Skip to main content

Exploring ATM and Methylation in Cancer: Emphasizing on Brain Tumors

  • Chapter
  • First Online:
  • 1274 Accesses

Abstract

Ataxia-telangiectasia mutated (ATM) molecule governs one of the major cellular DNA repair pathway and is found to be crucial to inhibit cancer progression. Herein, after introducing the basic description about the ATM gene, its protein structure and functions, then we will discuss about the role of ATM gene aberrations in various types of cancers. It will be explained that some overlaps between Ataxia Telangiectasia (AT) patient and some other metabolic disorders relying on the importance of ATM gene mutations in the pathogenesis of AT disease. Finally, the spectrum of ATM promoter methyltion in different types of cancers will be provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFP::

α-feto protein

ALL::

Acute lymphoblastic leukemia

AT::

Ataxia telangiectasia

ATM::

Ataxia-telangiectasia mutated

ATR::

ATM- and RAD3-related

ATRIP::

ATR interacting protein

BASC::

BRCA1 associated surveillance complex

B-CLL::

B-cell chronic lymphocytic leukemia

BNHL::

B-cell non-Hodgkin’s lymphomas

Cdk5::

Cyclin-dependent kinase 5

CtIP::

C-terminal binding protein interacting protein

DDB::

DNA double strand break

DLBCL::

Diffuse large B-cell lymphoma

DNA-PKcs::

DNA-dependent protein kinase catalytic subunit

DNMT1::

DNA methyltransferase 1

4E-BP1::

eIF-4E-binding protein 1

EGC::

Early gastric cancer

ESR1::

Estrogen receptor 1

FAT::

FRAP-ATM-TRRAP

FATC::

FAT-C-terminal

FCL::

Follicular center cell lymphoma

GBM::

Glioblastoma multiform

G-CIMP::

Glioma-CpG island methylator phenotype

G6PD::

Glucose-6-phosphate dehydrogenase

HR::

Homologous recombination

HP1::

Heterochromatin protein 1

HIF::

Hypoxia induced factor

H2O2::

Hydrogen peroxide

HD::

Hodgkin’s diseases

HG-IEN::

High-grade intraepithelial neoplasia

HNPCC::

Hereditary Non-Polyposis Colorectal Cancer

KAP-1::

KRAB associated protein 1

KD::

Kinase domains

LOH::

Loss of heterozygousity

3’UTR::

3’ untranslated region

m-TOR::

Mammalian target of rapamycin

MASA::

Mutant allele-specific PCR amplification

MCL::

Mantle cell lymphoma

MPF::

Metaphase promoting factor

MRX::

Mre11–Rad50–Xrs2

MSI::

Microsatellite instability

mTORC1::

mTOR complex 1

NADPH::

Nicotinamide Adenine Dinucleotide Phosphate

NHEJ::

Non-homologous end-joining

NSCLC::

Non-small cell lung cancer

PIKKs::

Phosphatidylinositol 3-kinase-related kinases

PPP::

Pentose phosphate pathway

pRb::

Retinoblastoma protein

PRD::

PIKK-regulatory domain

Q-FISH::

Quantitative Fluorescence in situ hybridization

TDP1::

Tyrosyl phosphodiesterase 1

TL::

Telomere length

T-PLL::

T-cell prolymphocytic leukemia

TMPRSS2::

ERG: transmembrane protease/serine subfamily member 2: estrogen-regulated genes

Real time PCR::

Real time polymerization chain reaction

RNS::

Reactive nitrogen species

ROS::

Reactive oxygen species

SFN::

Stratifin

References

  • Agarwal C, Tyagi A, Agarwal R (2006) Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Mol Cancer Ther 5:3294–3302

    CAS  PubMed  Google Scholar 

  • Ahnesorg P, Smith P, Jackson SP (2006) XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124:301–313

    CAS  PubMed  Google Scholar 

  • Ai L, Vo QN, Zuo C, Li L, Ling W, Suen JY et al (2004) Ataxia-telangiectasia-mutated (ATM) gene in head and neck squamous cell carcinoma: promoter hypermethylation with clinical correlation in 100 cases. Cancer Epidemiol Biomarkers Prev 13:150–156

    CAS  PubMed  Google Scholar 

  • Ambrose M, Goldstine JV, Gatti RA (2007) Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum Mol Genet 16:2154–2164

    CAS  PubMed  Google Scholar 

  • Angele S, Falconer A, Edwards SM, Dork T, Bremer M, Moullan N et al (2004) ATM polymorphisms as risk factors for prostate cancer development. Br J Cancer 91:783–787

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    CAS  PubMed  Google Scholar 

  • Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F et al (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86:159–171

    CAS  PubMed  Google Scholar 

  • Barlow C, Liyanage M, Moens PB, Deng CX, Ried T, Wynshaw-Boris A (1997) Partial rescue of the prophase I defects of Atm-deficient mice by p53 and p21 null alleles. Nat Genet 17:462–466

    CAS  PubMed  Google Scholar 

  • Barlow C, Dennery PA, Shigenaga MK, Smith MA, Morrow JD, Roberts LJ et al (1999) Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc Natl Acad Sci U S A 96:9915–9919

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barlow C, Ribaut-Barassin C, Zwingman TA, Pope AJ, Brown KD, Owens JW et al (2000) ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc Natl Acad Sci U S A 97:871–876

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J (2001) Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 490:117–122

    CAS  PubMed  Google Scholar 

  • Barzilai A, Rotman G, Shiloh Y (2002) ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair (Amst) 1:3–25

    CAS  Google Scholar 

  • Bennetzen MV, Larsen DH, Bunkenborg J, Bartek J, Lukas J, Andersen JS (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9:1314–1323

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bensimon A, Schmidt A, Ziv Y, Elkon R, Wang SY, Chen DJ et al (2010) ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci Signal 3:rs3

    CAS  PubMed  Google Scholar 

  • Bensimon A, Aebersold R, Shiloh Y (2011) Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett 585:1625–1639

    CAS  PubMed  Google Scholar 

  • Boehrs JK, He J, Halaby MJ, Yang DQ (2007) Constitutive expression and cytoplasmic compartmentalization of ATM protein in differentiated human neuron-like SH-SY5Y cells. J Neurochem 100:337–345

    CAS  PubMed  Google Scholar 

  • Borghesani PR, Alt FW, Bottaro A, Davidson L, Aksoy S, Rathbun GA et al (2000) Abnormal development of Purkinje cells and lymphocytes in Atm mutant mice. Proc Natl Acad Sci U S A 97:3336–3341

    PubMed Central  CAS  PubMed  Google Scholar 

  • Broeks A, Russell NS, Floore AN, Urbanus JH, Dahler EC, van TVMB et al (2000a) Increased risk of breast cancer following irradiation for Hodgkin’s disease is not a result of ATM germline mutations. Int J Radiat Biol 76:693–698

    CAS  PubMed  Google Scholar 

  • Broeks A, Urbanus JH, Floore AN, Dahler EC, Klijn JG, Rutgers EJ (2000b) ATM-heterozygous germline mutations contribute to breast cancer-susceptibility. Am J Hum Genet 66:494–500

    PubMed Central  CAS  PubMed  Google Scholar 

  • Broeks A, Urbanus JH, de Knijff P, Devilee P, Nicke M, Klopper K et al (2003) IVS10-6T>G, an ancient ATM germline mutation linked with breast cancer. Hum Mutat 21:521–528

    CAS  PubMed  Google Scholar 

  • Brown KD, Ziv Y, Sadanandan SN, Chessa L, Collins FS, Shiloh Y et al (1997) The ataxia-telangiectasia gene product, a constitutively expressed nuclear protein that is not up-regulated following genome damage. Proc Natl Acad Sci U S A 94:1840–1845

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O (2006) Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124:287–299

    CAS  PubMed  Google Scholar 

  • Bullrich F, Rasio D, Kitada S, Starostik P, Kipps T, Keating M et al (1999) ATM mutations in B-cell chronic lymphocytic leukemia. Cancer Res 59:24–27

    CAS  PubMed  Google Scholar 

  • Cam H, Easton JB, High A, Houghton PJ (2010) mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol Cell 40:509–520

    CAS  PubMed  Google Scholar 

  • Cavero S, Chahwan C, Russell P (2007) Xlf1 is required for DNA repair by nonhomologous end joining in Schizosaccharomyces pombe. Genetics 175:963–967

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chenevix-Trench G, Spurdle AB, Gatei M, Kelly H, Marsh A, Chen X et al (2002) Dominant negative ATM mutations in breast cancer families. J Natl Cancer Inst 94:205–215

    PubMed  Google Scholar 

  • Chiu YT, Liu J, Tang K, Wong YC, Khanna KK, Ling MT (2012) Inactivation of ATM/ATR DNA damage checkpoint promotes androgen induced chromosomal instability in prostate epithelial cells. PLoS ONE 7:e51108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    PubMed Central  CAS  PubMed  Google Scholar 

  • Concannon P, Gatti RA (1997) Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia. Hum Mutat 10:100–107

    CAS  PubMed  Google Scholar 

  • Cuneo A, Bigoni R, Rigolin GM, Roberti MG, Milani R, Bardi A (2000) Acquired chromosome 11q deletion involving the ataxia teleangiectasia locus in B-cell non-Hodgkin’s lymphoma: correlation with clinicobiologic features. J Clin Oncol 18:2607–2614

    CAS  PubMed  Google Scholar 

  • Daniel JA, Pellegrini M, Lee JH, Paull TT, Feigenbaum L, Nussenzweig A et al (2008) Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo. J Cell Biol 183:777–783

    PubMed Central  CAS  PubMed  Google Scholar 

  • Das BB, Antony S, Gupta S, Dexheimer TS, Redon CE, Garfield S et al (2009) Optimal function of the DNA repair enzyme TDP1 requires its phosphorylation by ATM and/or DNA-PK. EMBO J 28:3667–3680

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deng CX (2006) BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 34:1416–1426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ditch S, Paull TT (2012) The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci 37:15–22

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dvir A, Peterson SR, Knuth MW, Lu H, Dynan WS (1992) Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc Natl Acad Sci U S A 89:11920–11924

    PubMed Central  CAS  PubMed  Google Scholar 

  • Easton DF (1994) Cancer risks in A-T heterozygotes. Int J Radiat Biol 66:S177–182

    CAS  PubMed  Google Scholar 

  • Elson A, Wang Y, Daugherty CJ, Morton CC, Zhou F, Campos-Torres J et al (1996) Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci U S A 93:13084–13089

    PubMed Central  CAS  PubMed  Google Scholar 

  • Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605–611

    CAS  PubMed  Google Scholar 

  • Fang NY, Greiner TC, Weisenburger DD, Chan WC, Vose JM, Smith LM (2003) Oligonucleotide microarrays demonstrate the highest frequency of ATM mutations in the mantle cell subtype of lymphoma. Proc Natl Acad Sci U S A 100:5372–5377

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fassan M, Simbolo M, Bria E, Mafficini A, Pilotto S, Capelli P (2013) High-throughput mutation profiling identifies novel molecular dysregulation in high-grade intraepithelial neoplasia and early gastric cancers. Gastric Cancer 17:442–449

    PubMed  Google Scholar 

  • Filipponi D, Muller J, Emelyanov A, Bulavin DV (2013) Wip1 controls global heterochromatin silencing via ATM/BRCA1-dependent DNA methylation. Cancer Cell 24:528–541

    CAS  PubMed  Google Scholar 

  • FitzGerald MG, Bean JM, Hegde SR, Unsal H, MacDonald DJ, Harkin DP et al (1997) Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat Genet 15:307–310

    CAS  PubMed  Google Scholar 

  • Flanagan JM, Munoz-Alegre M, Henderson S, Tang T, Sun P, Johnson N et al (2009) Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Hum Mol Genet 18:1332–1342

    PubMed Central  CAS  PubMed  Google Scholar 

  • Flanagan JM, Wilhelm-Benartzi CS, Metcalf M, Kaye SB, Brown R (2013) Association of somatic DNA methylation variability with progression-free survival and toxicity in ovarian cancer patients. Ann Oncol 24:2813–2818

    CAS  PubMed  Google Scholar 

  • Furuta T, Takemura H, Liao ZY, Aune GJ, Redon C, Sedelnikova OA et al (2003) Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. J Biol Chem 278:20303–20312

    CAS  PubMed  Google Scholar 

  • Gao G, Bracken AP, Burkard K, Pasini D, Classon M, Attwooll C et al (2003) NPAT expression is regulated by E2F and is essential for cell cycle progression. Mol Cell Biol 23:2821–2833

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gatti RA, Tward A, Concannon P (1999) Cancer risk in ATM heterozygotes: a model of phenotypic and mechanistic differences between missense and truncating mutations. Mol Genet Metab 68:419–423

    CAS  PubMed  Google Scholar 

  • Gilad S, Chessa L, Khosravi R, Russell P, Galanty Y, Piane M et al (1998) Genotype-phenotype relationships in ataxia-telangiectasia and variants. Am J Hum Genet 62:551–561

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GB et al (2004) Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J 23:4451–4461

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M et al (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167–177

    CAS  PubMed  Google Scholar 

  • Gottlieb TM, Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72:131–142

    CAS  PubMed  Google Scholar 

  • Gronbaek K, Worm J, Ralfkiaer E, Ahrenkiel V, Hokland P, Guldberg P (2002) ATM mutations are associated with inactivation of the ARF-TP53 tumor suppressor pathway in diffuse large B-cell lymphoma. Blood 100:1430–1437

    CAS  PubMed  Google Scholar 

  • Guarini A, Marinelli M, Tavolaro S, Bellacchio E, Magliozzi M, Chiaretti S et al (2012) ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. Haematologica 97:47–55

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gumy Pause F, Wacker P, Maillet P, Betts D, Sappino AP (2003) ATM gene alterations in childhood acute lymphoblastic leukemias. Hum Mutat 21:554

    PubMed  Google Scholar 

  • Gumy-Pause F, Wacker P, Sappino AP (2004) ATM gene and lymphoid malignancies. Leukemia 18:238–242

    CAS  PubMed  Google Scholar 

  • Guo Z, Deshpande R, Paull TT (2010) ATM activation in the presence of oxidative stress. Cell Cycle 9:4805–4811

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haidar MA, Kantarjian H, Manshouri T, Chang CY, O’Brien S, Freireich E (2000) ATM gene deletion in patients with adult acute lymphoblastic leukemia. Cancer 88:1057–1062

    CAS  PubMed  Google Scholar 

  • Hampl M, Hampl JA, Schwarz P, Frank S, Hahn M, Schackert G et al (1998) Accumulation of genetic alterations in brain metastases of sporadic breast carcinomas is associated with reduced survival after metastasis. Invasion Metastasis 18:81–95

    PubMed  Google Scholar 

  • Hampton GM, Mannermaa A, Winqvist R, Alavaikko M, Blanco G, Taskinen PJ et al (1994) Loss of heterozygosity in sporadic human breast carcinoma: a common region between 11q22 and 11q23.3. Cancer Res 54:4586–4589

    CAS  PubMed  Google Scholar 

  • Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ (1998) Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280:1089–1091

    CAS  PubMed  Google Scholar 

  • Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA et al (2002) The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–566

    CAS  PubMed  Google Scholar 

  • Inomata K, Aoto T, Binh NT, Okamoto N, Tanimura S, Wakayama T et al (2009) Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137:1088–1099

    CAS  PubMed  Google Scholar 

  • Inskip HM, Kinlen LJ, Taylor AM, Woods CG, Arlett CF (1999) Risk of breast cancer and other cancers in heterozygotes for ataxia-telangiectasia. Br J Cancer 79:1304–1307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kadyk LC, Hartwell LH (1992) Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132:387–402

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kang B, Guo RF, Tan XH, Zhao M, Tang ZB, Lu YY (2008) Expression status of ataxia-telangiectasia-mutated gene correlated with prognosis in advanced gastric cancer. Mutat Res 638:17–25

    CAS  PubMed  Google Scholar 

  • Kapp LN, Painter RB, Yu L-C, van Loon N, Richard CW, James MR, Cox DR, Murnane JP (1992) Cloning of a candidate gene for ataxia-telangiectasia group D. Am J Hum Genet 51:45–54

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khanna KK (2000) Cancer risk and the ATM gene: a continuing debate. J Natl Cancer Inst 92:795–802

    CAS  PubMed  Google Scholar 

  • Kheirollahi M, Mehr-Azin M, Kamalian N, Mehdipour P (2011) Expression of cyclin D2, P53, Rb and ATM cell cycle genes in brain tumors. Med Oncol 28:7–14

    CAS  PubMed  Google Scholar 

  • Kim ST, Lim DS, Canman CE, Kastan MB (1999) Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem 274:37538–37543

    CAS  PubMed  Google Scholar 

  • Kim WJ, Vo QN, Shrivastav M, Lataxes TA, Brown KD (2002) Aberrant methylation of the ATM promoter correlates with increased radiosensitivity in a human colorectal tumor cell line. Oncogene 21:3864–3871

    CAS  PubMed  Google Scholar 

  • Kim JW, Im SA, Kim MA, Cho HJ, Lee DW, Lee KH (2013) Ataxia-telangiectasia-mutated protein expression with microsatellite instability in gastric cancer as prognostic marker. Int J Cancer 134:72–80

    CAS  PubMed  Google Scholar 

  • Kim JW, Im SA, Kim MA, Cho HJ, Lee DW, Lee KH et al (2014) Ataxia-telangiectasia-mutated protein expression with microsatellite instability in gastric cancer as prognostic marker. Int J Cancer 134:72–80

    PubMed  Google Scholar 

  • Kloosterhof NK, de Rooi JJ, Kros M, Eilers PH, Sillevis Smitt PA, van den Bent MJ et al (2013) Molecular subtypes of glioma identified by genome-wide methylation profiling. Genes Chromosomes Cancer 52:665–674

    CAS  PubMed  Google Scholar 

  • Kozlov SV, Graham ME, Jakob B, Tobias F, Kijas AW, Tanuji M (2011) Autophosphorylation and ATM activation: additional sites add to the complexity. J Biol Chem 286:9107–9119

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lai RK, Chen Y, Guan X, Nousome D, Sharma C, Canoll P (2014) Genome-wide methylation analyses in glioblastoma multiforme. PLoS One 9:e89376

    PubMed Central  PubMed  Google Scholar 

  • Lavin MF, Gueven N, Bottle S, Gatti RA (2007) Current and potential therapeutic strategies for the treatment of ataxia-telangiectasia. Br Med Bull 81-82:129–147

    PubMed  Google Scholar 

  • Lees-Miller SP, Meek K (2003) Repair of DNA double strand breaks by non-homologous end joining. Biochimie 85:1161–1173

    CAS  PubMed  Google Scholar 

  • Li L, Zou L (2005) Sensing, signaling, and responding to DNA damage: organization of the checkpoint pathways in mammalian cells. J Cell Biochem 94:298–306

    CAS  PubMed  Google Scholar 

  • Li J, Han YR, Plummer MR, Herrup K (2009) Cytoplasmic ATM in neurons modulates synaptic function. Curr Biol 19:2091–2096

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liberzon E, Avigad S, Cohen IJ, Yaniv I, Michovitz S, Zaizov R (2003) ATM gene mutations are not involved in medulloblastoma in children. Cancer Genet Cytogenet 146:167–169

    CAS  PubMed  Google Scholar 

  • Lieber MR (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem 283:1–5

    CAS  PubMed  Google Scholar 

  • Lukas C, Falck J, Bartkova J, Bartek J, Lukas J (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5:255–260

    CAS  PubMed  Google Scholar 

  • Manolis KG, Nimmo ER, Hartsuiker E, Carr AM, Jeggo PA, Allshire RC (2001) Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J 20:210–221

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marzano V, Santini S, Rossi C, Zucchelli M, D’Alessandro A, Marchetti C et al (2012) Proteomic profiling of ATM kinase proficient and deficient cell lines upon blockage of proteasome activity. J Proteomics 75:4632–4646

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matei IR, Guidos CJ, Danska JS (2006) ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol Rev 209:142–158

    CAS  PubMed  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166

    CAS  PubMed  Google Scholar 

  • McGowan CH, Russell P (2004) The DNA damage response: sensing and signaling. Curr Opin Cell Biol 16:629–633

    CAS  PubMed  Google Scholar 

  • McKinnon PJ (2004) ATM and ataxia telangiectasia. EMBO Rep 5:772–776

    PubMed Central  CAS  PubMed  Google Scholar 

  • McKinnon PJ (2012) ATM and the molecular pathogenesis of ataxia telangiectasia. Annu Rev Pathol 7:303–321

    CAS  PubMed  Google Scholar 

  • Mehdipour P, Habibi L, Mohammadi-Asl J, Kamalian N, Mehrazin M (2008) Three-hit hypothesis in astrocytoma: tracing the polymorphism D1853N in ATM gene through a pedigree of the proband affected with primary brain tumor. J Cancer Res Clin Oncol 134:1173–1180

    CAS  PubMed  Google Scholar 

  • Mehdipour P, Mohammadi-Asl J, Atri M (2011a) Importance of ATM gene as a susceptible trait: predisposition role of D1853N polymorphism in breast cancer. Med Oncol 3: 733–737

    Google Scholar 

  • Mehdipour P, Kheirollahi M, Mehrazin M, Kamalian N, Atri M (2011b) Evolutionary hypothesis of telomere length in primary breast cancer and brain tumour patients: a tracer for genomic-tumour heterogeneity and instability. Cell Biol Int 35:915–925

    PubMed  Google Scholar 

  • Mehdipour P, Karami F, Javan F, Mehrazin M (2014) Linking ATM promoter methylation to cell cycle proteinexpression: cellular molecular triangle correlation in atm territory. Mol Neurobiol. doi:10.1007/s12035-014-8864-9

    Google Scholar 

  • Meyer A, Wilhelm B, Dork T, Bremer M, Baumann R, Karstens JH et al (2007) ATM missense variant P1054R predisposes to prostate cancer. Radiother Oncol 83:283–288

    CAS  PubMed  Google Scholar 

  • Mongiardi MP, Stagni V, Natoli M, Giaccari D, D’Agnano I, Falchetti ML et al (2011) Oxygen sensing is impaired in ATM-defective cells. Cell Cycle 10:4311–4320

    CAS  PubMed  Google Scholar 

  • Mu JJ, Wang Y, Luo H, Leng M, Zhang J, Yang T et al (2007) A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J Biol Chem 282:17330–17334

    CAS  PubMed  Google Scholar 

  • Muraki K, Han L, Miller D, Murnane JP (2013) The role of ATM in the deficiency in nonhomologous end-joining near telomeres in a human cancer cell line. PLoS Genet 9:e1003386

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nevanlinna H, Bartek J (2006) The CHEK2 gene and inherited breast cancer susceptibility. Oncogene 25:5912–5919

    CAS  PubMed  Google Scholar 

  • Noon AT, Shibata A, Rief N, Lobrich M, Stewart GS, Jeggo PA et al (2010) 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 12:177–184

    CAS  PubMed  Google Scholar 

  • Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522

    PubMed Central  CAS  PubMed  Google Scholar 

  • Offit K, Gilad S, Paglin S, Kolachana P, Roisman LC, Nafa K et al (2002) Rare variants of ATM and risk for Hodgkin’s disease and radiation-associated breast cancers. Clin Cancer Res 8:3813–3819

    CAS  PubMed  Google Scholar 

  • Ogawa T, Yu X, Shinohara A, Egelman EH (1993) Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259:1896–1899

    CAS  PubMed  Google Scholar 

  • Ouchi T (2006) BRCA1 phosphorylation: biological consequences. Cancer Biol Ther 5:470–475

    CAS  PubMed  Google Scholar 

  • Pandita TK, Dhar S (2000) Influence of ATM function on interactions between telomeres and nuclear matrix. Radiat Res 154:133–139

    CAS  PubMed  Google Scholar 

  • Patel AY, McDonald TM, Spears LD, Ching JK, Fisher JS (2011) Ataxia telangiectasia mutated influences cytochrome c oxidase activity. Biochem Biophys Res Commun 405:599–603

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paulikova S, Petera J, Sirak I, Vosmik M, Drastikova M, Dusek L et al (2014) ATM and TGFB1 genes polymorphisms in prediction of late complications of chemoradiotherapy in patients with locally advanced cervical cancer. Neoplasma 61:70–76

    CAS  PubMed  Google Scholar 

  • Pecker I, Avraham KB, Gilbert DJ, Savitsky K, Rotman G, Harnik R (1996) Identification and chromosomal localization of Atm, the mouse homolog of the ataxia-telangiectasia gene. Genomics 35:39–45

    CAS  PubMed  Google Scholar 

  • Peng G, Yim EK, Dai H, Jackson AP, Burgt I, Pan MR et al (2009) BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat Cell Biol 11:865–872

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perry J, Kleckner N (2003) The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 112:151–155

    CAS  PubMed  Google Scholar 

  • Pitcher RS, Wilson TE, Doherty AJ (2005) New insights into NHEJ repair processes in prokaryotes. Cell Cycle 4:675–678

    CAS  PubMed  Google Scholar 

  • Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M et al (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38:873–875

    CAS  PubMed  Google Scholar 

  • Reznick RM, Shulman GI (2006) The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol 574:33–39

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rio PG, Pernin D, Bay JO, Albuisson E, Kwiatkowski F, De Latour M, Bernard-Gallon et al (1998) Loss of heterozygosity of BRCA1, BRCA2 and ATM genes in sporadic invasive ductal breast carcinoma. Int J Oncol 13:849–853

    Google Scholar 

  • Rivera-Calzada A, Maman JD, Spagnolo L, Pearl LH, Llorca O (2005) Three-dimensional structure and regulation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Structure 13:243–255

    CAS  PubMed  Google Scholar 

  • Roberts NJ, Jiao Y, Yu J, Kopelovich L, Petersen GM, Bondy ML et al (2012) ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2:41–46

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roy K, Wang L, Makrigiorgos GM, Price BD (2006) Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity. Biochem Biophys Res Commun 344:821–826

    CAS  PubMed  Google Scholar 

  • Safar AM, Spencer H, Su X, Cooney CA, Shwaiki A, Fan CY (2007) Promoter hypermethylation for molecular nodal staging in non-small cell lung cancer. Arch Pathol Lab Med 131:936–941

    CAS  PubMed  Google Scholar 

  • Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L et al (1995a) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753

    CAS  PubMed  Google Scholar 

  • Savitsky K, Sfez S, Tagle DA, Ziv Y, Sartiel A, Collins FS et al (1995b) The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet 4:2025–2032

    CAS  PubMed  Google Scholar 

  • Schaffner C, Stilgenbauer S, Rappold GA, Dohner H, Lichter P (1999) Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood 94:748–753

    CAS  PubMed  Google Scholar 

  • Schalch DS, McFarlin DE, Barlow MH (1970) An unusual form of diabetes mellitus in ataxia telangiectasia. N Engl J Med 282:1396–1402

    CAS  PubMed  Google Scholar 

  • Schon EA, Manfredi G (2003) Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 111:303–312

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shamma A, Suzuki M, Hayashi N, Kobayashi M, Sasaki N, Nishiuchi T et al (2013) ATM mediates pRB function to control DNMT1 protein stability and DNA methylation. Mol Cell Biol 33:3113–3124

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    CAS  PubMed  Google Scholar 

  • Shreeram S, Demidov ON, Hee WK, Yamaguchi H, Onishi N, Kek C et al (2006) Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell 23:757–764

    CAS  PubMed  Google Scholar 

  • Silva E, Tiong S, Pedersen M, Homola E, Royou A, Fasulo B et al (2004) ATM is required for telomere maintenance and chromosome stability during Drosophila development. Curr Biol 14:1341–1347

    CAS  PubMed  Google Scholar 

  • So S, Davis AJ, Chen DJ (2009) Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites. J Cell Biol 187:977–990

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sommer SS, Jiang Z, Feng J, Buzin CH, Zheng J, Longmate J et al (2003) ATM missense mutations are frequent in patients with breast cancer. Cancer Genet Cytogenet 145:115–120

    CAS  PubMed  Google Scholar 

  • Sonoda E, Takata M, Yamashita YM, Morrison C, Takeda S (2001) Homologous DNA recombination in vertebrate cells. Proc Natl Acad Sci U S A 98:8388–8394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stankovic T, Kidd AM, Sutcliffe A, McGuire GM, Robinson P, Weber P (1998) ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet 62:334–345

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stankovic T, Stewart GS, Fegan C, Biggs P, Last J, Byrd PJ (2002) Ataxia telangiectasia mutated-deficient B-cell chronic lymphocytic leukemia occurs in pregerminal center cells and results in defective damage response and unrepaired chromosome damage. Blood 99:300–309

    CAS  PubMed  Google Scholar 

  • Stankovic T, Hubank M, Cronin D, Stewart GS, Fletcher D, Bignell CR et al (2004) Microarray analysis reveals that TP53- and ATM-mutant B-CLLs share a defect in activating proapoptotic responses after DNA damage but are distinguished by major differences in activating prosurvival responses. Blood 103:291–300

    CAS  PubMed  Google Scholar 

  • Starostik P, Manshouri T, O’Brien S, Freireich E, Kantarjian H, Haidar M, Lerner S (1998) Deficiency of the ATM protein expression defines an aggressive subgroup of B-cell chronic lymphocytic leukemia. Cancer Res 58:4552–4557

    CAS  PubMed  Google Scholar 

  • Stewart GS, Last JI, Stankovic T, Haites N, Kidd AM, Byrd PJ et al (2001) Residual ataxia telangiectasia mutated protein function in cells from ataxia telangiectasia patients, with 5762ins137 and 7271T→G mutations, showing a less severe phenotype. J Biol Chem 276:30133–30141

    CAS  PubMed  Google Scholar 

  • Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421:961–966

    CAS  PubMed  Google Scholar 

  • Stilgenbauer S, Schaffner C, Litterst A, Liebisch P, Gilad S, Bar-Shira A et al (1997) Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med 3:1155–1159

    CAS  PubMed  Google Scholar 

  • Stoppa-Lyonnet D, Lauge A, Sigaux F, Stern MH (2000) No germline ATM mutation in a series of 16T-cell prolymphocytic leukemias. Blood 96:374–376

    CAS  PubMed  Google Scholar 

  • Sung P (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265:1241–1243

    CAS  PubMed  Google Scholar 

  • Swift M, Reitnauer PJ, Morrell D, Chase CL (1987) Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 316:1289–1294

    CAS  PubMed  Google Scholar 

  • Teraoka SN, Malone KE, Doody DR, Suter NM, Ostrander EA, Daling JR (2001) Increased frequency of ATM mutations in breast carcinoma patients with early onset disease and positive family history. Cancer 92:479–487

    CAS  PubMed  Google Scholar 

  • Thompson D, Duedal S, Kirner J, McGuffog L, Last J, Reiman A et al (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97:813–822

    CAS  PubMed  Google Scholar 

  • Toyoshima M, Hara T, Zhang H, Yamamoto T, Akaboshi S, Nanba E et al (1998) Ataxia-telangiectasia without immunodeficiency: novel point mutations within and adjacent to the phosphatidylinositol 3-kinase-like domain. Am J Med Genet 75:141–144

    CAS  PubMed  Google Scholar 

  • Treilleux I, Chapot B, Goddard S, Pisani P, Angele S, Hall J (2007) The molecular causes of low ATM protein expression in breast carcinoma; promoter methylation and levels of the catalytic subunit of DNA-dependent protein kinase. Histopathology 51:63–69

    CAS  PubMed  Google Scholar 

  • Tribius S, Pidel A, Casper D (2001) ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture. Int J Radiat Oncol Biol Phys 50:511–523

    CAS  PubMed  Google Scholar 

  • Tsuchida R, Yamada T, Takagi M, Shimada A, Ishioka C, Katsuki Y et al (2002) Detection of ATM gene mutation in human glioma cell line M059J by a rapid frameshift/stop codon assay in yeast. Radiat Res 158:195–201

    CAS  PubMed  Google Scholar 

  • Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC (2012) Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119:1490–1500

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vaziri H, West MD, Allsopp RC, Davison TS, Wu YS, Arrowsmith CH (1997) ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J 16:6018–6033

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vo QN, Kim WJ, Cvitanovic L, Boudreau DA, Ginzinger DG, Brown KD (2004) The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene 23:9432–9437

    CAS  PubMed  Google Scholar 

  • Vorechovsky I, Luo L, Dyer MJ, Catovsky D, Amlot PL, Yaxley JC et al (1997) Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat Genet 17:96–99

    CAS  PubMed  Google Scholar 

  • Wang B, Matsuoka S, Carpenter PB, Elledge SJ (2002) 53BP1, a mediator of the DNA damage checkpoint. Science 298:1435–1438

    CAS  PubMed  Google Scholar 

  • Wang H, Wang S, Shen L, Chen Y, Zhang X, Zhou J, Wang Z et al (2010) Chk2 down-regulation by promoter hypermethylation in human bulk gliomas. Life Sci 86:185–191

    CAS  PubMed  Google Scholar 

  • Wang X, Zeng L, Wang J, Chau JF, Lai KP, Jia D et al (2011) A positive role for c-Abl in Atm and Atr activation in DNA damage response. Cell Death Differ 18:5–15

    PubMed Central  PubMed  Google Scholar 

  • Watters D, Kedar P, Spring K, Bjorkman J, Chen P, Gatei M et al (1999) Localization of a portion of extranuclear ATM to peroxisomes. J Biol Chem 274:34277–34282

    CAS  PubMed  Google Scholar 

  • Williams RS, Dodson GE, Limbo O, Yamada Y, Williams JS, Guenther G et al (2009) Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139:87–99

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wiltzius JJ, Hohl M, Fleming JC, Petrini JH (2005) The Rad50 hook domain is a critical determinant of Mre11 complex functions. Nat Struct Mol Biol 12:403–407

    CAS  PubMed  Google Scholar 

  • Wu ZH, Shi Y, Tibbetts RS, Miyamoto S (2006) Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 311:1141–1146

    CAS  PubMed  Google Scholar 

  • Wu ZH, Wong ET, Shi Y, Niu J, Chen Z, Miyamoto S (2010) ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol Cell 40:75–86

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Chen Y, Lu LY, Wu Y, Paulsen MT, Ljungman M et al (2011) Chfr and RNF8 synergistically regulate ATM activation. Nat Struct Mol Biol 18:761–768

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383

    CAS  PubMed  Google Scholar 

  • Wyman MP, Pirola L (1998) Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1436:127–150

    Google Scholar 

  • Yang DQ, Kastan MB (2000) Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol 2:893–898

    CAS  PubMed  Google Scholar 

  • Yang DQ, Halaby MJ, Li Y, Hibma JC, Burn P (2011) Cytoplasmic ATM protein kinase: an emerging therapeutic target for diabetes, cancer and neuronal degeneration. Drug Discov Today 16:332–338

    CAS  PubMed  Google Scholar 

  • Zhang N, Chen P, Khanna KK, Scott S, Gatei M, Kozlov S, Watters D (1997) Isolation of full-length ATM cDNA and correction of the ataxia-telangiectasia cellular phenotype. Proc Natl Acad Sci U S A 94:8021–8026

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang T, Nirantar S, Lim HH, Sinha I, Surana U (2009) DNA damage checkpoint maintains CDH1 in an active state to inhibit anaphase progression. Dev Cell 17:541–551

    CAS  PubMed  Google Scholar 

  • Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC et al (2006) Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 8:870–876

    CAS  PubMed  Google Scholar 

  • Zoncu R, Efeyan A, Sabatini DM (2010) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Mehdipour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mehdipour, P., Karami, F. (2015). Exploring ATM and Methylation in Cancer: Emphasizing on Brain Tumors. In: Mehdipour, P. (eds) Epigenetics Territory and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9639-2_6

Download citation

Publish with us

Policies and ethics