Skip to main content

LINE-1 Retrotransposons and Their Role in Cancer

  • Chapter
  • First Online:
Book cover Epigenetics Territory and Cancer

Abstract

Retrotransposons comprise over 40 % of the human genome and are a major contributor to genome diversity and evolution. They contribute to human genome variation through both germline and somatic retrotransposition. Over recent years, studies on the biology of cancer have revealed that somatic retrotransposition is a feature of many cancer genomes. The most recent comparison between 200 pairs of tumours and normal tissue, across 11 tumour types, has revealed frequent somatic retrotransposition in particular cancers; lung squamous cell, head and neck squamous cell, colorectal and endometrial carcinomas. Importantly some of these insertions occur in cancer-related genes underlining retrotransposition’s role as a mutagen. It is now clear that retrotransposons contribute to genome instability during cancer progression. However, the exact role of retrotransposons in tumuorigenesis, tumour progression and prognosis still remains a subject of an active discussion in the field of cancer biology.

In this chapter, we have attempted to explain the biology of retrotransposons in the human genome, with the main focus on LINE-1 elements. We then have discussed how LINE-1 causes genome instability in the genome and the host defence mechanisms deployed to supress their retrotransposition. Next, we discuss the role of LINE-1 activity during tumourigenesis and consider the recent findings concerning their activity in different types of cancers. Finally, we explore how retrotransposons can be used as diagnostic tools in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrova EA, Olovnikov IA, Malakhova GV, Zabolotneva AA, Suntsova MV, Dmitriev SE et al (2012) Sense transcripts originated from an internal part of the human retrotransposon LINE-1 5’ UTR. Gene 511(1):46–53

    CAS  PubMed  Google Scholar 

  • Alves G, Tatro A, Fanning T (1996) Differential methylation of human LINE-1 retrotransposons in malignant cells. Gene 176(1–2):39–44

    CAS  PubMed  Google Scholar 

  • Aporntewan C, Phokaew C, Piriyapongsa J, Ngamphiw C, Ittiwut C, Tongsima S et al (2011) Hypomethylation of intragenic LINE-1 represses transcription in cancer cells through AGO2. PLoS One 6(3):e17934

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asch HL, Eliacin E, Fanning TG, Connolly JL, Bratthauer G, Asch BB (1996) Comparative expression of the LINE-1 p40 protein in human breast carcinomas and normal breast tissues. Oncol Res 8:239–247

    CAS  PubMed  Google Scholar 

  • Athanikar JN, Badge RM, Moran JV (2004) A YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucl Acids Res 32(13):3846–3855

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baba Y, Huttenhower C, Nosho K, Tanaka N, Shima K, Hazra A (2010) Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer 27(9):125

    Google Scholar 

  • Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F et al (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479(7374):534–537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Basame S, Wai-lun Li P, Howard G, Branciforte D, Keller D, Martin SL (2006) Spatial assembly and RNA binding stoichiometry of a LINE-1 protein essential for retrotransposition. Mol Biol 357(2):351–357

    CAS  Google Scholar 

  • Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE et al (2010) LINE-1 retrotransposition activity in human genomes. Cell 141:1159–1170

    PubMed Central  CAS  PubMed  Google Scholar 

  • Becker KG, Swergold GD, Ozato K, Thayer RE (1993) Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum Mol Genet 2:1697–1702

    CAS  PubMed  Google Scholar 

  • Belancio VP, Roy-Engel AM, Deininger PL (2010) All y’all need to know ’bout retroelements in cancer. Semin Cancer Biol 20(4):200–210

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bestor TH (2003) Cytosine methylation mediates sexual conflict. Trends Genet 9(4):185–190

    Google Scholar 

  • Boeke JD (1997) LINEs and Alus—the polyA connection. Nat Genet 16:6–7

    CAS  PubMed  Google Scholar 

  • Boeke JD, Pickeral OK (1999) Retroshuffling the genomic deck. Nature 398:108–111

    CAS  PubMed  Google Scholar 

  • Boissinot S, Furano AV (2001) Adaptive evolution in LINE-1 retrotransposons. Mol Biol Evol 18(12):2186–2194

    CAS  PubMed  Google Scholar 

  • Boissinot S, Chevret P, Furano AV (2000) L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 17:915–928

    CAS  PubMed  Google Scholar 

  • Borc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3 L. Nature 431:96–99

    Google Scholar 

  • Bratthauer GL, Fanning TG (1992) Active LINE-1 retrotransposons in human testicular cancer. Oncogene 7(3):507–510

    CAS  PubMed  Google Scholar 

  • Bratthauer GL, Fanning TG (1993) LINE-1 retrotransposon expression in pediatric germ cell tumors. Cancer 71(7):2383–2386

    CAS  PubMed  Google Scholar 

  • Bratthauer GL, Cardiff RD, Fanning TG (1994) Expression of LINE-1 retrotransposons in human breast cancer. Cancer 73(9):2333–2336

    CAS  PubMed  Google Scholar 

  • Brouha B, Meischl C, Ostertag E, de Boer M, Zhang Y, Neijens H et al (2002) Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am J Hum Genet 71(2):327–336

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV et al (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100:5280–5285

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burke WD, Malik HS, Jones JP, Eickbush TH (1999) The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. Mol Biol Evol 16:502–511

    CAS  PubMed  Google Scholar 

  • Callinan PA, Batzer MA (2006) Retrotransposable elements and human disease. Genome Dyn 1:104–115

    CAS  PubMed  Google Scholar 

  • Carlini F, Ridolfi B, Molinari A, Parisi C, Bozzuto, G, Toccacieli L (2010) The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines. PLoS ONE 5(12):e14221

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carreira PE, Richardson SR, Faulkner GJ (2014) L1 retrotransposons, cancer stem cells and oncogenesis. FEBS J 281:63–73

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D et al (2004) Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 23(54):8841–8846

    CAS  PubMed  Google Scholar 

  • Chen JM, Férec C, Cooper DN (2007) Mechanism of Alu integration into the human genome. Genomic Med 1(1–2):9–17

    PubMed Central  PubMed  Google Scholar 

  • Chen L, Dahlstrom JE, Chandra A, Board P, Rangasamy D (2012) Prognostic value of LINE-1 retrotransposon expression and its subcellular localization in breast cancer. Breast Cancer Res Treat 136(1):129–142

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chureau C, Prissette M, Bourdet A, Barbe V, Cattolico L, Jones L et al (2002) Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine. Genome Res 12(6):894–908

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ciaudo C, Jay F, Okamoto I, Chen CJ, Sarazin A, Servant N, et al. (2013) RNAi-dependent and independent control of LINE1 accumulation and mobility in mouse embryonic stem cells. PLoS Genet 9(11):e1003791

    PubMed Central  PubMed  Google Scholar 

  • Cooke SL, Shlien A, Marshall J, Pipinikas CP, Martincorena I, Tubio JM (2014) Processed pseudogenes acquired somatically during cancer development. Nat Commun 9(5):3644

    Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10):691–703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cost GJ, Boeke JD (1998) Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37:18081–18093

    CAS  PubMed  Google Scholar 

  • Cost GJ, Feng Q, Jacquier A, Boeke JD (2002) Human L1 element target-primed reverse transcription in vitro. EMBO J 2:5899–5910

    Google Scholar 

  • Costas J, Naveira H (2000) Evolutionary history of the human endogenous retrovirus family ERV9. Mol Biol Evol 17(2):320–330

    CAS  PubMed  Google Scholar 

  • Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460(7259):1127–1131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coufal NG, Garcia-Perez JL, Peng GE, Marchetto MC, Muotri AR, Mu Y et al (2011) Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci U S A 108(51):20382–20387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Craig NL, Craigie R, Gellert M, Lambowitz, AM (eds) (2002) Mobile DNA introduction. In Mobile DNA II. American Society for Microbiology, Washington, DC, pp 836–869

    Google Scholar 

  • Cruickshanks HA, Tufarelli C (2009) Isolation of cancer-specific chimeric transcripts induced by hypomethylation of the LINE-1 antisense promoter. Genomic 94(6):397–406

    CAS  Google Scholar 

  • Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4:865–877

    CAS  PubMed  Google Scholar 

  • Dai L, Huang Q, Boeke JD (2011) Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem 5(12):18

    Google Scholar 

  • Dawkins R. (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • Deininger PL et al (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13(6):651–658

    CAS  PubMed  Google Scholar 

  • Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35(1):41–48

    CAS  PubMed  Google Scholar 

  • Divoký V, Hammerová T, Sakalová A, Luhový M, Divoká M, Melichárková R, Indrák K (1996) Unstable Santa Ana hemoglobin or alpha 2 beta 2 88 (F4) Leu-Pro detected in a Slovak girl. Vnitr Lek 42(4):258–261

    PubMed  Google Scholar 

  • Dmitriev SE, Andreev DE, Terenin IM, Olovnikov IA, Prassolov VS, Merrick WC et al (2007) Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5' untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated. Mol Cell Biol 27(13):4685–4697

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC et al (2010) Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 6(10):e1001150

    PubMed Central  PubMed  Google Scholar 

  • Eickbush TH, Jamburuthugoda VK (2008) The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 134(1–2):221–234

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eickbush TH, Malik HS (2002) Origins and evolution of retrotransposons. Mobile DNA II Craig NL. In: Craigie R, Gellert M, Lambowitz AM (eds) American Society for Microbiology, Washington, DC, pp 1111–1144

    Google Scholar 

  • Ergün S, Buschmann C, Heukeshoven J, Dammann K, Schnieders F, Lauke H et al (2004) Cell type- specific expression of LINE-1 ORF1 and ORF2 in fetal and adult human tissues. J Biol Chem 279(26):27753–27763

    PubMed  Google Scholar 

  • Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24:363–367

    CAS  PubMed  Google Scholar 

  • Esnault C, Priet S, Ribet D, Heidmann O, Heidmann T (2008) Restriction by APOBEC3 proteins of endogenous retroviruses with an extracellular life cycle: ex vivo effects and in vivo “traces” on the murine IAPE and human HERV-K elements. Retrovirology 14(5):75

    Google Scholar 

  • Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS et al (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151(3):483–496

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ewing AD, Kazazian HH Jr (2010) High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Research 20(9):1262–1270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feng Q, Zhang Y (2001) The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev 15:827–832

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feng Q, Moran J, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    CAS  PubMed  Google Scholar 

  • Feng F, Lu YY, Zhang F, Gao XD, Zhang CF, Meredith A et al (2013) Long interspersed nuclear element ORF-1 protein promotes proliferation and resistance to chemotherapy in hepatocellular carcinoma. World J Gastroenterol 19(7):1068–1078

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473(7347):398–402

    CAS  PubMed  Google Scholar 

  • Freeman P, Macfarlane C, Collier P, Jeffreys AJ, Badge RM (2011) L1 hybridization enrichment: a method for directly accessing de novo L1 insertions in the human germline. Hum Mutat 32(8):978–988

    PubMed Central  CAS  PubMed  Google Scholar 

  • Furano AV (2000) The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog Nucleic Acid Res Mol Biol 64:255–294

    CAS  PubMed  Google Scholar 

  • Garcia-Perez JL et al (2007a) Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res 17(5):602–611

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Perez JL et al (2007b) LINE-1 retrotransposition in human embryonic stem cells. Hum mol genet 16(13):1569–1577

    CAS  PubMed  Google Scholar 

  • Garcia-Perez JL, Morell M, Scheys JO, Kulpa DA, Morell S, Carter CC et al (2010) Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466(7307):769–773

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357(5):1383–1393

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gilbert N, Lutz-Prigge S, Moran JV (2002) Genomic deletions created upon LINE-1 retrotransposition. Cell 110:315–325

    CAS  PubMed  Google Scholar 

  • Gilbert N, Lutz S, Morrish TA, Moran JV (2005) Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol Cell Biol 25:7780–7795

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    CAS  PubMed  Google Scholar 

  • Goodier JL, Kazazian HH Jr (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135: 23–35

    CAS  PubMed  Google Scholar 

  • Goodier JL, Ostertag EM, Kazazian HH Jr (2000) Transduction of 3'-flanking sequences is common in L1 retrotransposition. Hum Mol Genet 9:653–657

    CAS  PubMed  Google Scholar 

  • Goodier JL, Ostertag EM, Engleka KA, Seleme MC, Kazazian HH Jr (2004) A potential role for the nucleolus in L1 retrotransposition. Hum Mol Genet 13(10):1041–1048

    Google Scholar 

  • Goodier JL, Zhang L, Vetter MR, Kazazian HH Jr (2007) LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol Cell Biol 27(18):6469–6483

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goodier JL, Cheung LE, Kazazian HH Jr (2013) Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic Acids Res 41(15):7401–7419

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graham T, Boissinot S (2006) The genomic distribution of L1 elements: the role of insertion bias and natural selection. J Biomed Biotechnol 2006(1):75327

    PubMed Central  PubMed  Google Scholar 

  • Gregory TR, and Hebert PD (1999) The modulation of DNA content: proximate causes and ultimate consequences. Genome Res 9:317–324

    CAS  PubMed  Google Scholar 

  • Halling KC, Lazzaro CR, Honchel R, Bufill JA, Powell SM, Arndt CA et al (1999) Hereditary desmoid disease in a family with a germline Alu I repeat mutation of the APC gene. Hum Hered 49(2):97–102

    CAS  PubMed  Google Scholar 

  • Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429(6989):268–274

    CAS  PubMed  Google Scholar 

  • Han K, Sen SK, Wang J, Callinan PA, Lee J, Cordaux R et al (2005) Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucl Acids Res 33:4040–4052

    PubMed Central  CAS  PubMed  Google Scholar 

  • Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA (2008) L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci U S A 105(49):19366–19371

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hancks DC, Kazazian HH Jr (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22(3):191–203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harris SL, Thorne LB, Seaman WT, Hayes DN, Couch ME, Kimple RJ (2011) Association of p16 (INK4a) overexpression with improved outcomes in young patients with squamous cell cancers of the oral tongue. Head Neck 33(11):1622–1627

    PubMed  Google Scholar 

  • Hata K, Sakaki Y (1997) Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene 189(2):227–234

    CAS  PubMed  Google Scholar 

  • Heard E, Disteche CM (2006) Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 20(14):1848–1867

    CAS  PubMed  Google Scholar 

  • Heras SR, Macias S, Plass M, Fernandez N, Cano D, Eyras E et al (2013) The Microprocessor controls the activity of mammalian retrotransposons. Nat Struct Mol Biol 20(10):1173–1181

    CAS  PubMed  Google Scholar 

  • Hohjoh H, Singer MF (1996) Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J 15:630–639

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hohjoh H, Singer MF (1997) Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. Embo J 16:6034–6043

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes SE, Dombroski BA, Krebs CM, Boehm CD, Kazazian HH Jr (1994) A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet 7(2):143–148

    CAS  PubMed  Google Scholar 

  • Huang CJ, Lin WY, Chang CM, Choo KB (2009) Transcription of the rat testis-specific Rtdpoz-T1 and -T2 retrogenes during embryo development: co-transcription and frequent exonisation of transposable element sequences. BMC Mol Biol 10:74

    PubMed Central  PubMed  Google Scholar 

  • Iacopetta B, Grieu F, Phillips M, Ruszkiewicz A, Moore J, Minamoto T et al (2007) Methylation levels of LINE-1 repeats and CpG island loci are inversely related in normal colonic mucosa. Cancer Sci 98(9):1454–1460

    CAS  PubMed  Google Scholar 

  • Irahara N, Baba Y, Nosho K, Shima K, Yan L, Dias-Santagata D et al (2010) NRAS mutations are rare in colorectal cancer. Diagn Mol Pathol 19(3):157–163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iskow RC, McCabe M, Mills RE, Torene S, Pittard S, Neuwaid AF et al (2010) Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons. Cell 141:1253–1261

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jemal A, Thun M, Yu XQ, Hartman AM, Cokkinides V, Center MM et al (2011) Changes in smoking prevalence among U.S. adults by state and region: estimates from the tobacco use supplement to the current population survey, 1992–2007. BMC Public Health 29(11):512

    Google Scholar 

  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94:1872–1877

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, Ostertag EM et al (2009) L1 retrotransposition occurs mainly in embryogen- esis and creates somatic mosaicism. Genes Dev 23:1303–1312

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G et al (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9(4):e1003470

    PubMed Central  CAS  PubMed  Google Scholar 

  • Katoh I, Kurata SI (2013) Association of endogenous retroviruses and long terminal repeats with human disorders. Front Oncol 3:234

    PubMed Central  PubMed  Google Scholar 

  • Kazazian HH Jr (1998) Mobile elements and disease. Curr Opin Genet Dev 8:343–350

    CAS  PubMed  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303(5664):1626–1632

    CAS  PubMed  Google Scholar 

  • Kazazian HH Jr, Goodier JL (2002) LINE drive. retrotransposition and genome instability. Cell 110(3):277–280

    CAS  PubMed  Google Scholar 

  • Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillip, DG, Antonarakis SE (1988) Haemophilia a resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–166

    CAS  PubMed  Google Scholar 

  • Kesler KA, Einhorn LH (2009) Multimodality treatment of germ cell tumors of the mediastinum. Thorac Surg Clin 19(1):63–69

    PubMed  Google Scholar 

  • Khazina E, and Weichenrieder O (2009) Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc Natl Acad Sci U S A 106(3):731–736

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kidwell M, Lisch D (2000) Reply from M.G. Kidwell and D.R. Lisch. Trends Ecol Evol 15(7):288

    PubMed  Google Scholar 

  • Kimberland ML, Divoky V, Prchal J, Schwahn U, Berger W, Kazazian HH Jr (1999) Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet 8(8):1557–1560

    CAS  PubMed  Google Scholar 

  • Kitkumthorn N, Mutirangura A (2011) Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin Epigenetics 2(2):315–330

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kolosha VO, Martin SL (2003) High-affinity, non-sequence-specific RNA binding by the open reading frame 1 (ORF1) protein from long interspersed nuclear element 1 (LINE-1). Biol Chem 278(10):8112–8117

    CAS  Google Scholar 

  • Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive Elements May Comprise Over Two-Thirds of the Human Genome. PLoS Genet 7(12):e1002384

    PubMed Central  PubMed  Google Scholar 

  • Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M et al (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22(7):908–917

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kurose K, Hata K, Hattori M, Sakaki Y (1995) RNA polymerase III dependence of the human L1 promoter and possible participation of the RNA polymerase II factor YY1 in the RNA polymerase III transcription system. Nucl Acids Res 23:3704–3709

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  PubMed  Google Scholar 

  • Lee K, Haugen HS, Clegg CH, Braun RE (1995) Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc Natl Acad Sci U S A 92(26):12451–12455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee S, Cho NY, Choi M, Yoo EJ, Kim JH, Kang GH (2008) Clinicopathological features of CpG island methylator phenotype-positive colorectal cancer and its adverse prognosis in relation to KRAS/BRAF mutation. Pathol Int 58:104–113

    CAS  PubMed  Google Scholar 

  • Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ 3rd, Lohr JG, Harris CC, Ding L, Wilson RK, Wheeler DA, Gibbs RA, Kucherlapati R, Lee C, Kharchenko PV, Park PJ, Cancer Genome Atlas Research Network (2012) Landscape of somatic retrotransposition in human cancers. Science 337:967–971

    Google Scholar 

  • Levin HL, Moran JV (2011) Dynamic intractions between transposable elements and their hosts. Nature Rev Genet 12:615–627

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis SE, O’Connell M, Stevenson M, Thompson-Cree L, McClure N (2004) An algorithm to predict pregnancy in assisted reproduction. Hum Reprod 6:1385–1394

    Google Scholar 

  • Li TH, Schmid CW (2001) Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. Gene 276:135–141

    CAS  PubMed  Google Scholar 

  • Lindtner S, Felber BK, Kjems J (2002) An element in the 3' untranslated region of human LINE-1 retrotransposon mRNA binds NXF1 (TAP) and can function as a nuclear export element. RNA 8(3):345–356

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY et al (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186–1195

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lovell-Badge R (2009) The early history of the Sox genes. Int J Biochem Cell Biol 42(3):378–380

    PubMed  Google Scholar 

  • Lovsin N, Peterlin BM (2009) APOBEC3 proteins inhibit LINE-1 retrotransposition in the absence of ORF1p binding. Ann N Y Acad Sci 1178:268–275

    CAS  PubMed  Google Scholar 

  • Lovsin E, Fazarinc G, Pogacnik A, Bavdek SV (2001) Growth dynamics of lipizzan horses and their comparison to other horse breeds. Pflugers Arch 442(6 Suppl 1):211–212

    Google Scholar 

  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605

    CAS  PubMed  Google Scholar 

  • Lyon MF (1998) X-chromosome inactivation spreads itself: effects in autosomes. Am J Hum Genet 63(1):17–19

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155

    CAS  PubMed  Google Scholar 

  • MacDuff DA, Demorest ZL, Harris RS (2009) AID can restrict L1 retrotransposition suggesting a dual role in innate and adaptive immunity. Nucl Acids Res 37(6):1854–1867

    PubMed Central  CAS  PubMed  Google Scholar 

  • Macia A, Muñoz-Lopez M, Cortes JL, Hastings RK, Morell S, Lucena-Aguilar G et al (2011) Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol 31(2):300–316

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malik HS, Burke WD, Eickbush TH (1999) The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16(6):793–805

    CAS  PubMed  Google Scholar 

  • Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73(6):5186–5190

    Google Scholar 

  • Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R et al (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137(3):522–535

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marchetto MC, Narvaiza I, Denli AM, Benner C, Lazzarini TA, Nathanson JL et al (2013) Differential L1 regulation in pluripotent stem cells of humans and apes. Nature 503(7477):525–529

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martin SL, Li J, Weisz JA (2000) Deletion analysis defines distinct functional domains for protein-protein and nucleic acid interactions in the ORF1 protein of mouse LINE-1. J Mol Bio 304(1):11–20

    Google Scholar 

  • Martin SL, Bushman FD (2001) Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol 21(2):467–475

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martín F, Maranon C, Olivares M, Alonso C, Lopez MC (1995) Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzymes. J Mol Biol 247:49–59

    PubMed  Google Scholar 

  • Martin SL, Cruceanu M, Branciforte D, Wai-Lun Li P, Kwok SC, Hodges RS et al (2005) LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. Mol Biol 348(3):549–561

    CAS  Google Scholar 

  • Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254(5039):1808–1810

    CAS  PubMed  Google Scholar 

  • Matsuo M, Masumura T, Nishio H, Nakajima T, Kitoh Y, Takumi T et al (1991) Exon skipping during splicing of dystrophin mRNA precursor due to an intraexon deletion in the dystrophin gene of Duchenne muscular dystrophy kobe. J Clin Invest 87(6):2127–2131

    PubMed Central  CAS  PubMed  Google Scholar 

  • McClintock B (1950) The Origin and Behavior of Mutable Loci in Maize. Proc Natl Acad Sci U S A 36:344–355

    PubMed Central  CAS  PubMed  Google Scholar 

  • McMillan JP, Singer MF (1993) Translation of the human LINE-1 element, L1Hs. Proc Natl Acad Sci U S A 90(24):11533–11537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meehan RR, Lewis JD, Bird AP (1992) Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucl Acids Res 20(19):5085–5092

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197

    CAS  PubMed  Google Scholar 

  • Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW et al (1992) Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res 52(3):643–645

    CAS  PubMed  Google Scholar 

  • Mills RE, Walter K, Stewart C, Handaker RE, Chen K, Alkan C et al (2011) Mapping copy number variation by population-scale genome sequencing. Nature 470:59–65

    PubMed Central  CAS  PubMed  Google Scholar 

  • Minakami R, Kurose K, Etoh K, Furuhata Y, Hattori M, Sakaki Y (1992) Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor(s) binding to the element. Nucl Acids Res 20:3139–3145

    PubMed Central  CAS  PubMed  Google Scholar 

  • Montagna M, Santacatterina M, Torri A, Menin C, Zullato D, Chieco-Bianchi L et al (1999) Identification of a 3 kb Alu-mediated BRCA1 gene rearrangement in two breast/ovarian cancer families. Oncogene 18(28):4160–4165

    CAS  PubMed  Google Scholar 

  • Moran JV, Gilbert N (2002) Mammalian LINE-1 retrotransposons and related elements. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. American Society for Microbiology, Washington, D.C., pp 836–869

    Google Scholar 

  • Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr (1996) High-frequency retrotransposition in cultured mammalian cells. Cell 87:917–927

    CAS  PubMed  Google Scholar 

  • Moran JV, DeBerardinis RJ, Kazazian HH Jr (1999) Exon shuffling by L1 retrotransposition. Science 283:1530–1534

    CAS  PubMed  Google Scholar 

  • Moran JV, Gilbert N (2002) Mammalian LINE-1 retrotransposons and related elements. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. Washington, DC: American Society of Microbiology Press, pp 836–869

    Google Scholar 

  • Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE et al (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31(2):159–165

    CAS  PubMed  Google Scholar 

  • Moutri AR, Marchetto MC, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotranspo- sition. Nature 435:903–910

    Google Scholar 

  • Muñoz-Lopez M, Macia A, Garcia-Cañadas M, Badge RM, Garcia-Perez JL (2011) An epi [c] genetic battle: LINE-1 retrotransposons and intragenomic conflict in humans. Mob Genet Elem 1(2):122–127

    Google Scholar 

  • Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K et al (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468(7322):443–446

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17:619–621

    CAS  PubMed  Google Scholar 

  • Neumann JC, Chandler GL et al (2011) Mutation in the type IB bone morphogenetic protein receptor alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc Natl Acad Sci 108(32):13153–13158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nigumann P, Redik K, Matlik K, Speek M (2002) Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79:628–634

    CAS  PubMed  Google Scholar 

  • Ogino S, Nosho K, Kirkner G, Kawasaki T, Chan AT, Schernhammer ES et al (2008) A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. JNCI J Natl Cancer Inst 23:1734–1738

    Google Scholar 

  • Ohno S (1972) So much “junk” DNA in our genome. In: Smith HH (ed) Evolution of genetic systems. Gordon and Breach, New York, pp 366–370

    Google Scholar 

  • Ostertag EM, Kazazian HH Jr (2001a) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538

    CAS  PubMed  Google Scholar 

  • Ostertag EM, Kazazian HH Jr (2001b) Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res 11:2059–2065

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ostertag EM, Prak ET, DeBerardinis RJ, Moran JV, Kazazian HH Jr (2000) Determination of L1 retrotransposition kinetics in cultured cells. Nucl Acids Res 28(6):1418–23

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ostertag EM, DeBerardinis RJ, Goodier JL, Zhang Y, Yang N, Gerton GL et al (2002) A mouse model of human L1 retrotransposition. Nat Genet 32(4):655–660

    CAS  PubMed  Google Scholar 

  • Pace JK, Feschotte C (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17(4):422–432

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pagel M, Johnstone RA (1992) Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. Proc Biol Sci 249:119–124

    CAS  PubMed  Google Scholar 

  • Pardue ML, Danilevskaya ON, Lowenhaupt K, Slot F, Traverse KL (1996) Drosophila telomeres: new views on chromosome evolution. Trends Genet 12:48–52

    CAS  PubMed  Google Scholar 

  • Pavlicek A, Paces J, Elleder D, Hejnar J (2002a) Processed pseudogenes of human endogenous retroviruses generated by LINEs: Their integration, stability, and distribution. Genome Res 12:391–399

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pickeral OK, Makalowski W, Boguski MS, Boeke JD (2000) Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res 10:411–415

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rastan S (1983) Non-random X-chromosome inactivation in mouse X-autosome translocation embryos–location of the inactivation centre. J Embryol Exp Morphol 78:1–22

    CAS  PubMed  Google Scholar 

  • Richardson SR, Narvaiza I, Planegger RA, Weitzman MD, Moran JV (2014) APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. Elife 24(3):e02008

    Google Scholar 

  • Riggs AD (2002) X chromosome inactivation, differentiation, and DNA methylation revisited, with a tribute to Susumu Ohno. Cytogenet Genome Res 99:17–24

    CAS  PubMed  Google Scholar 

  • Rodić N, Burns KH (2013) Long Interspersed Element–1 (LINE-1): passenger or Driver in Human Neoplasms? PLoS Genet 9(3):e1003402

    PubMed Central  PubMed  Google Scholar 

  • Ross MT, Grafham DV, Coffey AJ et al (2005) The DNA sequence of the human X chromosome. Nature 434(7031):325–337

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rosser JM, An W (2012) L1 expression and regulation in humans and rodents. Front Biosci (Elite Ed). 4:2203–2225

    Google Scholar 

  • Salem AH, Myers JS, Otieno AC, Watkins WS, Jorde LB, Batzer MA (2003) LINE-1 preTa Elements in the Human Genome. Mol Biol 326:1127–1146

    CAS  Google Scholar 

  • Samonte RV, Eichler EE (2002) Segmental duplications and the evolution of the primate genome. Nat Rev Genet 3(1):65–72

    CAS  PubMed  Google Scholar 

  • Sbardella G, Mai A, Bartolini S, Castellano S, Cirilli R, Rotili D et al (2011) Modulation of cell differentiation, proliferation, and tumor growth by dihydrobenzyloxopyrimidine non-nucleoside reverse transcriptase inhibitors. J Med Chem 54(16):5927–5936

    CAS  PubMed  Google Scholar 

  • Schulz WA (2006) L1 retrotransposons in human cancers. J Biomed Biotechnol 2006(1):83672

    PubMed Central  PubMed  Google Scholar 

  • Schwahn U, Lenzner S, Dong J, Feil S, Hinzmann B, van Duijnhoven G et al (1998) Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 19(4):327–332

    CAS  PubMed  Google Scholar 

  • Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK et al (2013a) Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152:25–38

    CAS  PubMed  Google Scholar 

  • Schwitalla S, Ziegler PK, Horst D, Becker V, Kerle I, Begus-Nahrmann Y et al (2013b) Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 23(1):93–106

    CAS  PubMed  Google Scholar 

  • Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O'Hara B, Rossiter JP et al (1987). Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1:113–125

    CAS  PubMed  Google Scholar 

  • Seleme MC et al (2006) Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. Proc Nat Acad Sci U S A 103(17):6611–6616

    CAS  Google Scholar 

  • Sen SK, Huang CT, Han K, Batzer MA (2007) Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome. Nucleic Acids Res 35(11):3741–3751

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shukla R, Upton KR, Muñoz-Lopez M, Gerhardt DJ, Fisher ME, Nguyen T et al (2013) Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153(1):101–111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smit AF, Riggs AD (1996) Tiggers and DNA transposon fossils in the human genome. Proc Natl Acad Sci 93(4):1443–1448

    Google Scholar 

  • Simons C, Pheasant M, Makunin IV, Mattick JS (2006) Transposon-free regions in mammalian genomes. Genome Res 16:164–172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singer T, McConnell MJ, Marchetto MC, Coufal NG, Gage FH (2010) LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci 33(8):345–354

    PubMed Central  CAS  PubMed  Google Scholar 

  • Skowronski J, Fanning TG Singer MF (1988) Unit-length LINE-1 transcripts in human teratocarcinoma cells. Mol Cell Biol 8:1385–1397

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soifer HS, Rossi JJ (2006) Small interfering RNAs to the rescue: blocking L1 retrotransposition. Nat Struct Mol Biol 13(9):758–759

    CAS  PubMed  Google Scholar 

  • Solyom S, Ewing AD, Rahrmann EP, Doucet T, Nelson HH, Burns MB et al (2012) Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 22(12):2328–2338

    PubMed Central  CAS  PubMed  Google Scholar 

  • Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21(6):1973–1985

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stenglein MD, Harris RS (2006) APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J Biol Chem 281(25):16837–16841

    CAS  PubMed  Google Scholar 

  • Su Y, Davies S, Davis M, Lu H, Giller R, Krailo M et al (2007) Expression of LINE-1 p40 protein in pediatric malignant germ cell tumors and its association with clinicopathological parameters: a report from the Children’s Oncology Group. Cancer Lett 247(2):204–212

    CAS  PubMed  Google Scholar 

  • Suter CM, Martin DI, Ward RL (2004) Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis 19(2):95–101

    PubMed  Google Scholar 

  • Swergold GD (1990) Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 10: 6718–6729

    PubMed Central  CAS  PubMed  Google Scholar 

  • Symer DE, Connelly C, Szak ST, Caputo EM, Cost GJ, Parmigiani G et al (2002) Human L1 retrotransposition is associated with genetic instability in vivo. Cell 110:327–338

    CAS  PubMed  Google Scholar 

  • Szak ST, Pickeral OK, Makalowski W, Boguski MS, Landsman D, Boeke JD (2002) Molecular archeology of L1 insertions in the human genome. Genome Biol 19;3(10):research0052

    Google Scholar 

  • Szak ST, Pickeral OK, Landsman D, Boeke JD (2003) Identifying related L1 retrotransposons by analyzing 3’ transduced sequences. Genome Biol 4:R30

    PubMed Central  PubMed  Google Scholar 

  • Takai D, Yagi Y, Habib N, Sugimura T, Ushijima T (2000) Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis. Jpn J Clin Oncol 30(7):306–309

    CAS  PubMed  Google Scholar 

  • Tang Y, Nyengaard JR, De Groot DM, Gundersen HJ (2001) Total regional and global number of synapses in the human brain neocortex. Synapse 41(3):258–273

    CAS  PubMed  Google Scholar 

  • Tchenio T, Casella JF, Heidmann T (2000) Members of the SRY family regulate the human LINE retrotransposons. Nucl Acids Res 28:411–415

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teneng I, Montoya-Durango DE, Quertermous JL, Lacy ME, Ramos KS (2011) Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation. Epigenetics 6(3):355–367

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teugels E, De Brakeleer S, Goelen G, Lissens W, Sermijn E, De Grève J (2005) De novo Alu element insertions targeted to a sequence common to the BRCA1 and BRCA2 genes. Hum Mutat 26(3):284

    PubMed  Google Scholar 

  • Thomas CA (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256

    CAS  PubMed  Google Scholar 

  • Van Arsdell SW, Weiner AM (1984) Pseudogenes for human U2 small nuclear RNA do not have a fixed site of 3’ truncation. Nucl Acids Res 12:1463–1471

    PubMed Central  PubMed  Google Scholar 

  • Van den Hurk JA et al (2007) L1 retrotransposition can occur early in human embryonic development. Hum mol Genet 16(13):1587–1592

    PubMed  Google Scholar 

  • van der Klift HM, Tops CM, Hes FJ, Devilee P, Wijnen JT (2012) Insertion of an SVA element, a nonautonomous retrotransposon, in PMS2 intron 7 as a novel cause of Lynch syndrome. Hum Mutat 33(7):1051–1055

    Google Scholar 

  • Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Annu Rev Genet 19:253–272

    CAS  PubMed  Google Scholar 

  • Wagstaff BJ, Barnerssoi M, Roy-Engel AM (2011) Evolutionary conservation of the functional modularity of primate and murine LINE-1 elements. PLoS One 6(5):e19672

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walsh CP, Bestor TH (1999) Cytosine methylation and mammalian development. Genes Dev 13(1):26–34

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Song L, Grover D, Azrak S, Batzer MA, Liang P (2006) dbRIP: a highly integrated database of retrotransposon insertion polymorphisms in humans. Hum Mutat 27:323–329

    PubMed Central  PubMed  Google Scholar 

  • Weber B, Kimhi S, Howard G, Eden A, Lyko F (2010) Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene 29(43):5775–5784

    CAS  PubMed  Google Scholar 

  • Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH Jr et al (2001) Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 21:1429–1439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weichenrieder O, Repanas K, Perrakis A (2004) Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon. Structure 12(6):975–986

    CAS  PubMed  Google Scholar 

  • Wheelan SJ, Aizawa Y, Han JS, Boeke JD (2005) Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. Genome Res 15(8):1073–1078

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williams K, Christensen J, Helin K (2011) DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep 13(1):28–35

    PubMed Central  PubMed  Google Scholar 

  • Wissing S, Montano M, Garcia-Perez JL, Moran JV, Greene WC (2011) Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells. J Biol Chem 286(42):36427–36437

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wouters-Tyrou D, Martinage A, Chevaillier P, Sautière P (1998) Nuclear basic proteins in spermiogenesis. Biochimie 80(2):117–128

    CAS  PubMed  Google Scholar 

  • Xing J et al (2007) Mobile DNA elements in primate and human evolution. Am J Phys Anthr (Suppl 45):2–19

    Google Scholar 

  • Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD et al (2009) Mobile elements create structural variation: analysis of a complete human genome. Genome Res 19(9):1516–26

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9(10):3353–3362

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang N, Kazazian HH Jr (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13(9):763–771

    CAS  PubMed  Google Scholar 

  • Yang J, Malik HS, Eickbush TH (1999) Identification of the endonuclease domain encoded by R2 and other site- specific, non-long terminal repeat retrotransposable elements. Proc Natl Acad Sci U S A 96:7847–7852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang N, Zhang L, Zhang Y, Kazazian HH Jr (2003) An important role for RUNX3 in human L1 transcription and retrotransposition. Nucl Acids Res 31:4929–4940

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    CAS  PubMed  Google Scholar 

  • Yoshida K, Nakamura A, Yazaki M, Ikeda S, Takeda S (1998) Insertional mutation by transposable element, L1, in the DMD gene results in X-linked dilated cardiomyopathy. Hum Mol Genet 7(7):1129–1132

    CAS  PubMed  Google Scholar 

  • Zemojtel T, Penzkofer T, Schultz J, Dandekar T, Badge R, Vingron M (2007) Exonization of active mouse L1s: a driver of transcriptome evolution? BMC Genomics 8:392

    PubMed Central  PubMed  Google Scholar 

  • Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT et al (2009) Prominin 1 marks intial stem cells that are susceptible to neoplastic transformation. Nature 457:603–607

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheleh Rahbari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rahbari, R., Habibi, L., Garcia-Puche, J., Badge, R., Garcia-Perez, J. (2015). LINE-1 Retrotransposons and Their Role in Cancer. In: Mehdipour, P. (eds) Epigenetics Territory and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9639-2_3

Download citation

Publish with us

Policies and ethics