Skip to main content

Epigenetic of Retinoic Acid Receptor β2 Gene in Breast Cancer

  • Chapter
  • First Online:
Epigenetics Territory and Cancer
  • 1261 Accesses

Abstract

This chapter is aimed to focus on the multi-disciplinary nature of Retinoic acid receptor β2 (RARβ2) gene in breast cancer (BC) and highlighting the basic information as an evolutionay insight. The antiproliferative and proapoptotic capacities of Retinoids, derivatives of vitamin, play the crucial role in biological processes and chemopreventive agents against BC. Cause of the pyramid growth and progression in cancers has its roots in minor subpopulations of cancer stem cells. It is highlighted that in cancer stem cell model, the classical structure of tumorigenic and nontumorigenic cells is due to the native epigenetic diversity within the cancer cell populations. Altered expression of RARβ2 could lead to tumorigenesis and retinoid resistance. Hypermethylation of RARβ2 interact with ERα/PR/HER2 as a triangle target genes in BC patients. Different environmental factors are considered as predisposing/stimulator factors for methylation in ERα gene. Cancer family history as a preliminary risk factor, was inversely associated with the hypermethylated RARβ2.

Hypermethylation of specific involved genes in BC may lead to scilecing of those genes which have influential impact on carcinogenic and progressive processes. Moreover, diagnostic and therapeutic paradigms rely on the a bridging system between epigenetic profiling and clinical characteristics of cancer patients. Performance of multi-target strategy by considering pedigree based analysis and molecular/cellular genetics, subsequently, bridging plan will be translated to the clinc. In this chapter, it was aimed to ladder the main facts in molecular and cell biological paradigm about RARβ2 in BC which may lead to establish the more complementary prognostic based insights in direction of biomarker innovation, therapeutic strategy and more reliable clinical management for breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AML:

Acute myelocytic leukemia

AOE:

Axolotl oocyte extracts

ATRA:

All-trans retinoic acid

AHPN or CD437:

-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid

APC:

Adenomatous polyposis coli

BC:

Breast cancer

BRCA1:

Breast cancer susceptibility gene 1

CTAG1 and CTAG2:

Cancer testis antigen 1,2

CBS:

Cell based strategy

CCND2:

Cyclin D2

CCV:

Complementary/confirmative/validitative

CDK2:

Cyclin-dependent kinase 2

CDKN2A (p16INK4A):

Cyclin-dependent kinase inhibitor 2A, multiple tumor suppressor 1

CDH1:

E-cadherin

CrbpI:

Cellular retinol binding protein I

CSCs:

Cancer stem cells

CST6:

Cystatin-6 gene

DR5:

Direct repeat five

DNMT3A:

DNA methyltransferase gene

ES:

Embryonic stem

EMT:

Epithelial to mesenchymal transition

Er:

Estrogen receptor

ES:

Embryonic stem

EMT:

Epithelial to mesenchymal transition

Er:

Estrogen receptor

ERP:

Epigenetic regulatory proteins

EZH2:

Histone-lysine N-methyltransferase/enhancer of zeste

FISH:

Fluorescence in situ hubridization

GSTP1:

Glutathione S-transferase P1

4-HPR:

N-(4-hydroxyphenyl) retinamide

HA:

Histone acetylation

HAT:

Histone acetyltransferases

HDAC:

Histone deacetylases

Her2:

Human epidermal growth factor receptor 2 (ERBB2 or CD340)

HMEC:

Human mammary epithelial cell

HDAC:

Histone deacetylase

HM:

Histone methylation

HOXA PCDH BMI-1:

HOXA gene polycomb protein group homolog Bmi-1

H3K27me3:

Histone H3 lysine (K) 27

iPSCs:

Induced pluripotent stem cells

IDH:

Isocitrate dehydrogenase IDH2

IDH:

Isocitrate dehydrogenase

IF:

Immunofluoresence

IKK:

IkappaB kinase

LSD2:

Lysine-specific histone demethylases 1 (LSD1) and 2

LXN:

Regulator latexin

MINT:

Methylated-IN-tumor

MDS:

Mmyelodysplastic Myelodysplastic syndromes

MET:

Mesenchymal to epithelial transition EMT

MDS:

Myelodysplastic syndromes

Pr (Pgr):

Progestron receptor

NES1:

Normal epithelial cell-specific 1 or kallikrein 10

OncomiRs:

Oncogenic miRNAs PPP: Prognosis, prediction and prevention

PaC:

Pancreatic and

PC:

Prostate cancer

PRC:

Polycomb repressive complex

RA:

Retinoic acid receptors

RARRES1:

Retinoic acid receptor responder 1

RASSF1A:

RAS association domain family 1A

RARβ2:

Retinoic acid receptor-β2

RARs:

Retinoic acid receptors

RARg:

Retinoic acid receptor g

TSG:

Tumor suppressor gene

RXRs:

Retinoid X receptors

RARα:

Retinoic acid receptor Alfa

Rbp1:

Retinol-binding protein, type 1

RIG-I/DDX58:

Retinoic acid-inducible gene 1/DEAD (Asp-Glu-Ala-Asp) Box polypeptide 58

SHR:

Steroid hormone receptors

SUZ12:

Suppressor of zeste 12 homolog

TSGS:

Transcriptional tumor suppressor genes silencing

TET2:

Tet Methylcytosine dioxygenase 2

TWIST:

Human basic helix-loop-helix DNA binding protein

TSG:

Tumor-suppressor gene

TNBC:

Triple negative breast cancer

TLR3:

Toll-like receptor 3

TYRP1:

Tyrosinase-related protein 1

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    PubMed Central  CAS  PubMed  Google Scholar 

  • Allegrucci C, Rushton MD, Dixon JE, Sottile V, Shah M, Kumari R et al (2011) Epigenetic reprogramming of breast cancer cells with oocyte extracts. Mol Cancer 10(1):7. doi:10.1186/1476-4598-10-7

    PubMed Central  PubMed  Google Scholar 

  • Al Tanoury Z, Gaouar S, Piskunov A, Ye T, Urban S, Jost B et al (2014) Phosphorylation of the retinoic acid receptor RARγ2 is crucial for the neuronal differentiation of mouse embryonic stem cells. J Cell Sci 127:2095–105

    CAS  PubMed  Google Scholar 

  • Altucci L, Gronemeyer H (2001) The promise of retinoids to fight against cancer. Nat Rev Cancer 1:181–193

    CAS  PubMed  Google Scholar 

  • Andreola F, Giandomenico V, Spero R, De Luca LM (2000) Expression of a smaller lecithin:retinol acyl transferase transcript and reduced retinol esterification in MCF-7 cells. Biochem Biophys Res Commun 279:920–924

    CAS  PubMed  Google Scholar 

  • Bachman K, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB et al (2003) Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3:89–95

    CAS  PubMed  Google Scholar 

  • Balmer JE, Blomhoff R (2002) Gene expression regulation by retinoic acid. J Lipid Res 43:1773–1808

    CAS  PubMed  Google Scholar 

  • Barabe F, Kennedy JA, Hope KJ, Dick JE (2007) Modeling the initiation and progression of human acute leukemia in mice. Science 316:600–604

    CAS  PubMed  Google Scholar 

  • Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109:1721–1728

    PubMed  Google Scholar 

  • Bayon Y, Ortiz MA, Lopez-Hernandez FJ, Gao F, Karin M, Pfahl M et al (2003) Inhibition of IkappaB kinase by a new class of retinoid-related anticancer agents that induce apoptosis. Mol Cell Biol 23:1061–1074

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bean GR, Scott V, Yee L, Ratliff-Daniel B, Troch MM et al (2005) Retinoic acid receptor-beta2 promoter methylation in random periareolar fine needle aspiration. Cancer Epidemiol Biomark Prev 14:790–798

    CAS  Google Scholar 

  • Benetatos L, Voulgaris E, Vartholomatos G, Hatzimichael E (2013) Non-coding RNAs and EZH2 interactions in cancer: long and short tales from the transcriptome. Int J Cancer 133:267–274

    CAS  PubMed  Google Scholar 

  • Bhat-Nakshatri P, Goswami CP, Badve S, Sledge GW Jr, Nakshatri H (2013) Identification of FDA-approved Drugs Targeting Breast Cancer Stem Cells Along With Biomarkers of Sensitivity. Sci Rep 3:2530

    PubMed Central  PubMed  Google Scholar 

  • Bistulfi G, Pozzi S, Ming QR, Rossetti S, Sacchi N (2006) A Repressive epigenetic domino effect confers susceptibility to breast epithelial cell transformation: implications for predicting breast cancer risk. Cancer Res 66:10308–10314

    CAS  PubMed  Google Scholar 

  • Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J et al (2002) Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21:3241–3246

    CAS  PubMed  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    CAS  PubMed  Google Scholar 

  • Brand N, Petkovich M, Krust A, Chambon P, de Thé H, Marchio A et al (1988) Identification of a second human retinoic acid receptor. Nat 332:850–853

    CAS  Google Scholar 

  • Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al (2004a) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101:11755–11760

    PubMed Central  CAS  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004b) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    CAS  PubMed  Google Scholar 

  • Chen P, Li C, Li X, Li J, Chu R, Wang H (2014) Higher dietary folate intake reduces the breast cancer risk: a systematic review and meta-analysis. Br J Cancer 110:2327–38

    CAS  PubMed  Google Scholar 

  • Chiba H, Clifford J, Metzger D, Chambon P (1997) Distinct retinoid X receptor-retinoic acid receptor heterodimers are differentially involved in the control of expression of retinoid target genes in F9 embryonal carcinoma cells. Mol Cell Biol 17:3013–3020

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cho WC (2007) OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer 6:60

    PubMed Central  PubMed  Google Scholar 

  • Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CHM et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19)9339–9344

    CAS  PubMed  Google Scholar 

  • Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T (2006) The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442:307–311

    CAS  PubMed  Google Scholar 

  • Collingwood TN, Urnov FD, Wolffe AP (1999) Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription. J Mol Endocrinol 23:255–275

    CAS  PubMed  Google Scholar 

  • Connolly RM, Nguyen NK, Sukumar S (2013) Molecular pathways: current role and future directions of the retinoic Acid pathway in cancer prevention and treatment. Clin Cancer Res 19:1651–1659

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coyle KM, Sultan M, Thomas M, Kashani AV, Marcato P (2013) Retinoid signaling in cancer and its promise for therapy. J Carcinog Mutagen S7:006. doi: 10.4172/2157-2518.S7-006

    Google Scholar 

  • Cowland JB, Hother C, Grønbaek K (2007) MicroRNAs and cancer. APMIS 115:1090–1106

    CAS  PubMed  Google Scholar 

  • Dobrovic A, Simpfendorfer D (1997) Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 57:3347–3350

    CAS  PubMed  Google Scholar 

  • Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Massé A Le Couedic JP, Robert F, Alberdi A, Lécluse Y et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289–2301

    PubMed  Google Scholar 

  • Deng G, Chen A, Hong J, Chae HS, Kim YS (1999) Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res 59:2029–2033

    CAS  PubMed  Google Scholar 

  • Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807

    CAS  PubMed  Google Scholar 

  • Dilworth FJ, Chambon P (2001) Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 20:3047–3054

    CAS  PubMed  Google Scholar 

  • Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42(722–726):2010

    Google Scholar 

  • Esteller M (2006) Epigenetics provides a new generation of oncogenes and tumor-suppressor genes. Br J Cancer 94:179–183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Esteller M (2008) Molecular origins of cancer: epigenetics in cancer. N Engl J Med 358:1148–1096

    CAS  PubMed  Google Scholar 

  • Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354

    CAS  PubMed  Google Scholar 

  • Evans TR, Kaye SB (1999) Retinoids: present role and future potential. Br J Cancer 80:1–8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Farias EF, Ong DE, Ghyselinck NB, Nakajo S, Kuppumbatti YS, Mira-y-Lopez R (2005) Cellular retinol-binding protein I, a regulator of breast epithelial retinoic acid receptor activity, cell differentiation, and tumorigenicity. J Natl Cancer Inst 97:21–29

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T et al (2005) Villar-Garea loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet 37:391–400

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Rev Genet 7:21–33

    CAS  Google Scholar 

  • Ferguson AT, Lapidus RG, Baylin SB, Davidson NE (1995) Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res 55:2279–2283

    CAS  PubMed  Google Scholar 

  • Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D et al (2006) Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149:214–231

    Google Scholar 

  • Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA (2003) MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113:207–219

    CAS  PubMed  Google Scholar 

  • Galli R, Paone A, Fabbri M, Zanesi N, Calore F, Cascione L et al (2013) Toll-like receptor 3 (TLR3) activation induces microRNA-dependent reexpression of functional RARβ and tumor regression. Proc Natl Acad Sci U S A 110:9812–9817

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM (2006) MicroRNA expression and function in cancer. Trends Mol Med 12:580–587

    CAS  PubMed  Google Scholar 

  • Gerhauser C (2013) Cancer chemoprevention and nutri-epigenetics: state of the art and future challenges. Top Curr Chem 329:73–132

    CAS  PubMed  Google Scholar 

  • Geutjes EJ, Bajpe PK, Bernards R (2012) Targeting the epigenome for treatment of cancer. Oncogene 31:3827–3844

    CAS  PubMed  Google Scholar 

  • Goyal J, Smith KM, Cowan JM, Wazer DE, Lee SW, B and V et al (1998) The role for NES1 serine protease as a novel tumor suppressor. Cancer Res 58:4782–4786

    CAS  PubMed  Google Scholar 

  • Gray SG (2014) Bookreview: “Epigenetics”. Front.Genet. 5:104. doi:10.3389/fgene.2014.00104

    Google Scholar 

  • Gururaj AE, Rayala SK, Vadlamudi RK, Kumar R (2006) Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations. Clin Cancer Res 12:1001–1007

    Google Scholar 

  • Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz H et al (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449:933–937

    CAS  PubMed  Google Scholar 

  • Guo X, Ruiz A, Rando RR, Bok D, Gudas LJ (2000) Esterification of all-trans-retinol in normal human epithelial cell strains and carcinoma lines from oral cavity, skin and breast: reduced expression of lecithin:retinol acyltransferase in carcinoma lines. Carcinogenesis 21:1925–1933

    CAS  PubMed  Google Scholar 

  • Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012

    CAS  PubMed  Google Scholar 

  • Houle B, Rochette-Egly C, Bradley WE (1993) Tumor-suppressive effect of the retinoic acid receptor β in human epidermoid lung cancer cells. Proc Natl Acad Sci U S A 90:985–989

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hatzimichael E, Dranitsaris G, Dasoula A, Benetatos L, Stebbing J, Crook T et al (2009) Von Hippel-Lindau methylation status in patients with multiple myeloma: a potential predictive factor for the development of bone Disease. Clinic Lymphoma Myeloma 9:239–242

    CAS  Google Scholar 

  • Hatzimichael E, Dasoula A, Kounnis V, Benetatos L, Lo Nigro C, Lattanzio L et al (2012) Bcl2-interacting killer CpG methylation in multiple myeloma: a potential predictor of relapsed/refractory disease with therapeutic implications. Leuk Lymphoma 53:1709–1713

    CAS  PubMed  Google Scholar 

  • Hatzimichael E, Georgiou G, Benetatos L, Briasoulis E (2013) Gene mutations and molecularly targeted therapies in acute myeloid leukemia. Am J Blood Res 3:29–51

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG et al (2011) Increased methylation variation in epigenetic domains across cancer types. Nature Genet 43:768–775

    PubMed Central  CAS  PubMed  Google Scholar 

  • Husmann M, Lehmann J, Hoffmann B, Hermann T, Tzukerman M, Pfahl M (1991) Antagonism between retinoic acid receptors. Mol Cell Biol 11:4097–4103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Husmann M, Hoffmann B, Stump DG, Chytil F, Pfahl M (1992) A retinoic acid response element from the rat CRBPI promoter is activated by an RAR/RXR heterodimer. Biochem Biophys Res Commun 187:1558–1564

    CAS  PubMed  Google Scholar 

  • Heard E (2005) Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr Opin Genet Dev 15:482–489

    CAS  PubMed  Google Scholar 

  • Heard E, Clerc P, Avner P (1997) X-chromosome inactivation in mammals. Annu Rev Genet 31:571–610

    CAS  PubMed  Google Scholar 

  • Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM (2007) Reprogramming metastatic tumor cells with embryonic microenvironments. Nat Rev Cancer 7:246–255

    CAS  PubMed  Google Scholar 

  • Hua S, KittlerR, White KP (2009) Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 137(7):1259–1271

    Google Scholar 

  • Hinshelwood RA, Clark SJ (2008) Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med 86:1315–1328

    PubMed  Google Scholar 

  • Husmann MJ, Lehmann B, Hoffmann T, Hermann M, Tzukerman M, Pfahl M (1991) Antagonism between retinoic acid receptors. Mol Cell Biol 11:4097–4103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffmann B, Lehmann JM, Zhang XK, Hermann T, Husmann M, Graupner G et al (1990) A retinoic acid receptor-specific element controls the retinoic acid receptor-beta promoter. Mol Endocrinol 4:1727–1736

    CAS  PubMed  Google Scholar 

  • Hua S, Kittler R, White KP (2009) Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 137:1259–1271

    PubMed Central  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Silvia S et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    CAS  PubMed  Google Scholar 

  • Itoh Y, Suzuki T, Miyata N (2013) Small-molecular modulators of cancer-associated epigenetic mechanisms. Mol Biosyst 9:873–896

    CAS  PubMed  Google Scholar 

  • Izadi P, Noruzinia M, Karimipoor M, Karbassian MH, Akbari MT (2012a) Promoter hypermethylation of estrogen receptor alpha gene is correlated to estrogen receptor negativity in iranian patients with sporadic breast cancer. Cell J 14:102–109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Izadi P, Mehrdad N, Foruzandeh F, Reza NM (2012b) Epigenetics and three main clinical aspects of breast cancer management. Asian Pacific J Cancer Prev 13:4113–4117

    Google Scholar 

  • Junk DJ, Cipriano R, Stampfer M, Jackson MW (2013) Constitutive CCND1/CDK2 activity substitutes for p53 loss, or MYC or oncogenic RAS expression in the transformation of human mammary epithelial cells. PLoS ONE 8(2):e53776. doi:10.1371/journal.pone.0053776

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jung SP, Lee Y, Han KM, Lee SK, Kim S, Bae SY (2013) The Role of the CDH1 promoter hypermethylation in the axillary lymph node metastasis and prognosis. J Breast Cancer 16:16–22

    PubMed Central  PubMed  Google Scholar 

  • Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nature Genet 21:163–167

    CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nature Rev Genet 3:415–428

    CAS  PubMed  Google Scholar 

  • Jin Z, Tamura G, Tsuchiya T, Sakata K, Kashiwaba M, Osakabe M et al (2001) Adenomatous polyposis coli (APC) gene promoter hypermethylation in primary breast cancers. Br J Cancer 85:69–73

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karen J, Wang YB, Javaherian A, Vaccariello M, Fusenig NE (1999) 12-O-tetradecanoylphorbol-13-acetate induces clonal expansion of potentially malignant keratinocytes in a tissue model of early neoplastic progression. Cancer Res 59:474–481

    CAS  Google Scholar 

  • Kurbel S (2013) Model of tumor-associated epigenetic changes of HER2, ER, and PgR expression in invasive breast cancer phenotypes. Tumor Biol 34:2011–2017

    CAS  Google Scholar 

  • Kawakami Y, Raya A, Raya RM, Rodriguez-Esteban C, Belmonte JC (2005) Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 435:165–171

    CAS  PubMed  Google Scholar 

  • Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337

    CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  • Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C et al (2008) Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 40:741–750

    CAS  PubMed  Google Scholar 

  • Kurbel S (2013) Model of tumor-associated epigenetic changes of HER2, ER, and PgR expression in invasive breast cancer phenotypes. Tum Biol 34:2011–2017

    CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  PubMed  Google Scholar 

  • Lee X, Si SP, Tsou HC, Peacocke M (1995) Cellular aging and transformation suppression: a role for retinoic acid receptor beta 2. Exp Cell Res 218:296–304

    CAS  PubMed  Google Scholar 

  • Leu YW, Yan PS, Fan M, Jin VX, Liu JC, Curran EM et al. (2004) Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res 64:8184–8192

    CAS  PubMed  Google Scholar 

  • Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363(25):2424–2433

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Lee MO, Wang HG, Li Y, Hashimoto Y, Klaus M et al (1996) Retinoic acid receptor β mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol 16:1138–1149

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu XL, Wazer DE, Watanabe K, Band V (1996) Identification of a novel serine protease-like gene, the expression of which is down-regulated during breast cancer progression. Cancer Res 56:3371–3379

    CAS  PubMed  Google Scholar 

  • Li R, Faria TN, Boehm M, Nabel EG, Gudas LJ (2004) Retinoic acid causes cell growth arrest and an increase in p27 in F9 wild type but not in F9 retinoic acid receptor h2 knockout cells. Exp Cell Res 294:290–300

    CAS  PubMed  Google Scholar 

  • Li S, Rong M, Iacopetta B (2006) DNA hypermethylation in breast cancer and its association with clinicopathological features. Cancer Lett 237:272–280

    CAS  PubMed  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Cacere-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nat 367:645–648

    CAS  Google Scholar 

  • Laird PW (2005) Cancer epigenetics. Hum Mol Genet 14:R65–R76

    CAS  PubMed  Google Scholar 

  • Lo PK, Sukumar S (2008) Epigenomics and breast cancer. Pharmacogenomics 9:1879–1902

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mangelsdorf DJ, Umesona K, Evans RM (1994) The retinoid receptors. In Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry, and medicine, 2nd edn. Raven Press, New York, pp. 319–349

    Google Scholar 

  • Marchetti P, Zamzami N, Joseph B, Schraen-Maschke S, Méreau-Richard C, Costantini P et al (1999) The novel retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphtalene carboxylic acid can trigger apoptosis through a mitochondrial pathway independent of the nucleus. Cancer Res 59:6257–6266

    CAS  PubMed  Google Scholar 

  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257

    PubMed Central  CAS  PubMed  Google Scholar 

  • McAlhany SJ, Ayala GE, Frolov A, Ressler SJ, Wheeler TM, Watson JE et al (2004) Decreased stromal expression and increased epithelial expression of WFDC1/ps20 in prostate cancer is associated with reduced recurrencefree survival. Prostate 61:182–191

    CAS  PubMed  Google Scholar 

  • Mehdipour P, Pirouzpanah S, Sarafnejad A, Atri M, Shahrestani ST, Haidari M (2009) Prognostic implication of CDC25A and cyclin E expression on primary breast cancer patients. Cell Biol Int 33:1050–1056

    CAS  PubMed  Google Scholar 

  • Mehdipour P, Pirouzpanah S, Azari Yam A (2012) Retinoic acid receptorb2 gene in breast cancer. Eur J Clin Med Oncol 4:17–33

    Google Scholar 

  • Mehrotra J, Vali M, McVeigh M, Kominsky SL, Fackler MJ, Lahti-Domenici J et al (2004) Very high frequency of hypermethylated genes in breast cancer metastasis to the bone, brain, and lung. Clin Cancer Res 10:104–3109

    Google Scholar 

  • Mira-y-Lopez R, Zheng WL, Kuppumbatti YS, Rexer B, Jing Y, Ong DE (2000) Retinol conversion to retinoic acid is impaired in breast cancer cell lines relative to normal cells. J Cell Physiol 185:302–309

    PubMed  Google Scholar 

  • Moison C, Senamaud-Beaufort C, Fourrière L, Champion C, Ceccaldi A, Lacomme S et al (2013) DNA methylation associated with polycomb repression in retinoic acid receptor β silencing. FASEB J 27:1468–1478

    CAS  PubMed  Google Scholar 

  • Moison C, Assemat F, Daunay A, Tost J, Guieysse-peugeot AL, Arimondo PB (2014) Synergistic chromatin repression of the tumor suppressor gene RARB in human prostate cancers. Epigenetics 9:477–482

    CAS  PubMed  Google Scholar 

  • Mongan NP, Gudas LJ (2005) Valproic acid, in combination with all-trans retinoic acid and 5-aza-2ʹ-deoxycytidine, restores expression of silenced RARβ2 in breast cancer cells. Mol Cancer Ther 4:477–486

    CAS  PubMed  Google Scholar 

  • Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial- mesenchymal transition. PLoS One 3:e2888

    PubMed Central  PubMed  Google Scholar 

  • Montesano R, Soulie P (2002) Retinoids induce lumen morphogenesis in mammary epithelial cells. J Cell Sci 115:4419–4431

    CAS  PubMed  Google Scholar 

  • Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, Davidson NE et al (2000) Aberrant methylation of the estrogen receptor and E-cadherin 5ʹ CpG islands increases with malignant progression in human breast cancer. Cancer Res 60:4346–4348

    CAS  PubMed  Google Scholar 

  • Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P, Losson R (2001) Heterochromatin formation in mammalian cells: interaction between histones and HP1 Proteins. Mol Cell 7:729–739

    CAS  PubMed  Google Scholar 

  • Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tönnissen ER et al (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42:665–667

    CAS  PubMed  Google Scholar 

  • Novak P, Jensen TJ, Garbe JC, Stampfer MR, Futscher BW (2009) Stepwise DNA methylation changes are linked to escape from defined proliferation barriers and mammary epithelial cell immortalization. Cancer Res 69:5251–5258

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakajima S, Doi R, Toyoda E, Tsuji S, Wada M, Koizumi M et al (2004) N-cadherin expression and epithelial–mesenchymal transition in pancreatic carcinoma. Clin Cancer Res 10:4125–4133

    CAS  PubMed  Google Scholar 

  • Nowell PC (1976) The clonal evolution of Tumor cell population. Science 194:23–28

    CAS  PubMed  Google Scholar 

  • O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumor growth in immunodeficient mice. Nature 445:106–110

    PubMed  Google Scholar 

  • Oh HS, Kwon H, Sun SK, Yang CH (2002) QM, a putative tumor suppressor, regulates proto-oncogene c-yes. J Biol Chem 277:36489–36498

    CAS  PubMed  Google Scholar 

  • Oldridge EE, Walker HF, Stower MJ, Simms MS, Mann VM, Collins AT et al (2013) Retinoic acid represses invasion and stem cell phenotype by induction of the metastasis suppressors RARRES1 and LXN. Oncogenesis 2:e45. doi:10.1038/oncsis.2013.6

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ordentlich P, Nguyen N, Jin K, Sadik H, Han L, Sukumar S (2012) Reactivation of epigenetically silenced retinoic acid receptor-beta for therapy of breast cancer- from molecular mechanism to potential clinical applications. Cancer Res 72:Abstract nr P2-09-01

    Google Scholar 

  • Parrella P, Poeta ML, Gallo AP, Prencipe M, Scintu M, Apicella A et al (2004) Nonrandom distribution of aberrant promoter methylation of cancer-related genes in sporadic breast tumors. Clin Cancer Res 10:5349–5354

    CAS  PubMed  Google Scholar 

  • Peng X, Green A, Shilkaitis A, Zhu Y, Bratescu L, Christov K (2011) Early in vitro passages of breast cancer cells are differentially susceptible to retinoids and differentially express RARβ isoforms. Int J Oncol 39:577–583

    CAS  PubMed  Google Scholar 

  • Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG (2004) A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116:511–526

    CAS  PubMed  Google Scholar 

  • Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8:843–852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pierzchalski K, Yu J, Norman V, Kane MA (2013) CrbpI regulates mammary retinoic acid homeostasis and the mammary microenvironment. FASEB J 27(5):1904–1916

    CAS  PubMed  Google Scholar 

  • Pinto R, Pilato B, Ottini L, Lambo R, Simone G, Paradiso A et al (2013) Different methylation and microRNA expression pattern in male and female familial breast cancer. J Cell Physiol 228:1264–1269

    CAS  PubMed  Google Scholar 

  • Pirouzpanah S, Taleban FA, Atri M, Abadi AR, Mehdipour P ( (2010) The effect of modifiable potentials on hypermethylation status of retinoic acid receptor-beta2 and estrogen receptor-alpha genes in primary breast cancer. Cancer Causes Control 21:2101–2111

    PubMed  Google Scholar 

  • Pirouzpanah S, Taleban FA, Mehdipour P, Atri M, Hooshyareh-Rad A, Sabour S (2014a) The biomarker-based validity of a food frequency questionnaire to assess the intake status of folate, pyridoxine and cobalamin among Iranian primary breast cancer patients. Eur J Clin Nutr 68:316–323

    CAS  PubMed  Google Scholar 

  • Pirouzpanah S, Taleban FA, Mehdipour P, Atri M, Foroutan-Ghaznavi M (2014b) Plasma total homocysteine level in association with folate, pyridoxine, and cobalamin status among Iranian primary breast cancer patients. Nutr Cancer 66:1097–1108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Piva R, Piva R, Spandidos DA, Gambari R (2013) From microRNA functions to microRNA therapeutics: Novel targets and novel drugs in breast cancer research and treatment. Int J Oncol 43:985–994

    PubMed Central  CAS  PubMed  Google Scholar 

  • Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    CAS  PubMed  Google Scholar 

  • Pozzi S, Rossetti S, Bistulfi G, Sacchi N (2006) RAR-mediated epigenetic control of the cytochrome P450 Cyp26a1 in embryocarcinoma cells. Oncogene 25:1400–1407

    CAS  PubMed  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumor formation by single human melanoma cells. Nature 456:593–598

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ren M, Pozzi S, Bistulfi G, Somenzi G, Rossetti S, Sacchi N (2005) Impaired retinoic acid (RA) signal leads to RARβ2 epigenetic silencing and RA resistance. Mol Cell Biol 25:10591–10603

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ren MQ, Pozzi S, Bistulfi G, Somenzi G, Rossetti S, Sacchi N (2005) Impaired retinoic acid (RA) signal leads to RARβ2 epigenetic silencing and RA resistance. Mol Cell Biol 25:10591–10603

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rexer BN, Zheng WL, Ong DE (2001) Retinoic acid biosynthesis by normal human breast epithelium is via aldehyde dehydrogenase 6, absent in MCF-7 cells. Cancer Res 61:7065–7070

    CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clark MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al (2006) Identification and expansion of human colon-cancer-initiating cells. Nat 445:111–115

    Google Scholar 

  • Roman SC, Ormandy J, Manning DL, Blamey RW, Nicholson RI, Sutherland RL et al (1993) Estradiol induction of retinoic acid receptors in human breast cancer cells. Cancer Res 53:5940–5945

    CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    CAS  PubMed  Google Scholar 

  • Rishi AK, Shao ZM, Baumann RG, Li XS, Sheikh MS, Kimura S et al (1995) Estradiol regulation of the human retinoic acid receptor alpha gene in human breast carcinoma cells is mediated via an imperfect half-palindromic estrogen response element and Sp1 motifs. Cancer Res 55:4999–5006

    CAS  PubMed  Google Scholar 

  • Roman SD, Ormandy CJ, Manning DL, Blamey RW, Nicholson RI, Sutherland RL et al (2006) Cancer Stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19):9339–9344

    Google Scholar 

  • Roisin M, Connolly RM, Nguyen NK, Sukumar S (2013) Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clin Cancer Res 19:1651–1659

    Google Scholar 

  • Ropero S, Fraga MF, Ballestar E, Hamelin R, Yamamoto H, Boix-Chornet M et al (2006) A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nature Genet 38:56–569

    Google Scholar 

  • Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R et al (2002) Differential expression of the epithelial–mesenchymal transition regulators Snail, SIP1, and Twist in gastric cancer. Am J Pathol 161:1881–1891

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rouhi A, Mager DL, Humphries RK, Kuchenbauer F (2008) MiRNAs, epigenetics, cancer. Mamm Genome 19:517–525

    CAS  PubMed  Google Scholar 

  • Rubinek T, Shulman M, Israeli S, Bose S, Avraham A, Zundelevich A et al (2012) Epigenetic silencing of the tumor suppressor klotho in human breast cancer. Breast Cancer Res Treat 133(2):649–657

    CAS  PubMed  Google Scholar 

  • Sadikovic B, Al-Romaih K, Squire JA, Zielenska M (2008) Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics 9:394–408

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sabichi AL, Hendricks DT, Bober MA, Birrer MJ (1998) Retinoic acid receptor β expression and growth inhibition of gynecologic cancer cells by the synthetic retinoid N-(4-hydroxyphenyl) retinamide. J Natl Cancer Inst 90:597–605

    CAS  PubMed  Google Scholar 

  • Sarrio D, Moreno-Bueno G, Hardisson D, Sanchez-Estevez C, Guo M, Herman JG, Gamallo C et al (2003) Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer 106:208–215

    CAS  PubMed  Google Scholar 

  • Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    CAS  PubMed  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    CAS  PubMed  Google Scholar 

  • Shinozaki M, Hoon DS, Giuliano AE, Hansen NM, Wang HJ, Turner R et al (2005) Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 11:2156–2162

    CAS  PubMed  Google Scholar 

  • Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647:21–29

    CAS  PubMed  Google Scholar 

  • Simo-Riudalbas L, Melo SA (2011) Esteller M DNMT3B gene amplification predicts resistance to DNA demethylating drugs. Genes Chromosomes Cancer 50:527–534

    CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumor initiating cells. Nature 432:396–401

    CAS  PubMed  Google Scholar 

  • Sirchia SM, Ren M, Pili R, Sironi E, Somenzi G, Ghidoni R et al (2002) Endogenous reactivation of the RARβ2 tumor suppressor gene epigenetically silenced in breast cancer. Cancer Res 62:2455–2461

    CAS  PubMed  Google Scholar 

  • Sirchia SM, Ferguson AT, Sironi E, Subramanyan S, Orlandi R, Sukumar S et al (2000) Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor beta2 promoter in breast cancer cells. Oncogene 19:1556–1563

    CAS  PubMed  Google Scholar 

  • Sirchia SM, Ren M, Pili R, Sironi E, Somenzi G, Ghidoni R et al (2002) Endogenous reactivation of the RARβ2 tumor suppressor gene epigenetically silenced in breast cancer. Cancer Res 62:2455–2461

    CAS  PubMed  Google Scholar 

  • Smith WC, Nakshatri H, Leroy P, Rees J, Chambon P (1991) A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter. EMBO J 10:2223–2230

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sommer KM, Chen LI, Treuting PM, Smith LT, Swisshelm K (1999) Elevated retinoic acid receptor β4 protein in human breast tumor cells with nuclear and cytoplasmic localization. Proc Natl Acad Sci U S A 96:8651–8656

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stirzaker C, Song JZ, Davidson B, Clark SJ (2004) Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res 64:3871–3877

    CAS  PubMed  Google Scholar 

  • Sucov HM, Murakami KK, Evans RM (1990) Characterization of an autoregulated response element in the mouse retinoic acid receptor type β gene. Proc Natl Acad Sci U S A 87:5392–5396

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun J, Xu X, Liu J, Liu H, Fu L, Gu L (2011) Epigenetic regulation of retinoic acid receptor β2 gene in the initiation of breast cancer. Med Oncol 28:1311–1318

    CAS  PubMed  Google Scholar 

  • Sunami E, Shinozaki M, Sim MS, Nguyen SL, Vu AT, Giuliano AE et al (2008) Estrogen receptor and HER2/neu status affect epigenetic differences of tumor-related genes in primary breast tumors. Breast Cancer Res 10(3):R46. doi:10.1186/bcr2098

    PubMed Central  PubMed  Google Scholar 

  • Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM et al (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A 107:20980–20985

    PubMed Central  CAS  PubMed  Google Scholar 

  • Swisshelm K, Ryan K, Lee X, Tsou HC, Peacocke M, Sager R (1994) Down-regulation of retinoic acid receptor β in mammary carcinoma cell lines and its up-regulation in senescing normal mammary epithelial cells. Cell Growth Differ 5:133–141

    CAS  PubMed  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tao MH, Mason JB, Marian C, McCann SE, Platek ME, Millen A et al (2011) Promoter methylation of E-cadherin, p16, and RAR-β(2) genes in breast tumors and dietary intake of nutrients important in one-carbon metabolism. Nutr Cancer 63(7):1143–1150

    CAS  PubMed  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    CAS  PubMed  Google Scholar 

  • Thol F, Damm F, Lüdeking A, Winschel C, Wagner K, Morgan M et al (2011) Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 29:2889–2896

    CAS  PubMed  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    CAS  PubMed  Google Scholar 

  • Tribioli C, Droetto S, Bione S, Cesareni G, Torrisi MR, Lotti LV et al (1996) An X chromosome-linked gene encoding a protein with characteristics of a rhoGAP predominantly expressed in hematopoietic cells. Proc Natl Acad Sci U S A 93:695–699

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tommasi S, Karm DL, Wu X, Yen Y, Pfeifer GP (2009) Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res 11(1):R14. doi: 10.1186/bcr2233

    PubMed Central  PubMed  Google Scholar 

  • Van Hoesel AQ, Sato Y, Elashoff DA, Turner RR, Giuliano AE, Shamonki JM, et al ( 2013) http://www.ncbi.nlm.nih.gov/pubmed/23652305. Assessment of DNA methylation status in early stages of breast cancer development. Br J Cancer. 108:2033-8. doi: 10.1038/bjc.2013.136

    Google Scholar 

  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al (2012) Chinnaiyan AM. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Google Scholar 

  • Vermot J, Pourquie O (2005b) Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos. Nat 435:215–220

    CAS  Google Scholar 

  • Vermot J, Gallego Llamas J, Fraulob V, Niederreither K, Chambon P, Dolle P (2005a) Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo. Science 308:563–566

    CAS  PubMed  Google Scholar 

  • Virmani AK, Rathi A, Zöchbauer-Müller S, Sacchi N, Fukuyama Y, Bryant D et al (2000) Promoter methylation and silencing of the retinoic acid receptor-β gene in lung carcinomas. J Natl Cancer Inst 92:1303–1307

    CAS  PubMed  Google Scholar 

  • Virmani AK, Rathi A, Sathyanarayana UG, Padar A, Huang CX, Cunnigham HT et al (2001) Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res 7:1998–2004

    CAS  PubMed  Google Scholar 

  • Wallden B, Emond M, Swift ME, Disis ML, Swisshelm K (2005) Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells. BMC Cancer 5:140

    PubMed Central  PubMed  Google Scholar 

  • Wang YA, Shen K, Wang Y, Brooks SC (2005) Retinoic acid signaling is required for proper morphogenesis of mammary gland. Dev Dyn 234:892–899

    CAS  PubMed  Google Scholar 

  • Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C et al (2012) Landscape of TET2 mutations in acute myeloid leukemia. Leukemia 26:934–942

    CAS  PubMed  Google Scholar 

  • Weston A, Harris CC (1997) Chemical carcinogenesis. In: Holland JF, Frei E, Bast RC et al (eds) Cancer medicine, 4th edn, vol 1. Williams and Wikins, Baltimore, 261–276

    Google Scholar 

  • Widschwendter M, Daxenbichler G, Dapunt O, Marth C (1995) Effects of retinoic acid and γ-interferon on expression of retinoic acid receptor and cellular retinoic acid-binding protein in breast cancer cells. Cancer Res 55:2135–2139

    CAS  PubMed  Google Scholar 

  • Widschwendter M, Berger J, Hermann M, Müller HM, Amberge A, Zeschnigk M et al (2005) Methylation and silencing of the retinoic acid receptor-β2 gene in breast cancer. JNCI J Natl Cancer Inst 92:826–832

    Google Scholar 

  • Widschwendter M, Berger J, Hermann M, Müller HM, Amberger A, Zeschnigk M et al (2000) Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst 92:826-832

    PubMed Central  CAS  PubMed  Google Scholar 

  • Widschwendter M, Berger J, Müller HM, Zeimet AG, Marth C (2001) http://www.ncbi.nlm.nih.gov/pubmed/11501579. Epigenetic downregulation of the retinoic acid receptor-beta2 gene in breast cancer. J Mammary Gland Biol Neoplasia.6:193-201. Review.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiang TX, Yuan Y, Li LL, Wang H, Dan Y, Chen Y (2013) Aberrant promoter CpG methylation and its translational applications in breast cancer. Chin J Cancer 32:12–20

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu XC, Ro JY, Lee JS, Shin DM, Hong WK, Lotan R (1994) Differential expression of nuclear retinoid receptors in normal, premalignant, and malignant head and neck tissues. Cancer Res 54:3580–3587

    CAS  PubMed  Google Scholar 

  • Xue C, Plieth D, Venkov C, Xu C (2003) Neilson EG. The gatekeeper effect of epithelial–mesenchymaltransition regulates the frequency of breast cancer metastasis. Cancer Res 63:3386–3394

    CAS  PubMed  Google Scholar 

  • Xu L, Glass CK, Rosenfeld MG (1999) Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 9:140–147

    CAS  PubMed  Google Scholar 

  • Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y et al (2011) Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43:309–317

    CAS  PubMed  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al (2006) http://www.ncbi.nlm.nih.gov/pubmed/16530703. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis http://www.ncbi.nlm.nih.gov/pubmed/16530703. Cancer Cell. 9:189-98

    CAS  PubMed  Google Scholar 

  • Yang Q, Sakurai T, Kakudo K (2002) Retinoid, retinoic acid receptor β and breast cancer. Breast Cancer Res Treat 76:167–173

    CAS  PubMed  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    CAS  PubMed  Google Scholar 

  • Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5:37–50

    CAS  PubMed  Google Scholar 

  • Yu Z, Xiao Q, Zhao L, Ren J, Bai X, Sun M et al (2014) DNA methyltransferase 1/3a overexpression in sporadic breast cancer is associated with reduced expression of estrogen receptor-alpha/breast cancer susceptibility gene 1 and poor prognosis. Mol Carcinog. doi:10.1002/mc.22133

    Google Scholar 

  • Zanardi S, Serrano D, Argusti A, Barile M, Puntoni M, Decensi A (2006) Clinical trials with retinoids for breast cancer chemoprevention. Endocr Relat Cancer 13:51–68

    CAS  PubMed  Google Scholar 

  • Zhang XK, Liu Y, Lee MO, Pfahl M (1994) A specific defect in the retinoic acid receptor associated with human lung cancer cell lines. Cancer Res 54:5663–5669

    CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Mehdipour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mehdipour, P. (2015). Epigenetic of Retinoic Acid Receptor β2 Gene in Breast Cancer. In: Mehdipour, P. (eds) Epigenetics Territory and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9639-2_11

Download citation

Publish with us

Policies and ethics