 270 million-year-old shark coprolite. PLoS One 8(1):e55007. doi:10.1371/journal.pone.0055007

    Article  CAS  Google Scholar 

  • Derelle R, Lang BF (2012) Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol 29(4):1277–1289. doi:10.1093/molbev/msr295

    Article  CAS  Google Scholar 

  • Dickinson DJ, Nelson WJ, Weis WI (2012) An epithelial tissue in Dictyostelium challenges the traditional origin of metazoan multicellularity. BioEssays 34(10):833–840. doi:10.1002/bies.201100187

    Article  CAS  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, et al (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5). doi:10.1371/journal.pbio.0040088

    Google Scholar 

  • Dykstra MJ, Olive LS (1975) Sorodiplophrys: an unusual Sorocarp-producing protist. Mycologia 67(4):873–879. doi:10.2307/3758346

    Article  Google Scholar 

  • Ebersberger I, de Matos Simoes R, Kupczok A, et al (2012) A consistent phylogenetic backbone for the fungi. Mol Biol Evol 29(5):1319–1334. doi:10.1093/molbev/msr285

    Article  CAS  Google Scholar 

  • Eme L, Sharpe SC, Brown MW, Roger AJ (2014) On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb Perspect Biol 6(8):165–180, a016139

    Google Scholar 

  • Erwin DH, Laflamme M, Tweedt SM, et al (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334(6059):1091–1097. doi:10.1126/science.1206375

    Article  CAS  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates Sunderland, Mass

    Google Scholar 

  • Fiz-Palacios O, Romeralo M, Ahmadzadeh A, et al (2013) Did terrestrial diversification of amoebas (amoebozoa) occur in synchrony with land plants? PLoS one 8(9):e74374. doi:10.1371/journal.pone.0074374

    Article  CAS  Google Scholar 

  • Graur D, MartinW(2004) Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet 20(2):80–86. doi:10.1016/j.tig.2003.12.003

    Article  CAS  Google Scholar 

  • HamplV, Hug L, Leigh JW, et al (2009) Phylogenomic analyses support the monophyly of excavata and resolve relationships among eukaryotic “supergroups”. Proc Nat Acad Sci 106(10):3859–3864. doi:10.1073/pnas.0807880106

    Article  CAS  Google Scholar 

  • He D, Fiz-Palacios O, Fu C, et al (2014) An alternative root for the eukaryote tree of life. Curr Biol 24(4):465–470. doi:10.1016/j.cub.2014.01.036

    Article  CAS  Google Scholar 

  • Hedges SB, Blair JE, Venturi ML, et al (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 4:2. doi:10.1186/1471-2148-4-2

    Article  Google Scholar 

  • Herron M (2009) Many from one: lessons from the volvocine algae on the evolution of multicellularity. Commun integr biol 2(4):368–370. doi:10.4161/cib.2.4.8611

    Google Scholar 

  • Herron MD, Hackett JD, Aylward FO, et al (2009) Triassic origin and early radiation of multicellular volvocine algae. Proc Natl Acad Sci U S A 106(9):3254–3258. doi:10.1073/pnas.0811205106

    Article  CAS  Google Scholar 

  • Ho SYW (2009) An examination of phylogenetic models of substitution rate variation among lineages. Biol Lett 5(3):421–424. doi:10.1098/rsbl.2008.0729

    Article  Google Scholar 

  • Inoue J, Yang Z, Donoghue PCJ (2010) The impact of the representation of fossil calibrations on bayesian estimation of species divergence times. Syst Biol 59(1):74–89. doi:10.1093/sysbio/syp078

    Article  Google Scholar 

  • James TY, Pelin A, Bonen L, et al (2013) Shared signatures of parasitism and phylogenomics unite cryptomycota and microsporidia. Curr Biol 23(16):1548–1553. doi:10.1016/j.cub.2013.06.057

    Article  CAS  Google Scholar 

  • Katz LA, Grant JR, Parfrey LW, et al (2012) Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst Biol 61(4):653–660. doi:10.1093/sysbio/sys026

    Article  Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, et al (2005) The tree of eukaryotes. Trends Ecol Evol 20(12):670–676. doi:10.1016/j.tree.2005.09.005

    Google Scholar 

  • Kim E, Simpson AG, Graham LE (2006) Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. Mol Biol Evol 23(12):2455–2466. doi:10.1093/molbev/msl120

    Article  CAS  Google Scholar 

  • Kirk DL (2005) A twelve‐step program for evolving multicellularity and a division of labor. Bioessays 27(3):299–310. doi:10.1002/bies.20197

    Article  Google Scholar 

  • Kishino H, Thorne JL, Bruno WJ (2001) Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol 18(3):352–361

    Article  CAS  Google Scholar 

  • Knoll AH (2011) The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci 39:217–239. doi:10.1146/annurev.earth.031208.100209

    Article  CAS  Google Scholar 

  • Knoll AH, Sperling EA (2014) Oxygen and animals in earth history. Proc Natl Acad Sci U S A 111(11):3907–3908. doi:10.1073/pnas.1401745111

    Article  CAS  Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D, et al (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc Lond B Biol Sci 361(1470):1023–1038. doi:10.1098/rstb.2006.1843

    Article  CAS  Google Scholar 

  • Langley CH, FitchWM(1974) An examination of the constancy of the rate of molecular evolution. J Mol Evol 3(3):161–177. doi:10.1007/BF01797451

    Article  CAS  Google Scholar 

  • Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 125(17):2286–2288. doi:10.1093/bioinformatics/btp368

    Article  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25(7):1307–1320. doi:10.1093/molbev/msn067

    Article  CAS  Google Scholar 

  • Le SQ, Gascuel O, Lartillot N (2008) Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24(20):2317–2323. doi:10.1093/bioinformatics/btn445

    Article  Google Scholar 

  • Leliaert F, Smith DR, Moreau H, et al (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46. doi:10.1080/07352689.2011.615705

    Article  Google Scholar 

  • Lenton TM, Boyle RA, PoultonSW, et al (2014) Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat Geosci 7 257–265. doi:10.1038/ngeo2108

    Article  CAS  Google Scholar 

  • Lepage T, Bryant D, Philippe H, et al (2007) A general comparison of relaxed molecular clock models. Mol Biol Evol 24(12):2669–2680. doi:10.1093/molbev/msm193

    Article  CAS  Google Scholar 

  • Levinton JS (2008) The Cambrian explosion: how do we use the evidence. Bioscience 58(9):855–864. doi:10.1641/B580912

    Article  Google Scholar 

  • Loken C, Gruner D, Groer L, et al (2010) SciNet: lessons learned from building a power-efficient top-20 system and data centre. J Phys: Conf Ser 256(1). doi:10.1088/1742-6596/256/1/012026

    Google Scholar 

  • Love GD, Grosjean E, Stalvies C, et al (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457(7230):718–721. doi:10.1038/nature07673

    Article  CAS  Google Scholar 

  • Magallon S, Hilu KW, Quandt D (2013) Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot 100(3):556–573. doi:10.3732/ajb.1200416

    Article  CAS  Google Scholar 

  • Near TJ, Sanderson MJ (2004) Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. Philos Trans R Soc Lond B Biol Sci 359(1450):1477–1483. doi:10.1098/rstb.2004.1523

    Article  Google Scholar 

  • Near TJ, Meylan PA, Shaffer HB (2005) Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am Nat 165(2):137–146. doi:10.1086/427734

    Article  Google Scholar 

  • Nowak MD (2013) A simple method for estimating informative node age priors for the fossil calibration of molecular divergence time analyses. PLoS ONE 8(6):e66254. doi:10.1371/journal.pone.0066245

    Article  Google Scholar 

  • Olive L, Blanton R (1980) Aerial sorocarp development by the aggregative ciliate, Sorogena stoianovitchae*. J Eukaryot Microbiol 27(3):293–299. doi:10.1111/j.1550-7408.1980.tb04260.x

    Google Scholar 

  • Parfrey LW, Lahr DJG (2013) Multicellularity arose several times in the evolution of eukaryotes (Response to DOI 10.1002/bies.201100187). Bioessays 35(4):339–347. doi:10.1002/bies.201200143

    Google Scholar 

  • Parfrey LW, Katz LA, Grant J, et al (2010) Broadly sampled multi-gene analyses yield a wellresolved eukaryotic tree of life. Syst Biol 59(5):518–533. doi:10.1093/sysbio/syq037

    Article  Google Scholar 

  • Parfrey LW, Lahr DJG, Katz LA, et al (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A 108(33):13624–13629. doi:10.1073/pnas.1110633108

    Article  CAS  Google Scholar 

  • Parham JF, Donoghue PC, Bell CJ, et al (2012) Best practices for justifying fossil calibrations. Syst Biol 61(2):346–359. doi:10.1093/sysbio/syr107

    Article  Google Scholar 

  • Peterson KJ, Butterfield NJ (2005) Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc Natl Acad Sci USA 102(27):9547–9552. doi:10.1073/pnas.0503660102

    Article  CAS  Google Scholar 

  • Rannala B (2002) Identifiability of parameters in MCMC Bayesian inference of phylogeny. Syst Biol 51(5):754–760. doi:10.1080/10635150290102429

    Article  Google Scholar 

  • Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436(7054):1113–1118. doi:10.1038/nature03949

    Article  CAS  Google Scholar 

  • Roger AJ (1999) Reconstructing early events in eukaryotic evolution. Am Nat 154(S4):S146–S163. doi:10.1086/303290

    Google Scholar 

  • Roger AJ, Hug LA (2006) The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation. Philos Trans R Soc B Biol Sci 1470(361):1039–1054. doi:10.1098/rstb.2006.1845

    Article  Google Scholar 

  • Roger AJ, Simpson AGB (2009) Evolution: revisiting the root of the eukaryote tree. Curr Biol 19(4):R165–R167. doi:10.1016/j.cub.2008.12.032

    Article  CAS  Google Scholar 

  • RokasA (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev of Genet 42:235–251. doi:10.1146/annurev.genet.42.110807.091513

    Article  CAS  Google Scholar 

  • Rubinstein CV, Gerrienne P, de la Puente GS, et al (2010) Early middle ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol 188(2):365–369. doi:10.1111/j.1469-8137.2010.03433.x

    Article  CAS  Google Scholar 

  • Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14(12):1218–1231

    Article  CAS  Google Scholar 

  • Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19(1):101–109

    Article  CAS  Google Scholar 

  • Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19(2):301–302. doi:10.1093/bioinformatics/19.2.301

    Article  CAS  Google Scholar 

  • Saunders GW, Hommersand MH (2004) Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. Am J Bot 91(10):1494–1507. doi:10.3732/ajb.91.10.1494

    Article  Google Scholar 

  • Schilde C, Schaap P (2013) The amoebozoa. In: Eichinger L, Rivero F (eds) Dictyostelium discoideum Protocols. Methods in molecular biology, vol 983. Springer, pp 1–15

    Google Scholar 

  • Sebe-Pedros A, Irimia M, del Campo J, et al (2013) Regulated aggregative multicellularity in a close unicellular relative of metazoa. eLife 2:e01287–e01287. doi:10.7554/eLife.01287

    Article  Google Scholar 

  • Shaul S, Graur D (2002) Playing chicken (Gallus gallus): methodological inconsistencies of molecular divergence date estimates due to secondary calibration points. Gene 300(1–2):59–61. doi:10.1016/S0378-1119(02)00851-X

    Article  CAS  Google Scholar 

  • Simpson AG (2003) Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol 53(Pt 6):1759–1777. doi:10.1099/ijs.0.02578-0

    Article  Google Scholar 

  • Simpson AG, Inagaki Y, Roger AJ (2006) Comprehensive multi-gene phylogenies of excavate protists reveal the evolutionary positions of “primitive” eukaryotes. Mol Biol Evol 23(3):615–625. doi:10.1093/molbev/msj068

    Google Scholar 

  • Stajich JE, Berbee ML, Blackwell M, et al (2009) The fungi. Curr Biol 19(18):R840–845. doi:10.1016/j.cub.2009.07.004

    Article  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690

    Article  CAS  Google Scholar 

  • Stechmann A, Cavalier-Smith T (2002) Rooting the eukaryote tree by using a derived gene fusion. Science 297(5578):89–91. doi:10.1126/science.1071196

    Article  CAS  Google Scholar 

  • Stechmann A, Cavalier-Smith T (2003) The root of the eukaryote tree pinpointed. Curr Biol 13(17):R665–R666

    Article  CAS  Google Scholar 

  • Summons RE, Walter MR (1990) Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. American Journal of Science 290A:212–244

    Google Scholar 

  • Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12(5):823–833

    CAS  Google Scholar 

  • Takishita K, Chikaraishi Y, Leger MM, et al (2012) Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen. Biol Direct 7:5. doi:10.1186/1745-6150-7-5

    Article  CAS  Google Scholar 

  • Taylor JW, Berbee ML (2006) Dating divergences in the Fungal tree of life: review and new analyses. Mycologia 98(6). doi:10.3852/mycologia.98.6.838

    Google Scholar 

  • Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15(12):1647–1657

    Article  CAS  Google Scholar 

  • Tsaousis AD, Leger MM, Stairs CA, Roger AJ (2012) The biochemical adaptations of mitochondrion-related organelles of parasitic and free-living microbial eukaryotes to low oxygen environments. In: Altenbach A, Bernhard JM, Seckbach J (eds) Anoxia. Cellular origin, life in extreme habitats and astrobiology, vol 21. Springer, pp 51–81

    Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML, et al (1993) Monophyletic origins of the metazoa: an evolutionary link with fungi. Science 260(5106):340–342. doi:10.1126/science.8469985

    Article  CAS  Google Scholar 

  • Welch JJ, Bromham L (2005) Molecular dating when rates vary. Trends ecol evol 20:320–327. doi:10.1016/j.tree.2005.02.007

    Google Scholar 

  • Xiao S, Knoll AH, Yuan X, et al (2004) Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. Am J Bot 91(2):214–227. doi:10.3732/ajb.91.2.214

    Article  Google Scholar 

  • Yang Z (2006) Computational molecular evolution. Oxford University Press, Oxford

    Google Scholar 

  • Yang Z, Rannala B (2006) Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol 23(1):212–226. doi:10.1093/molbev/msj024

    Article  CAS  Google Scholar 

  • Yoder AD, Yang Z (2000) Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 17(7):1081–1090

    Article  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, et al (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21(5):809–818. doi:10.1093/molbev/msh075

    Article  CAS  Google Scholar 

  • Zhao S, Burki F, Bråte J, et al (2012) Collodictyon—an ancient lineage in the tree of eukaryotes. Mol Biol Evol 29(6):1557–1568. doi:10.1093/molbev/mss001

    Article  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins: A symposium (on evolving genes and proteins), held at the institute of microbiology of rutgers. Academic Press, pp 97–166

    Google Scholar 

  • Zwickl D, Holder M (2004) Model parameterization, prior distributions, and the general time-reversible model in Bayesian phylogenetics. Syst Biol 53(6):877–888. doi:10.1080/10635150490522584

    Article  Google Scholar 

Download references

Acknowledgments

This work and MWB’s postdoctoral fellowship were supported by a Discovery grant (227085-11) and an Accelerator grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) awarded to AJR. LE is supported by a Centre for Comparative Genomics and Evolutionary Bioinformatics postdoctoral fellowship from the Tula Foundation; SCS is supported by a graduate scholarships from NSERC and Killam trusts. AJR acknowledges the Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity and the Canada Research Chairs program. Computations were partially performed on the supercomputers at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund—Research Excellence; and the University of Toronto (Loken et al. 2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Roger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sharpe*, S., Eme*, L., Brown, M., Roger, A. (2015). Timing the Origins of Multicellular Eukaryotes Through Phylogenomics and Relaxed Molecular Clock Analyses. In: Ruiz-Trillo, I., Nedelcu, A. (eds) Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9642-2_1

Download citation

Publish with us

Policies and ethics