Skip to main content

Reciprocal Interconnection of miRNome-Epigenome in Cancer Pathogenesis and Its Therapeutic Potential

  • Chapter
  • First Online:
Epigenetics Territory and Cancer

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. miRNAs are regarded both as targets of epigenetic changes and as regulators of the epigenetic machinery (epi-miRNAs ). Studies over the past decade have demonstrated that deregulated cross-talk between miRNome-epigenome is functionally important in the pathogenesis of most human malignancies. While some miRNAs may be directly involved in cancer, others may be involved by targeting the key players of carcinogenesis, including epigenetic machinery effectors, cancer oncogenes and/or tumor suppressors. Decoding the miRNome-epigenome interaction and comprehension of this reciprocal interconnection will open new avenues to better understanding of human cancerogenesis, leading to introduction and addition of novel promising drugs to the growing list of other new anti-cancer products. This chapter will explain the complicated network of reciprocal interconnections between miRNAs and epigenetics; also it will focus on those miRNAs which undergo epigenetic changes in some of the most common human malignancies. Further understanding of epigenetic mechanisms in miRNA regulation along with the effect of epigenetic drugs on specific miRNAs might help to reset the abnormal cancer epigenome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, Martin-Subero JI, Cordeu L, Gárate L et al (2009) Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 69:4443–4453

    CAS  PubMed  Google Scholar 

  • Alpini G, Glaser SS, Zhang JP, Francis H, Han Y, Gong J et al (2011) Regulation of placenta growth factor by microRNA-125b in hepatocellular cancer. J Hepatol 55:1339–1345

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alvarez S, Suela J, Valencia A, Fernández A, Wunderlich M, Agirre X et al (2010) DNA methylation profiles and their relationship with cytogenetic status in adult acute myeloid leukemia. PloS One 5:e12197

    PubMed Central  PubMed  Google Scholar 

  • Ando T, Yoshida T, Enomoto S, Asada K, Tatematsu M, Ichinose M et al (2009) DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer 124:2367–2374

    CAS  PubMed  Google Scholar 

  • Asangani IA, Harms PW, Dodson L, Pandhi M, Kunju LP, Maher CA et al (2012) Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget 3:1011

    PubMed Central  PubMed  Google Scholar 

  • Augoff K, McCue B, Plow EF, Sossey-Alaoui K (2012) miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer 11:5

    PubMed Central  CAS  PubMed  Google Scholar 

  • Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR et al (2010) Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 70:6609–6618

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J et al (2009) Epigenetic regulation of microRNA expression in colorectal cancer. Int j cancer 125:2737–2743

    CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benetti R, Gonzalo S, Jaco I, Munoz P, Gonzalez S, Schoeftner S et al (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15:998

    CAS  PubMed  Google Scholar 

  • Bhatia S, Kaul D, Varma N (2010) Potential tumor suppressive function of miR-196b in B-cell lineage acute lymphoblastic leukemia. Mol Cell Biochem 340:97–106

    CAS  PubMed  Google Scholar 

  • Bhatnagar N, Li X, Padi S, Zhang Q, Tang M, Guo B (2010). Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis 1: e105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boumber Y, Issa JP (2011) Epigenetics in cancer: what's the future? Int Soc Cell 25(220–226):228 (Williston Park)

    Google Scholar 

  • Braconi C, Huang N, Patel T (2010) MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51:881–890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M et al (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67:1419–1423

    CAS  PubMed  Google Scholar 

  • Bueno MJ, Pérez de Castro I, Gómez de Cedrón M, Santos J, Calin GA, Cigudosa JC et al (2008) Genetic and Epigenetic Silencing of MicroRNA-203 EnhancesABL1andBCR-ABL1Oncogene Expression. Cancer cell 13:496–506

    CAS  PubMed  Google Scholar 

  • Buurman R, Gurlevik E, Schaffer V, Eilers M, Sandbothe M, Kreipe H et al (2012) Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology 143(811–820):e811–e815

    Google Scholar 

  • Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    CAS  PubMed  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ceppi P, Mudduluru G, Kumarswamy R, Rapa I, Scagliotti GV, Papotti M et al (2010) Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res 8:1207–1216

    CAS  PubMed  Google Scholar 

  • Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang KW, Chu TH, Gong NR, Chiang WF, Yang CC, Liu CJ et al (2013) miR-370 modulates insulin receptor substrate-1 expression and inhibits the tumor phenotypes of oral carcinoma. Oral Dis 19:611–619

    PubMed  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Gao W, Luo J, Tian R, Sun H, Zou S (2011) Methyl-CpG binding protein MBD2 is implicated in methylation-mediated suppression of miR-373 in hilar cholangiocarcinoma. Oncol Rep 25:443–451

    CAS  PubMed  Google Scholar 

  • Chim C, Wong K, Qi Y, Loong F, Lam W, Wong L et al (2010) Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 31:745–750

    CAS  PubMed  Google Scholar 

  • Chim CS, Wong KY, Leung CY, Chung LP, Hui PK, Chan SY et al (2011) Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. J Cell Mol Med 15:2760–2767

    CAS  PubMed  Google Scholar 

  • Cui X, Wakai T, Shirai Y, Yokoyama N, Hatakeyama K, Hirano S (2006) Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol 37:298–311

    CAS  PubMed  Google Scholar 

  • Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S et al (2008) Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68:5049–5058

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davidsson J, Lilljebjörn H, Andersson A, Veerla S, Heldrup J, Behrendtz M et al (2009). The DNA methylome of pediatric acute lymphoblastic leukemia. Hum Mol Genet 18:4054–4065

    CAS  PubMed  Google Scholar 

  • Dohi O, Yasui K, Gen Y, Takada H, Endo M, Tsuji K et al (2013) Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int J Oncol 42:411–418

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dou L, Zheng D, Li J, Li Y, Gao L, Wang L et al (2012) Methylation-mediated repression of microRNA-143 enhances MLL-AF4 oncogene expression. Oncogene 31:507–517

    CAS  PubMed  Google Scholar 

  • Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    PubMed Central  CAS  PubMed  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    CAS  PubMed  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104:15805–15810

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C et al (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell 123:819–831

    CAS  PubMed  Google Scholar 

  • Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L et al (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer cell 12:457–466

    CAS  PubMed  Google Scholar 

  • Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer cell 17:13–27

    PubMed Central  CAS  PubMed  Google Scholar 

  • Formosa A, Lena A, Markert E, Cortelli S, Miano R, Mauriello A et al (2013) DNA methylation silences miR-132 in prostate cancer. Oncogene 32:127–134

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609

    PubMed Central  CAS  PubMed  Google Scholar 

  • Friedman JM, Liang G, Liu C-C, Wolff EM, Tsai YC, Ye W et al (2009) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69:2623–2629

    CAS  PubMed  Google Scholar 

  • Furuta M, Kozaki K-i, Tanaka S, Arii S, Imoto I, Inazawa J (2010) miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 31:766–776

    CAS  PubMed  Google Scholar 

  • Gao X, Lin J, Li Y, Gao L, Wang X, Wang W et al (2011) MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia. Oncogene 30:3416–3428

    CAS  PubMed  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    CAS  PubMed  Google Scholar 

  • Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E et al (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113:6411–6418

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghaffari SH, Bashash D, Dizaji MZ, Ghavamzadeh A, Alimoghaddam K (2012) Alteration in miRNA gene expression pattern in acute promyelocytic leukemia cell induced by arsenic trioxide: a possible mechanism to explain arsenic multi-target action. Tumour Biol 33:157–172

    CAS  PubMed  Google Scholar 

  • Grady W, Parkin R, Mitchell P, Lee J, Kim Y, Tsuchiya K et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27:3880–3888

    CAS  PubMed  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    PubMed Central  CAS  PubMed  Google Scholar 

  • Han L, Witmer PD, Casey E, Valle D, Sukumar S (2007) DNA methylation regulates MicroRNA expression. Cancer Biol Ther 6:1284–1288

    CAS  PubMed  Google Scholar 

  • Hashimoto Y, Akiyama Y, Otsubo T, Shimada S, Yuasa Y (2010) Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis 31:777–784

    CAS  PubMed  Google Scholar 

  • Hassler MR, Egger G (2012) Epigenomics of cancer-emerging new concepts. Biochimie 94:2219–2230

    PubMed Central  CAS  PubMed  Google Scholar 

  • He Y, Cui Y, Wang W, Gu J, Guo S, Ma K et al (2011) Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia (New York, NY) 13:841

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hsu P-Y, Deatherage DE, Rodriguez BA, Liyanarachchi S, Weng Y-I, Zuo T et al (2009) Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res 69:5936–5945

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Wang Y, Guo Y, Sun S (2010) Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 52:60–70

    CAS  PubMed  Google Scholar 

  • Hulf T, Sibbritt T, Wiklund ED, Bert S, Strbenac D, Statham AL et al (2011) Discovery pipeline for epigenetically deregulated miRNAs in cancer: integration of primary miRNA transcription. BMC Genomics 12:54

    PubMed Central  CAS  PubMed  Google Scholar 

  • Humphreys KJ, Cobiac L, Le Leu RK, Van der Hoek MB, Michael MZ (2013) Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR-17-92 cluster. Mol Carcinog 52:459–474

    CAS  PubMed  Google Scholar 

  • Incoronato M, Garofalo M, Urso L, Romano G, Quintavalle C, Zanca C et al (2010). miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung Cancer by targeting the antiapoptotic protein PED. Cancer Res 70:3638–3646

    CAS  PubMed  Google Scholar 

  • Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P et al (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707

    CAS  PubMed  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    PubMed  Google Scholar 

  • Jerónimo C, Henrique R (2011). Epigenetic biomarkers in urological tumors: a systematic review. Cancer Lett 342:264–274

    PubMed  Google Scholar 

  • Jones PA, Baylin SB (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    CAS  PubMed  Google Scholar 

  • Jones PA, Laird PW (1999) Cancer-epigenetics comes of age. Nat Genet 21:163–167

    CAS  PubMed  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    CAS  PubMed  Google Scholar 

  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E et al (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903

    CAS  PubMed  Google Scholar 

  • Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K et al (2005). Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96:111–115

    CAS  PubMed  Google Scholar 

  • Khaleghian A, Ghaffari SH, Ahmadian S, Alimoghaddam K, Ghavamzadeh A (2014). Metabolism of arsenic trioxide in acute promyelocytic leukemia cells. J Cell Biochem 115(10):1729–1739

    CAS  PubMed  Google Scholar 

  • Kim VN (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol cell Biol 6:376–385

    CAS  PubMed  Google Scholar 

  • Kim VN, Nam J-W (2006) Genomics of microRNA. Trends Genet 22:165–173

    CAS  PubMed  Google Scholar 

  • Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J (2008) Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68:2094–2105

    CAS  PubMed  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N et al (2009) Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9:293–301

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lehmann U, Hasemeier B, Christgen M, Müller M, Römermann D, Länger F et al (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214:17–24

    CAS  PubMed  Google Scholar 

  • Lewis BP, Shih I-h, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    CAS  PubMed  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    CAS  PubMed  Google Scholar 

  • Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ et al (2010) Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer cell 17:333–347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu R-F, Xu X, Huang J, Fei Q-L, Chen F, Li Y-D et al (2013a). Down-regulation of miR-517a and miR-517c promotes proliferation of hepatocellular carcinoma cells via targeting Pyk2. Cancer Lett 329:164–173

    CAS  PubMed  Google Scholar 

  • Liu S, Howell PM, Riker AI (2013b) Up-regulation of miR-182 expression after epigenetic modulation of human melanoma cells. Ann Surg Oncol 20:1745–1752

    PubMed  Google Scholar 

  • Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H et al (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–2600

    CAS  PubMed  Google Scholar 

  • Loizou JI, Murr R, Finkbeiner MG, Sawan C, Wang Z-Q, Herceg Z (2006) Epigenetic information in chromatin: the code of entry for DNA repair. Cell Cycle 5:696–701

    CAS  PubMed  Google Scholar 

  • Lu L, Katsaros D, de la LIA, Sochirca O, Yu H (2007) Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67:10117–10122

    CAS  PubMed  Google Scholar 

  • Lugthart S, Figueroa ME, Bindels E, Skrabanek L, Valk PJ, Li Y et al (2011) Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVI1. Blood 117:234–241

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F et al (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67:1424–1429

    CAS  PubMed  Google Scholar 

  • Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci 105:13556–13561

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90

    CAS  PubMed  Google Scholar 

  • Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F et al (2010) PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 17:173–185

    CAS  PubMed  Google Scholar 

  • Martin-Subero JI, Ammerpohl O, Bibikova M, Wickham-Garcia E, Agirre X, Alvarez S et al (2009) A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms. PloS One 4:e6986

    PubMed Central  PubMed  Google Scholar 

  • Mattick JS, Makunin IV (2006). Non-coding RNA. Hum Mol Genet 15:R17–R29

    CAS  PubMed  Google Scholar 

  • Mazar J, DeBlasio D, Govindarajan SS, Zhang S, Perera RJ (2011). Epigenetic regulation of microRNA-375 and its role in melanoma development in humans. FEBS Lett 585:2467–2476

    CAS  PubMed  Google Scholar 

  • Meltzer PS (2005) Cancer genomics: small RNAs with big impacts. Nature 435:745–746

    CAS  PubMed  Google Scholar 

  • Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T (2008) Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 27:378–386

    CAS  PubMed  Google Scholar 

  • Milani L, Lundmark A, Kiialainen A, Nordlund J, Flaegstad T, Forestier E et al (2010) DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood 115:1214–1225

    CAS  PubMed  Google Scholar 

  • Molognoni F, Cruz AT, Meliso FM, Morais AS, Souza CF, Xander P et al (2011) Epigenetic reprogramming as a key contributor to melanocyte malignant transformation. Epigenetics 6:451–465

    Google Scholar 

  • Nakamura T, Canaani E, Croce CM (2007) Oncogenic All1 fusion proteins target Drosha-mediated microRNA processing. Proc Natl Acad Sci 104:10980–10985

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen T, Kuo C, Nicholl MB, Sim M-S, Turner RR, Morton DL et al (2011) Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics 6:388–394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H et al (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28:1714–1724

    CAS  PubMed  Google Scholar 

  • O’Hara SP, Splinter PL, Gajdos GB, Trussoni CE, Fernandez-Zapico ME, Chen XM et al (2010) NFkappaB p50-CCAAT/enhancer-binding protein beta (C/EBPbeta)-mediated transcriptional repression of microRNA let-7i following microbial infection. J Biol Chem 285:216–225

    PubMed Central  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    CAS  PubMed  Google Scholar 

  • Okoji R, Yu R, Maronpot R, Froines J (2002) Sodium arsenite administration via drinking water increases genome-wide and Ha-ras DNA hypomethylation in methyl-deficient C57BL/6J mice. Carcinogenesis 23:777–785

    CAS  PubMed  Google Scholar 

  • Östling P, Leivonen S-K, Aakula A, Kohonen P, Mäkelä R, Hagman Z et al (2011). Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res 71:1956–1967

    PubMed  Google Scholar 

  • Pallasch CP, Patz M, Park YJ, Hagist S, Eggle D, Claus R et al (2009) miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia. Blood 114:3255–3264

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rauhala HE, Jalava SE, Isotalo J, Bracken H, Lehmusvaara S, Tammela TL et al (2010). miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int J cancer 127:1363–1372

    CAS  PubMed  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743

    CAS  PubMed  Google Scholar 

  • Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2:245–261

    CAS  PubMed  Google Scholar 

  • Rodriguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339

    CAS  PubMed  Google Scholar 

  • Rodriguez-Otero P, Román-Gómez J, Vilas-Zornoza A, José-Eneriz ES, Martín-Palanco V, Rifón J et al (2011) Deregulation of FGFR1 and CDK6 oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the MIR9 family. Br J Haematol 155:73–83

    PubMed  Google Scholar 

  • Román-Gómez J, Cordeu L, Agirre X, Jiménez-Velasco A, San José-Eneriz E, Garate L et al (2007) Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood 109:3462–3469

    PubMed  Google Scholar 

  • Roman-Gomez J, Agirre X, Jiménez-Velasco A, Arqueros V, Vilas-Zornoza A, Rodriguez-Otero P et al (2009) Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 27:1316–1322

    CAS  PubMed  Google Scholar 

  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer cell 9:435–443

    CAS  PubMed  Google Scholar 

  • Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009a) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379:726–731

    CAS  PubMed  Google Scholar 

  • Saito Y, Suzuki H, Tsugawa H, Nakagawa I, Matsuzaki J, Kanai Y et al (2009b) Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene 28:2738–2744

    CAS  PubMed  Google Scholar 

  • Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG et al (2012) Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood 119:1162–1172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Santos-Rosa H, Caldas C (2005) Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 41:2381–2402

    CAS  PubMed  Google Scholar 

  • Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66:1277–1281

    CAS  PubMed  Google Scholar 

  • Shen MM, Abate-Shen C (2010). Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24:1967–2000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T et al (2012) Cancer treatment and survivorship statistics. CA Cancer J Clin 62:220–241

    PubMed  Google Scholar 

  • Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG et al (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15:259–267

    CAS  PubMed  Google Scholar 

  • Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG et al (2009) Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 114:5490–5498

    CAS  PubMed  Google Scholar 

  • Stumpel D, Schotte D, Lange-Turenhout E, Schneider P, Seslija L, De Menezes R et al (2011) Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 25:429–439

    CAS  PubMed  Google Scholar 

  • Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V et al (2011) MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 32:772–778

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki H, Takatsuka S, Akashi H, Yamamoto E, Nojima M, Maruyama R et al (2011). Genome-wide profiling of chromatin signatures reveals epigenetic regulation of microRNA genes in colorectal cancer. Cancer Res 71:5646–5658

    CAS  PubMed  Google Scholar 

  • Takai D, Jones PA (2003). The CpG island searcher: a new WWW resource. Isilico Biol 3:235–240

    CAS  Google Scholar 

  • Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP (2003). Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286:355–365

    CAS  PubMed  Google Scholar 

  • Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM (2006). Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20:2202–2207

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tong H, Lin M (2002) [Arsenic trioxide induced p15INK4B gene expression in myelodysplastic syndrome cell line MUTZ-1]. Zhonghua Xue Ye Xue Za Zhi 23:638–641

    CAS  PubMed  Google Scholar 

  • Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y et al (2008). Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68:4123–4132

    CAS  PubMed  Google Scholar 

  • Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I et al (2006). The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580:4214–4217

    CAS  PubMed  Google Scholar 

  • Van der Poel H (2007). Molecular markers in the diagnosis of prostate cancer. Crit Rev Oncol Hematol 61:104–139

    PubMed  Google Scholar 

  • Varambally S, Cao Q, Mani R-S, Shankar S, Wang X, Ateeq B et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vázquez I, Maicas M, Marcotegui N, Conchillo A, Guruceaga E, Roman-Gomez J et al (2010) Silencing of hsa-miR-124 by EVI1 in cell lines and patients with acute myeloid leukemia. Proc Natl Acad Sci 107:E167–E168

    PubMed Central  PubMed  Google Scholar 

  • Vilas-Zornoza A, Agirre X, Martín-Palanco V, Martín-Subero JI, San José-Eneriz E, Garate L et al (2011) Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia. PloS One 6:e17012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S et al (2010) Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PloS One 5:e8697

    PubMed Central  PubMed  Google Scholar 

  • Wang Y, Toh HC, Chow P, Chung AY, Meyers DJ, Cole PA et al (2012) MicroRNA-224 is up-regulated in hepatocellular carcinoma through epigenetic mechanisms. FASEB J 26:3032–3041

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wiklund ED, Bramsen JB, Hulf T, Dyrskjot L, Ramanathan R, Hansen TB et al (2011) Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 128:1327–1334

    CAS  PubMed  Google Scholar 

  • Wong KY, So CC, Loong F, Chung LP, Lam WWL, Liang R et al (2011) Epigenetic inactivation of the miR-124-1 in haematological malignancies. PloS One 6:e19027

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wotschofsky Z, Liep J, Meyer HA, Jung M, Wagner I, Disch AC et al (2012) Identification of metastamirs as metastasis-associated microRNAs in clear cell renal cell carcinomas. Int J Biol Sci 8:1363–1374

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y et al (2013). A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol 5:3–13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan H, Choi A-j, Lee BH, Ting AH (2011) Identification and functional analysis of epigenetically silenced microRNAs in colorectal cancer cells. PloS One 6:e20628

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer cell 9:189–198

    CAS  PubMed  Google Scholar 

  • Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M et al (2009). miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 23:2388–2393

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ying S-Y, Lin S-L (2005) Intronic microRNAs. Biochem Biophys Res Commun 326:515–520

    CAS  PubMed  Google Scholar 

  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al (2007)   let-7  regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123

    CAS  PubMed  Google Scholar 

  • Yuan Jh, Yang F, Chen B, Lu Z, Huo X, Zhou Wp et al (2011) The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology 54:2025–2035

    CAS  PubMed  Google Scholar 

  • Zaman MS, Chen Y, Deng G, Shahryari V, Suh SO, Saini S et al (2010) The functional significance of microRNA-145 in prostate cancer. Br J Cancer 103:256–264

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang K, Dent SY (2005). Histone modifying enzymes and cancer: going beyond histones. J Cell Biochem 96:1137–1148

    CAS  PubMed  Google Scholar 

  • Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A et al (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci 103:9136–9141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R et al (2012) Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer cell 22:506–523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou X, Sun H, Ellen TP, Chen H, Costa M (2008) Arsenite alters global histone H3 methylation. Carcinogenesis 29:1831–1836

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo Y-Y (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed H. Ghaffari PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ghaffari, S., Bashash, D. (2015). Reciprocal Interconnection of miRNome-Epigenome in Cancer Pathogenesis and Its Therapeutic Potential. In: Mehdipour, P. (eds) Epigenetics Territory and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9639-2_4

Download citation

Publish with us

Policies and ethics