Skip to main content

Macroevolution and Paleobiogeography of Jurassic-Cretaceous Ammonoids

  • Chapter
  • First Online:
Book cover Ammonoid Paleobiology: From macroevolution to paleogeography

Part of the book series: Topics in Geobiology ((TGBI,volume 44))

Abstract

Jurassic-Cretaceous (J-K) ammonoids experienced remarkably rapid rates of evolution and extinction. The processes that fueled this evolutionary volatility are not well understood. Evolutionary relationships among and within the six J-K ammonoid suborders are incompletely reconstructed, in part because the homeomorphy and intraspecific variability complicates phylogenetic analysis. J-K ammonoids appear to have been developmentally flexible; heterochronic shifts in their evolution are common and taxa are often distinguishable by variations in the timing of developmental events. Changes in environmental variables are consistently correlated with both diversification and extinction in J-K ammonoids. The tectonic separation of Pangea, greenhouse warming, and sea level change drove ammonoid dispersal and the development of biogeographic provinces. A synthetic view of J-K ammonoid evolution provides the foundation for a model of ammonoid speciation in which sea level change provides new epeiric sea microhabitats into which ammonoids disperse while developmental flexibility provides the morphological and ecological variation to fuel divergence and speciation. New quantitative and geospatial approaches will allow us to integrate phylogenetic and paleobiogeographic data to better understand the macroevolution of these cephalopods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilée R, Lambert A, Claessen D (2011) Ecological speciation in dynamic landscapes. J Evol Biol 24:2663–2677

    Article  Google Scholar 

  • Aguirre-Urreta MB, Mourgues FA, Rawson PF, Bulot LG, Jaillard E (2007) The Lower Cretaceous Chañarcillo and Neuquén Andean basins: ammonoid biostratigraphy and correlations. Geol J 42:143–173

    Article  Google Scholar 

  • Albertson RC, Kocher TD (2006) Genetic and developmental basis of cichlid trophic diversity. Heredity 97:211–221

    Article  CAS  Google Scholar 

  • Allmon WD, Smith U (2011) What, if anything, can we learn from the fossil record about speciation in marine gastropods? Biological and geological considerations. Am Malacol Bull 29:247–276

    Article  Google Scholar 

  • Alroy J (2008) Dynamics of origination and extinction in the marine fossil record. Proc Natl Acad Sci U S A 105:11536–11542

    Article  CAS  Google Scholar 

  • Alroy J (2010) Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:1211–1235

    Article  Google Scholar 

  • Alroy J, Marshall CR, Bambach RK, Bezusko K, Foote M, Fürsich FT, Hansen TA, Holland SM, Ivany LC, Jablonski D, Jacobs JK, Jones DC, Kosnik MA, Lidgard S, Low S, Miller AI, Novack-Gottshall PM, Olszewski TD, Patzkowsky ME, Raup DM, Roy K, Sepkoski, Jr JJ, Sommers MG, Wagner PJ, Webber A (2001) Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc Natl Acad Sci U S A 98:6261–6266

    Google Scholar 

  • Alroy J, Aberhan M, Bottjer DJ, Foote M, Fürsich FT, Harries PJ, Hendy AJW, Holland SM, Ivany LC, Kiessling W, Kosnik MA, Marshall CR, McGowan AJ, Miller AI, Olszewski TD, Patzkowsky ME, Peters SE, Villier L, Wagner PJ, Bonuso N, Borkow PS, Brenneis B, Clapham ME, Fall LM, Ferguson CA, Hanson VL, Krug AZ, Layou KM, Leckey EH, Nürnberg S, Powers CM, Sessa JA, Simpson C, Tomašových A, Visaggi CC (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100

    Article  CAS  Google Scholar 

  • Alsen P (2006) The Early Cretaceous (late Ryazanian-early Hauterivian) ammonite fauna of North-East Greenland: taxonomy, biostratigraphy, and biogeography. Foss Strata 53:1–229

    Article  Google Scholar 

  • Arias C (2008) Palaeoceanography and biogeography in the Early Jurassic Panthalassa and Tethys oceans. Gondwana Res 14:306–315

    Article  Google Scholar 

  • Arkell WJ, Furnish WM, Kummel B, Miller AK, Moore RC, Schindewolf OH, Sylvester-Bradley PC, Wright CW (1957) Treatise on invertebrate paleontology, part L, Mollusca 4, Cephalopoda Ammonoidea. GSA and University of Kansas Press, Boulder and Lawrence

    Google Scholar 

  • Atrops F, Meléndez G (1988) Palaeobiogeography and evolutionary trends in Lower Kimmeridgian ataxioceratids from Spain. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Bardhan S, Shome S, Roy P (2007) Biogeography of Kutch ammonites during the latest Jurassic (Tithonian) and a global paleobiogeographic overview. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods––Present and Past: new insights and fresh perspectives. Springer, Dordrecht, p 375–395

    Google Scholar 

  • Bayer U, McGhee GR Jr (1984) Iterative evolution of Middle Jurassic ammonite faunas. Lethaia 17:1–16

    Article  Google Scholar 

  • Becker RT (1993) Anoxia, eustatic changes, and Upper Devonian to lowermost Carboniferous global ammonoid diversity. In: House MR (ed) The Ammonoidea. Environment, ecology, and evolutionary change. Systematics Association special volume, vol 47. Clarendon, London

    Google Scholar 

  • Bengtson P, Kakabadze MV (1999) Biogeography of Cretaceous ammonites: a review of procedures and problems. N Jahrb Geol Paläontol Abh 212:221–239

    Article  Google Scholar 

  • Bert D, Bersac S (2013) Evolutionary patterns-tested with cladistics-and processes in relation to palaeoenvironments of the upper Barremian genus Gassendiceras (Ammonitina, Lower Cretaceous). Paleontology 56:631–646

    Article  Google Scholar 

  • Bessenova NV, Mikhailova IA (1983) The evolution of the Jurassic-Cretaceous ammonoids. Dokl Akad Nauk SSSR 269:733-797 [in Russian]

    Google Scholar 

  • Bessenova NV, Mikhailova IA (1991) Higher taxa of Jurassic and Cretaceous Ammonitida. J Paleontol 25:1–19

    Google Scholar 

  • Bird CE, Fernandez-Silva I, Skillings DJ, Toonen RJ (2012) Sympatric speciation in the post “modern synthesis” era of evolutionary biology. Evol Biol 39:158–180

    Article  Google Scholar 

  • Blakey RC (2011a) Mollewide plate tectonic maps of Phanerozoic. http://www2.nau.edu/rcb7/mollglobe.html. Accessed 19 Oct 2013

  • Blakey RC (2011b) Paleogeography and geologic evolution of North America. http://cpgeosystems.com/nam.html. Accessed 24 Mar 2014

  • Blau J, Meister C, Schmidt-Effing R, Villaseñor AB (2008) A new fossiliferous site of Lower Liassic (Upper Sinemurian) marine sediments from the southern Sierra Madre Oriental (Puebla, Mexico): ammonite fauna, biostratigraphy and description of Ectocentrites hillebrandti new species. Rev Mex Cienc Geol 25:402–407

    Google Scholar 

  • Bourillot R, Neige P, Pierre A, Durlet C (2008) Early-Middle Jurassic lytoceratid ammonites with constructions from Morocco: palaeobiogeographical and evolutionary implications. Paleontology 51:597–609

    Article  Google Scholar 

  • Brayard A, Escarguel G (2013) Untangling phylogenetic, geometric and ornamental imprints on Early Triassic ammonoid biogeography: a similarity-distance decay study. Lethaia 46:19–33

    Article  Google Scholar 

  • Brayard A, Escarguel G, Bucher H (2007) The biogeography of Early Triassic ammonoid faunas: clusters, gradients, and networks. Geobios 40:749–765

    Article  Google Scholar 

  • Brosse M, Brayard A, Fara E, Neige P (2013) Ammonoid recovery after the Permo-Triassic mass extinction: a re-exploration of morphological and phylogenetic diversity patterns. J Geol Soc Lond 170:225–236

    Article  Google Scholar 

  • Bujtor L (2010) Systematics, phylogeny and homeomorphy of the Engonoceratidae HYATT, 1900 (Ammonoidea, Cretaceous) and revision of Engonoceras duboisi LATIL, 1989. Carnets Geol Article No. CG2010_A08

    Google Scholar 

  • Butlin RK, Galindo J, Grahame JW (2008) Sympatric, parapatric, or allopatric? The most important way to classify speciation? Philos Trans R Soc Lond B Biol Sci 363:2997–3007

    Article  Google Scholar 

  • Callomon JH (1981) Dimorphism in ammonoids. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, London

    Google Scholar 

  • Callomon JH (1985) The evolution of the Jurassic ammonite family Cardioceratidae. Spec Pap Paleontol 33:49–98

    Google Scholar 

  • Callomon JH (2003) The Middle Jurassic of western and northern Europe: its subdivisions, geochronology and correlations. Geol Surv Den Greenl Bull 1:61–73

    Google Scholar 

  • Cariou E, Sequeiros L (1987) Callovian Taramelliceras (Ammonitina, Taramelliceratinae): discovery of the ancestral forms and probable progenetic origin of the genus. Geobios 20:495–516

    Article  Google Scholar 

  • Cariou E, Elmi S, Mangold C (1990) Securisites, new genus (Ammonitina, Jurassic) and its phylogenetic position in the family Oppeliidae: an example of iterative evolution. C R Acad Sci Ser II Mec Phys Chim Sci Univers Sci Terr 315:1267–1273

    Google Scholar 

  • Cecca F (1999) Palaeobiogeography of Tethyan ammonites during the Tithonian (latest Jurassic). Paleogeogr Paleoclimatol Paleoecol 147:1–37

    Article  Google Scholar 

  • Cecca F, Macchioni F (2004) The two Early Toarcian (Early Jurassic) extinction events in ammonoids. Lethaia 37:35–56

    Article  Google Scholar 

  • Cecca F, Pochettino M (2000) The Early Kimmeridgian genus Metastreblites Olóriz, 1978 (Ammonoidea, Oppeliidae) from Rocca Drago (western Sicily, Italy): homeomorphy and iterative evolution within the Subfamily Streblitinae. Geobios 33:97–107

    Article  Google Scholar 

  • Cecca F, Rouget I (2006) Anagenetic evolution of the early Tithonian ammonite genus Semiformiceras tested with cladistic analysis. Palaeontology 49:1069–1080

    Article  Google Scholar 

  • Cecca F, Martin Garin B, Marchand D, Lathuiliere B, Bartolini A (2005a) Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during the Oxfordian (Late Jurassic). Paleogeogr Paleoclimatol Paleoecol 222:10–32

    Article  Google Scholar 

  • Cecca F, Vrielynck B, Lavoyer T, Gaget H (2005b) Changes in the ammonite taxonomical diversity gradient during the Late Jurassic-Early Cretaceous. J Biogeogr 32:535–547

    Article  Google Scholar 

  • Cobban WA, Obradovich JD, Walaszcyk I, McKinney KC (2006) A USGS zonal table for the Upper Cretaceous Middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. US Geological Survey Open-File Report 2006–1250

    Google Scholar 

  • Cohen KM, Finney S, Gibbard PL (2013) International Chronostratigraphic Chart. International Commission on Stratigraphy. http://www.stratigraphy.org/ICSChart/ChronostratChart2013-01.pdf Accessed 23 July 2013

  • Courville P (2007) Échanges et colonisations fauniques (Ammonitina) entre Téthys et Atlantique sud au Crétacé Supérieur: voies atlantiques ou sahariennes? Carnets Geol Mem 02:16–19

    Google Scholar 

  • Courville P, Cronier C (2003) Ontogenetic heterochronies: a tool to study both variability and phyletic relationships? Example: Nigericeras, Ammonitina of the African Upper Cretaceous. CR Palevol 2:535–546

    Article  Google Scholar 

  • Courville P, Lang J, Thierry J (1998) Ammonite faunal exchanges between South Tethyan platforms and South Atlantic during the uppermost Cenomanian-Lowermost/Middle Turonian in the Benue Trough (Nigeria). Geobios 31:187–214

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Davis RA, Landman NH, Dommergues J-L, Marchand D, Bucher H (1996) Mature modifications and dimorphism in ammonoid cephalopods. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in geobiology, vol 13. Plenum Press, New York

    Google Scholar 

  • De Baets K, Klug C, Korn D, Landman NH (2012) Early evolutionary trends in ammonoid embryonic development. Evolution 66:1788–1806

    Article  Google Scholar 

  • De Baets K, Bert D, Hoffmann R, Monnet C, Yacobucci MM, Klug C (2015) Ammonoid intraspecific variability. In: Klug C, Korn D, De Baets K, Kruta I, Mapes R (eds) Ammonoid paleobiology: from anatomy to ecology. Topics in geobiology, vol 43. Springer, Dordrecht

    Google Scholar 

  • Delanoy G, Busnardo R (2007) Anglesites gen. nov. (Ammonoidea, Ancyloceratina), a new genus of heteromorphic ammonites from the upper Barremian from South-East of France. Geobios 40:801–807

    Article  Google Scholar 

  • Delanoy G, Poupon A (1992) About the genus Lytocrioceras Spath, 1924: (Ammonoidea, Ancyloceratina). Geobios 25:367–382

    Article  Google Scholar 

  • Dera G, Neige P, Dommergues J-L, Fara E, Laffont R, Pellenard P (2010) High-resolution dynamics of Early Jurassic marine extinctions: the case of Pliensbachian-Toarcian ammonites (Cephalopoda). J Geol Soc 167:21–33

    Article  CAS  Google Scholar 

  • Dera G, Neige P, Dommergues J-L, Brayard A (2011) Ammonite paleobiogeography during the Pliensbachian-Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions. Glob Planet Chang 78:92–105

    Article  Google Scholar 

  • Doguzhaeva L, Mikhailova I (1981) The genus Luppovia and the phylogeny of Cretaceous heteromorphic ammonoids. Lethaia 15:55–65

    Article  Google Scholar 

  • Dommergues J-L (1987) L’evolution chez les Ammonitina du Lias moyen (Carixian, Domerien basal) en Europe occidentale. Doc Lab Geol Fac Sci Lyon 98:1–297

    Google Scholar 

  • Dommergues J-L (1994) The Jurassic ammonite Coeloceras: an atypical example of dimorphic progenesis elucidated by cladistics. Lethaia 27:143–152

    Article  Google Scholar 

  • Dommergues J-L (2002) Les premiers Lytoceratoidea du Nord-Ouest de l’Europe (Ammonoidea, Sinemurien inferieur, France): Exemple de convergence evolutive vers les morphologies “capricornes”. Rev Paleobiol 21:257–277

    Google Scholar 

  • Dommergues J-L, Marchand D (1988) Paléobiogéographie historique et ecologique: Applications aux ammonites du Jurassique. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Dommergues J-L, Mouterde R (1987) The endemic trends of Liassic ammonite faunas of Portugal as the result of the opening up of a narrow epicontinental basin. Paleogeogr Paleoclimatol Paleoecol 58:129–138

    Article  Google Scholar 

  • Dommergues J-L, Mouterde R, Rivas P (1984) A false polymorphism: Dubariceras, new genus of the Ammonitina from the Mesogean Carixian. Geobios 17:831–839

    Article  Google Scholar 

  • Dommergues J-L, David B, Marchand D (1986) Les relations ontogenèse-phylogenèse: Applications paléontologiques. Geobios 19:335–356

    Article  Google Scholar 

  • Dommergues J-L, Cariou E, Contini D, Hantzpergue P, Marchand D, Meister C, Thierry J (1989) Homéomorphies et canalisations évolutives: Le role de l’ontogenèse. Quelques exemples pris chez les ammonites du Jurassique. Geobios 22:5–48

    Article  Google Scholar 

  • Dommergues J-L, Laurin B, Meister C (2001) The recovery and radiation of Early Jurassic ammonoids: Morphologic versus palaeobiogeographical patterns. Paleogeogr Paleoclimatol Paleoecol 165:195–213

    Article  Google Scholar 

  • Dommergues J-L, Fara E, Meister C (2009) Ammonite diversity and its palaeobiogeographical structure during the early Pliensbachian (Jurassic) in the western Tethys and adjacent areas. Paleogeogr Paleoclimatol Paleoecol 280:64–77

    Article  Google Scholar 

  • Donovan DT (1994) History of classification of Mesozoic ammonites. J Geol Soc 151:1035–1040

    Article  Google Scholar 

  • Donovan DT, Callomon JH, Howarth MK (1981) Classification of the Jurassic Ammonitina. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, London

    Google Scholar 

  • Dunhill AM (2012) Problems with using rock outcrop area as a paleontological sampling proxy: rock outcrop and exposure area compared with coastal proximity, topography, land use, and lithology. Paleobiol 38:126–143

    Article  Google Scholar 

  • El Hariri K, Neige P, Dommergues J-L (1996) Rib morphometrics of Pliensbachian Harpoceratinae (Ammonitina) from the High Atlas (Morocco). Comparison with specimens from the Central Apennines (Italy). C R Acad Sci Ser II A Sci Terre Planet 322:693–700

    Google Scholar 

  • Enay R, Cariou E (1997) Ammonite faunas and palaeobiogeography of the Himalayan belt during the Jurassic: Initiation of a Late Jurassic austral ammonite fauna. Paleogeogr Paleoclimatol Paleoecol 134:1–38

    Article  Google Scholar 

  • Enay R, Cariou E (1999) Jurassic ammonite faunas from Nepal and their bearing on the palaeobiogeography of the Himalayan belt. J Asian Earth Sci 17:829–848

    Article  Google Scholar 

  • Enay R, Gygi RA (2001) Les ammonites de la zone à Bifurcatus (Jurassique Supérieur, Oxfordien) de Hinterstein, près de Oberehrendingen (canton d’Argovie, Suisse). Eclogae Geol Helv 94:447–487

    Google Scholar 

  • Engeser T, Keupp H (2002) Phylogeny of the aptychi-possessing Neoammonoidea (Aptychophora nov., Cephalopoda). Lethaia 34:79–96

    Google Scholar 

  • Fernández-López SR, Chong Diaz GB (2011) Dimorphinites (Ammonoidea, Jurassic, Upper Bajocian) in the Precordillera of northern Chile. J Paleontol 85:395–405

    Article  Google Scholar 

  • Fitzpatrick BM, Fordyce JA, Gavrilets S (2008) What, if anything, is sympatric speciation? J Evol Biol 21:1452–1459

    Article  CAS  Google Scholar 

  • Fitzpatrick BM, Fordyce JA, Gavrilets S (2009) Pattern, process and geographic modes of speciation. J Evol Biol 22:2342–2347

    Article  CAS  Google Scholar 

  • Foote M (2000) Origination and extinction components of taxonomic diversity: General Problems. In: Erwin DH, Wing SL (eds) Deep time: paleobiology’s perspective. Allen Press, Lawrence

    Google Scholar 

  • Foote M (2003) Origination and extinction through the Phanerozoic: a new approach. J Geol 111:125–148

    Article  Google Scholar 

  • Foote M, Sepkoski JJ Jr (1999) Absolute measures of the completeness of the fossil record. Nature 398:415–417

    Article  CAS  Google Scholar 

  • Futakami M, Obata I (1988) Distribution of some Turonian and Coniacian collignoniceratid ammonites. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart.

    Google Scholar 

  • Galácz A (2012) Early perisphinctid ammonites from the early/late Bajocian boundary interval (Middle Jurassic) from Lókút, Hungary. Geobios 45:285–295

    Article  Google Scholar 

  • Gangopadhyay TK, Bardhan S (2007) Ornamental polymorphism in Placenticeras kaffrarium (Ammonoidea; Upper Cretaceous of India): Evolutionary implications. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods present and past: new insights and fresh perspectives. Springer, Amsterdam

    Google Scholar 

  • Gavrilets S (2003) Perspective: Models of speciation: What have we learned in 40 years? Evolution 57:2197–2215

    Google Scholar 

  • Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University, Princeton

    Book  Google Scholar 

  • Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737

    Article  CAS  Google Scholar 

  • Geraldes MC, Motoki A, Costa A, Mota CE, Mohriak WU (2013) Geochronology (Ar/Ar and K-Ar) of the South Atlantic post-break-up magmatism. Geol Soc Lond Spec Pub 369:41–74

    Google Scholar 

  • Gerber S (2011) Comparing the differential filling of morphospace and allometric space through time: the morphological and developmental dynamics of Early Jurassic ammonoids. Paleobiology 37:369–382

    Article  Google Scholar 

  • Gerber S, Neige P, Eble GJ (2007) Combining ontogenetic and evolutionary scales of morphological disparity: a study of Early Jurassic ammonites. Evol Dev 9:472–482

    Article  Google Scholar 

  • Gerber S, Eble GJ, Neige P (2008) Allometric space and allometric disparity: a developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution 62:1450–1457

    Article  Google Scholar 

  • Geyssant JR (1988) Diversity in mode and tempo of evolution within one Tithonian ammonite family, the simoceratids. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Gilinsky NL (1994) Volatility and the Phanerozoic decline of background extinction. Paleobiol 20:445–458

    Article  Google Scholar 

  • Gilinsky NL (1998) Evolutionary turnover and volatility in higher taxa. In: McKinney ML, Drake JA (eds) Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University, New York

    Google Scholar 

  • Gordon WA (1976) Ammonoid provincialism in space and time. J Paleontol 50:521–535

    Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University, Cambridge

    Google Scholar 

  • Grant PR, Grant BR (2008) How and why species multiply: the radiation of Darwin’s finches. Princeton University, Princeton

    Google Scholar 

  • Grant PR, Grant BR, Abzhanov A (2006) A developing paradigm for the development of bird beaks. Biol J Linn Soc 88:17–22

    Article  Google Scholar 

  • Guex J (1981) Quelques cas de dimorphisme chez les ammonidés du Lias Inférieur. Bull Soc Vaudoise des Sci Nat 360:239–248

    Google Scholar 

  • Guex J (1987) Sur la phylogenèse des ammonites du Lias Inférieur. Bull Geol Lausanne 292:455–469

    Google Scholar 

  • Guex J (1995) Ammonites Hettangiennes de la Gabbs Valley Range (Nevada, USA). Mémoires de géologie, vol 27. Lausanne, Switzerland, pp 1–131

    Google Scholar 

  • Guex J (2000) Paronychoceras gen. n., un nouveau genre d’ammonites (Cephalopoda) du Lias Superieur. Bull Soc Vaudoise des Sci Nat 87:115–124

    Google Scholar 

  • Guex J (2001) Environmental stress and atavism in ammonoid evolution. Eclogae Geol Helv 94:321–328

    Google Scholar 

  • Guex J, Schoene B, Bartolini A, Spangenberg J, Schaltegger U, O’Dogherty L, Taylor D, Bucher H, Atudorei V (2012) Geochronological constraints on post-extinction recovery of the ammonoids and carbon cycle perturbations during the Early Jurassic. Paleogeogr Paleoclimatol Paleoecol 346–347:1–11

    Article  Google Scholar 

  • Haas O (1942) Recurrence of morphologic types and evolutionary cycles in Mesozoic ammonites. J Paleontol 16:643–650

    Google Scholar 

  • Hallam A (1989) The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philos Trans R Soc Lond B Biol Sci 325:437–455

    Article  Google Scholar 

  • Hallam A (1990) Biotic and abiotic factors in the evolution of early Mesozoic marine molluscs. In: Ross RM, Allmon WD (eds) Causes of evolution: a paleontological perspective. University of Chicago, Chicago

    Google Scholar 

  • Hancock JM, Kennedy WJ (1981) Upper Cretaceous ammonite stratigraphy: Some current problems. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, London

    Google Scholar 

  • Hannisdal B, Peters SE (2011) Phanerozoic earth system evolution and marine biodiversity. Science 334:1121–1124

    Article  CAS  Google Scholar 

  • Hantzpergue P (1991) Biogéographie des ammonites et variations du niveau marin: Apport de la stratigraphie séquentielle dans l’analyse des peuplements du Kimméridgien Nord-Aquitain. Geobios 24:59–64

    Article  Google Scholar 

  • Hantzpergue P (1995) Faunal trends and sea-level changes: Biogeographic patterns of Kimmeridgian ammonites on the Western European Shelf. Geol Rundsch 84:245–254

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Article  CAS  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, vol 42. Society for Sedimentary Geology Special Publication, Tulsa, Oklahoma, USA, pp 71–108

    Google Scholar 

  • Harada K, Tanabe K (2005) Paedomorphosis in the Turonian (Late Cretaceous) collignoniceratine ammonite lineage from the north Pacific region. Lethaia 38:47–57

    Article  Google Scholar 

  • Hardy C, Fara E, Laffont R, Dommergues J-L, Meister C, Neige P (2012) Deep-time phylogenetic clustering of extinctions in an evolutionarily dynamic clade (Early Jurassic ammonites). PLoS ONE 7(5):e37977

    Article  Google Scholar 

  • Hay WW, Floegel S (2012) New thoughts about the Cretaceous climate and oceans. Earth-Sci Rev 115:262–272

    Article  CAS  Google Scholar 

  • Hendy AJW (2009) Quantitative analysis of global Cretaceous ammonoid paleobiogeography. 9th North American Paleontological Convention, Abstracts p. 243

    Google Scholar 

  • Hirano H (1988) Evolutionary mode of some Late Cretaceous ammonites in offshore waters. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Hirano H, Toshimitsu S, Matsumoto T, Takahashi K (2000) Changes in Cretaceous ammonoid diversity and marine environments of the Japanese Islands. In: Okada H, Mateer NJ (eds) Cretaceous environments of Asia. Developments in palaeontology and stratigraphy, vol 17. Elsevier, Amsterdam

    Google Scholar 

  • Hoffmann E (2010) New insights on the phylogeny of the Lytoceratoidea (Ammonitina) from the septal lobe and its functions interpretation. Rev Paléobiologie Genève 29(1):1–156

    Google Scholar 

  • Holland SM (2012) Sea level change and the area of shallow-marine habitat: implications for marine biodiversity. Paleobiol 38:205–217

    Article  Google Scholar 

  • Houša V (1965) Sexual dimorphism and the system of Jurassic and Cretaceous Ammonoidea (preliminary note). Cas Nar Muz 134(7):33–35

    Google Scholar 

  • House MR (1985) Correlation of mid-Palaeozoic ammonoid evolutionary events with global sedimentary perturbations. Nature 213:17–22

    Article  Google Scholar 

  • House MR (1987) Geographic distribution of Nautilus shells. In: Saunders WB, Landman NH (eds) Nautilus, the biology and paleobiology of a living fossil. Plenum Press, New York

    Google Scholar 

  • House MR (1988) Major features of cephalopod evolution. In: Wiedmann J, Kullmann J (eds) Cephalopods—present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • House MR (1989) Ammonoid extinction events. Philos Trans R Soc Lond B Biol Sci 325:307–326

    Article  Google Scholar 

  • House MR (1993) Fluctuations in ammonoid evolution and possible environmental controls. In: House MR (ed) The Ammonoidea: Environment, ecology, and evolutionary change. Systematics association special volume, vol 47. Clarendon, London

    Google Scholar 

  • Howarth MK (1978) The stratigraphy and ammonite fauna of the Upper Lias of Northamptonshire. Bull Brit Mus (Nat Hist) 29:235–288

    Google Scholar 

  • Howarth MK (2013) Treatise on invertebrate paleontology, part l, revised, volume 3b, chap. 4: Psiloceratoidea, Eoderoceratoidea, Hildoceratoidea. Treatise Online 57:1–139

    Google Scholar 

  • Iba Y (2009) An Early Albian Arctic-type ammonite Arcthoplites from Hokkaido, northern Japan, and its paleobiogeographic and paleoclimatological implications. J Asian Earth Sci 34:46–50

    Article  Google Scholar 

  • Iba Y, Sano S (2007) Mid-Cretaceous step-wise demise of the carbonate platform biota in the Northwest Pacific and establishment of the North Pacific biotic province. Paleogeogr Paleoclimatol Paleoecol 245:462–482

    Article  Google Scholar 

  • Ifrim C, Stinnesbeck W (2010) Migration pathways of the late Campanian and Maastrichtian shallow facies ammonite Sphenodiscus in North America. Paleogeogr Paleoclimatol Paleoecol 292:96–102

    Article  Google Scholar 

  • Ikeda Y, Wani R (2012) Different modes of migration among Late Cretaceous ammonoids in northwestern Hokkaido, Japan: evidence from the analyses of shell whorls. J Paleontol 86:605–615

    Article  Google Scholar 

  • Jablonski D (1986) Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129–133

    Article  CAS  Google Scholar 

  • Jablonski D (2005) Mass extinctions and macroevolution. Paleobiology 31(suppl 2):192–210

    Article  Google Scholar 

  • Jablonski D (2008) Extinction and the spatial dynamics of biodiversity. Proc Natl Acad Sci U S A 105(suppl 1):11528–11535

    Google Scholar 

  • Jablonski D, Roy K (2003) Geographical range and speciation in fossil and living molluscs. Proc Biol Sci 270:401–406

    Article  Google Scholar 

  • Jacobs DK, Landman NH, Chamberlain JA Jr (1994) Ammonite shell shape covaries with facies and hydrodynamics: Iterative evolution as a response to changes in basinal environment. Geol 22:905–908

    Article  Google Scholar 

  • Jagt-Yazykova EA (2011) Palaeobiogeographical and palaeobiological aspects of mid- and Late Cretaceous ammonite evolution and bio-events in the Russian Pacific. Scr Geol 143:15–121

    Google Scholar 

  • Jagt-Yazykova EA, Zonova TD (2012) Paleogeography of Cretaceous ammonoids of the Pacific Coast of Russia. Stratigrafiya, Geologicheskaya Korrelyatsiya 20:295–315

    Google Scholar 

  • Janevski GA, Baumiller TK (2009) Evidence for extinction selectivity throughout the marine invertebrate fossil record. Paleobiology 35:553–564

    Article  Google Scholar 

  • Jeletzky JA, Stelck CR (1981) Pachygrycia, a new Sonneratia like ammonite from the Lower Cretaceous (Earliest Albian?) of Northern Canada. Geological Survey of Canada Paper 80–25, Ottawa, Canada

    Google Scholar 

  • Johannesson K (2001) Parallel speciation: a key to sympatric divergence. Trends Ecol Evol 16:148–153

    Article  CAS  Google Scholar 

  • Kakabadze MV (2004) Intraspecific and intrageneric variabilities and their implications for the systematics of Cretaceous heteromorph ammonites: a review. Scr Geol 128:17–37

    Google Scholar 

  • Kauffman EG (1984) Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior Seaway of North America. In: Westermann GEG (ed) Jurassic-Cretaceous biochronology and paleogeography of North America. Geological Association of Canada Special Papers, vol 27, p 273–306. St Johns, Newfoundland

    Google Scholar 

  • Keller I, Seehausen O (2012) Thermal adaptation and ecological speciation. Mol Ecol 21:782–799

    Article  CAS  Google Scholar 

  • Kennedy WJ (1977) Ammonite evolution. In: Hallam A (ed) Patterns of evolution, as illustrated by the fossil record. Elsevier, Amsterdam

    Google Scholar 

  • Kennedy WJ (1988) Mid-Turonian ammonite faunas from northern Mexico. Geol Mag 125:593–612

    Article  Google Scholar 

  • Kennedy WJ, Cobban WA (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. Palaeontological Association. Special papers in palaeontology, vol 17:1–94. Palaeontological Association, London

    Google Scholar 

  • Kennedy WJ, Cobban WA (1990a) Cenomanian ammonite faunas from the Woodbine Formation and lower part of the Eagle Ford Group, Texas. J Paleontol 33:75–154

    Google Scholar 

  • Kennedy WJ, Cobban WA (1990b) Cenomanian micromorph ammonites from the Western Interior of the USA. J Paleontol 33:379–422

    Google Scholar 

  • Kennedy WJ, Wright CW (1985) Evolutionary patterns in Late Cretaceous ammonites. Spec Pap Palaeontol 33:131–143

    Google Scholar 

  • Kennedy WJ, Wright CW (1994) The affinities of Nigericeras Schneegans, 1943 (Cretaceous, Ammonoidea). Geobios 27:583–589

    Article  Google Scholar 

  • Kennedy WJ, Landman NH, Christensen WK, Cobban WA, Hancock JM (1998) Marine connections in North America during the late Maastrichtian: Palaeogeographic and palaeobiogeographic significance of Jeletzkytes nebrascensis Zone cephalopod fauna from the Elk Butte Member of the Pierre Shale, SE South Dakota and NE Nebraska. Cretac Res 19:745–775

    Article  Google Scholar 

  • Kennedy WJ, Cobban WA, Landman NH (2001) A revision of the Turonian members of the ammonite subfamily Collignoniceratinae from the United States Western Interior and Gulf Coast. Bull Amer Mus Nat Hist 267:1–148

    Article  Google Scholar 

  • Kidder DL, Worsley TR (2010) Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions. Paleogeogr Paleoclimatol Paleoecol 295:162–191

    Article  Google Scholar 

  • Kidder DL, Worsley TR (2012) A human-induced hothouse climate? GSA Today 22:4–11

    Article  Google Scholar 

  • Kiessling W (2008) Sampling-standardized expansion and collapse of reef building in the Phanerozoic. Fossil Record 11:7–18

    Article  Google Scholar 

  • Knauss MJ, Yacobucci MM (2014) Geographic information systems as a morphometric tool for quantifying morphological variability in an ammonoid clade. Palaeontol Electronica 17(1), 19A, 27p. http://palaeo-electronica.org/content/2014/721-gis-based-morphometrics

  • Kotetichvili E (1988) Distribution globale des Ammonites éocrétacés du Caucase. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Korn D (1992) Heterochrony in the evolution of Late Devonian ammonoids. Acta Palaeont Pol 37:21–36

    Google Scholar 

  • Korn D (1995) Paedomorphosis of ammonoids as a result of sealevel fluctuations in the Late Devonian Wocklumeria Stufe. Lethaia 28:155–165

    Article  Google Scholar 

  • Korn D (2012) Quantification of ontogenetic allometry in ammonoids. Evol Dev 14:501–514

    Article  Google Scholar 

  • Krug PJ (2011) Patterns of speciation in marine gastropods: a review of the phylogenetic evidence for localized radiations in the sea. Am Malacol Bull 29:169–186

    Article  Google Scholar 

  • Kruta I, Landman N, Rouget I, Cecca F, Tafforeau P (2011) The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 331:70–72

    Article  CAS  Google Scholar 

  • Labails C, Olivet J-L, Aslanian D, Roest WR (2010) An alternative early opening scenario for the Central Atlantic Ocean. Earth Planet Sci Lett 297:355–368

    Article  CAS  Google Scholar 

  • Landman NH (1988a) Early ontogeny of Mesozoic ammonites and nautilids. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Landman NH (1988b) Heterochrony in ammonites. In: McKinney ML (ed) Heterochrony in evolution. Plenum Press, New York

    Google Scholar 

  • Landman NH (1989) Iterative progenesis in Upper Cretaceous ammonites. Paleobiology 15:95–117

    Article  Google Scholar 

  • Landman NH, Geyssant JR (1993) Heterochrony and ecology in Jurassic and Cretaceous ammonites. Geobios 15:247–255

    Article  Google Scholar 

  • Landman NH, Dommergues J-L, Marchand D (1991) The complex nature of progenetic species: examples from Mesozoic ammonites. Lethaia 24:409–421

    Article  Google Scholar 

  • Landman NH, Tanabe K, Shigeta Y (1996) Ammonoid embryonic development. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in Geobiology, vol 13. Plenum Press, New York

    Chapter  Google Scholar 

  • Landman NH, Garb MP, Rovelli R, Ebel DS, Edwards LE (2012) Short-term survival of ammonites in New Jersey after the end-Cretaceous bolide impact. Acta Palaeont Pol 57:703–715

    Article  Google Scholar 

  • Laptikhovsky VL, Rogov MA, Nikolaeva SE, Arkhipkin AI (2013) Environmental impact on ectocochleate cephalopod reproductive strategies and the evolutionary significance of cephalopod egg size. Bull Geosci 88:83–93

    Google Scholar 

  • Lehmann J, Herbig H-G (2009) Late Cretaceous ammonites from the Bou Angueur syncline (Middle Atlas, Morocco)—Stratigraphic and palaeobiogeographic implications. Palaeontogr A 289:45–87

    Article  Google Scholar 

  • Lieberman BS (2000) Paleobiogeography: using fossils to study global change, plate tectonics, and evolution. Kluwer Academic, Plenum Press, New York

    Book  Google Scholar 

  • Linares A, Sandoval J (1996) The genus Haplopleuroceras (Erycitidae, Ammonitina) in the Betic Cordillera, southern Spain. Geobios 29:287–305

    Article  Google Scholar 

  • Lindgren AR, Pankey MS, Hochberg FG, Oakley TH (2012) A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evol Biol 12:129

    Article  Google Scholar 

  • Lockwood R (2008) Beyond the big five: Extinctions as experiments in the history of life. In: Kelley PH, Bambach RK (eds) From evolution to geobiology: research questions driving paleontology at the start of a new century. Paleontology Society Papers, vol 14. Paleontological Society, Boulder

    Google Scholar 

  • Longridge LM, Smith PL, Pálfy J, Tipper HW (2008) Three new species of the Hettangian (Early Jurassic) ammonite Sunrisites from British Columbia, Canada. J Paleontol 82:128–139

    Article  Google Scholar 

  • Lukeneder A (2012) New biostratigraphic data on an Upper Hauterivian-Upper Barremian ammonite assemblage from the Dolomites (Southern Alps, Italy). Cretac Res 32:1–21

    Article  Google Scholar 

  • Macchioni F, Cecca F (2002) Biodiversity and biogeography of middle-late Liassic ammonoids: implications for the Early Toarcian mass extinction. Geobios Mem Spec 24:165–175

    Article  Google Scholar 

  • Machalski M, Heinberg C (2005) Evidence for ammonite survival into the Danian (Paleogene) from the Cerithium Limestone at Stevns Klint, Denmark. Geol Surv Den Bull 52:97–111

    CAS  Google Scholar 

  • MacKenzie RA, Yacobucci MM (2008) Exploring minimum geographic ranges and diversity dynamics of Western Interior ammonoids (Late Cretaceous) using geographic information systems (GIS), paleoGIS, spreadsheets, and recreational topographic mapping software. Abstracts, Annual Meeting of the American Association of Petroleum Geologists

    Google Scholar 

  • Maeda H (1993) Dimorphism of Late Cretaceous false-puzosiine ammonites, Yokoyamaoceras Wright and Matsumoto, 1954 and Neopuzosia Matsumoto, 1954. Trans Proc Palaeontol Soc Japan New Ser 169:97–128

    Google Scholar 

  • Maeda H, Seilacher A (1996) Ammonoid taphonomy. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Topics in geobiology, vol 13. Plenum Press, New York

    Google Scholar 

  • Mahler DL, Ingram T, Revell LJ, Losos JB (2013) Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341:292–295

    Article  CAS  Google Scholar 

  • Mallet J (2008) Hybridization, ecological races, and the nature of species: empirical evidence for the ease of speciation. Philos Trans R Soc Lond B Biol Sci 363:2971–2986

    Article  Google Scholar 

  • Mallet J, Meyer A, Nosil P, Feder JL (2009) Space, sympatry and speciation. J Evol Biol 22:2332–2341

    Article  CAS  Google Scholar 

  • Mancini EA (1978) Origin of the Grayson micromorph fauna, Upper Cretaceous of North Central Texas, USA. J Paleontol 52:1294–1314

    Google Scholar 

  • Mapes RH, Landman NH, Cochran K, Goiran C, De Forges BR, Renfro A (2010a) Early taphonomy and significance of naturally submerged Nautilus shells from the New Caledonia region. Palaios 25:597–610

    Article  Google Scholar 

  • Mapes RH, Hembree DI, Rasor BA, Stigall A, Goirand C, De Forges BR (2010b) Modern Nautilus (Cephalopoda) taphonomy in a subtidal to backshore environment, Lifou (Loyalty Islands). Palaios 25:656–670

    Article  Google Scholar 

  • Marchand D, Dommergues J-L (1988) Rythmes évolutifs et hétérochronies du développement: Exemples pris parmi les Ammonites Jurassiques. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Marcinowski R, Wiedmann J (1988) Paleogeographic implications of the Albian ammonite faunas of Poland. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Marie Curie SPECIATION Network (2012) What do we need to know about speciation? Trends Ecol Evol 27:27–39

    Article  Google Scholar 

  • Matsukawa M, Sendon SV, Mateer FT, Sato T, Obata I (2012) Early Cretaceous ammonite fauna of Catanduanes Island, Philippines. Cretac Res 37:261–271

    Article  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University, New York

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap, Cambridge

    Book  Google Scholar 

  • Mayr E (1995) Species, classification, and evolution. In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. National Science Museum Foundation, Tokyo

    Google Scholar 

  • McGowan AJ, Smith AB (2008) Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology 42:80–103

    Article  Google Scholar 

  • McKinney ML, McNamara KJ (1991) Heterochrony: the evolution of ontogeny. Plenum Press, New York

    Book  Google Scholar 

  • Meister C (1993) L’évolution parallèle des Juraphyllitidae euroboréaux et téthysiens au Pliensbachien: Le rôle des contraintes internes et externes. Lethaia 26:123–132

    Article  Google Scholar 

  • Meister C, Alzouma K, Lang J, Mathey B (1992) Les ammonites du Niger (Afrique occidentale) et la transgression transsaharienne au cours du Cénomanien-Turonien. Geobios 25:55–100

    Article  Google Scholar 

  • Meister C, Alzouma K, Lang J, Mathey B, Pascal A (1994) Nouvelles données sur les ammonites du Niger Oriental (Ténéré, Afrique Occidentale) dans le cadre de la transgression du Cénomanien-Turonien. Geobios 27:189–219

    Article  Google Scholar 

  • Meléndez G, Fontana B (1993) Intraspecific variability, sexual dimorphism, and non-sexual polymorphism in the ammonite Larcheria Tintant (Perisphinctidae) from the Middle Oxfordian of western Europe. In: House MR (ed) The Ammonoidea: environment, ecology, and evolutionary change. Systematics Association special volume, vol 47. Clarendon, London

    Google Scholar 

  • Meléndez G, Sequeiros L, Brochwich-Lewiński W, Myczyński R, Chong G (1988) Paleobiogeographic relationships between Oxfordian ammonite faunas from the Mediterranean, Caribbean, and Andean provinces. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Meyer CP, Geller JB, Paulay G (2005) Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evolution 59:113–125

    Google Scholar 

  • Mignot Y, Elmi S, Dommergues J-L (1993) Croissance et miniaturization de quelques Hildoceras (Cephalopoda) en liaison avec des environnments contraignant de la Téthys toarcianne. Geobios Mem Spec 15:305–312

    Article  Google Scholar 

  • Mikhailova IA, Baraboshkin EY (2009) The evolution of the heteromorph and monomorph early Cretaceous ammonites of the suborder Ancyloceratina Wiedmann. J Palaeontol 43:527–536

    Article  Google Scholar 

  • Miller AI, Aberhan M, Buick DP, Bulinski KV, Ferguson CA, Hendy AJW, Kiessling W (2009) Phanerozoic trends in the global geographic disparity of marine biotas. Paleobiol 35:612–630

    Article  Google Scholar 

  • Minelli A, Fusco G (2012) On the evolutionary developmental biology of speciation. Evol Biol 39:242–254

    Article  Google Scholar 

  • Mitta VV (2008) The genus Kepplerites Neumayr et Uhlig (Kosmoceratidae, Ammonoidea) in the Bathonian-Callovian beds (Middle Jurassic) of the Russian Platform. J Paleontol 42:5–14

    Article  Google Scholar 

  • Monnet C (2009) The Cenomanian-Turonian boundary mass extinction (Late Cretaceous): new insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America). Paleogeogr Paleoclimatol Paleoecol 282:88–104

    Article  Google Scholar 

  • Monnet C, Bucher H (2007) European ammonoid diversity questions the spreading of anoxia as primary cause for the Cenomanian/Turonian (Late Cretaceous) mass extinction. Swiss J Geosci 100:137–144

    Article  Google Scholar 

  • Monnet C, Bucher H, Escarguel G, Guex J (2003) Cenomanian (early Late Cretaceous) ammonoid faunas of Western Europe. Part II: diversity patterns and the end-Cenomanian anoxic event. Eclogae Geol Helv 96:381–398

    Google Scholar 

  • Monnet C, De Baets K, Klug C (2011) Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evol Biol 11(115)

    Google Scholar 

  • Monnet C, Bucher H, Guex J, Wasmer M (2012) Large-scale evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope’s Rule. J Paleontol 55:87–107

    Article  Google Scholar 

  • Morard A, Guex J (2003) Ontogeny and covariation in the Toarcian genus Osperlioceras (Ammonoidea). Bull Soc Geol Fr 174:607–615

    Article  Google Scholar 

  • Morton N (1988) Segregation and migration patterns in some Graphoceras populations (Middle Jurassic). In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Moyne S, Neige P (2007) The space-time relationship of taxonomic diversity and morphological disparity in the Middle Jurassic ammonite radiation. Paleogeogr Paleoclimatol Paleoecol 248:82–95

    Article  Google Scholar 

  • Moyne S, Neige P, Marchand D, Thierry J (2004) Répartition mondiale des faunes d'ammonites au Jurassique moyen (Aalénien supérieur à Bathonien moyen): relations entre biodiversité et paléogéographie. Bull Soc Geol Fr 175:513–523

    Article  Google Scholar 

  • Myers CE, MacKenzie RA III, Lieberman BS (2013) Greenhouse biogeography: the relationship of geographic range to invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiol 39:135–148

    Article  Google Scholar 

  • Nagm E, Wilmsen M (2012) Late Cenomanian-Turonian (Cretaceous) ammonites from Wadi Qena, central Eastern Desert, Egypt: taxonomy, biostratigraphy and palaeobiogeographic implications. Acta Geol Pol 62:63–89

    Google Scholar 

  • Nagm E, Wilmsen M, Aly MF, Hewaidy A-G (2010) Upper Cenomanian-Turonian (Upper Cretaceous) ammonoids from the western Wadi Araba, Eastern Desert, Egypt. Cretac Res 31:473–499

    Article  Google Scholar 

  • Naisbit RE, Jiggins CD, Mallet J (2003) Mimicry: developmental genes that contribute to speciation. Evol Dev 5(3):269–280

    Article  CAS  Google Scholar 

  • Nardin E, Rouget I, Neige P (2005) Tendencies in paleontological practice when defining species, and consequences on biodiversity studies. Geology 33:969–972

    Article  Google Scholar 

  • Navarro N, Neige P, Marchand D (2005) Faunal invasions as a source of morphological constraints and innovations? The diversification of the early Cardioceratidae (Ammonoidea; Middle Jurassic). Paleobiology 31:98–116

    Article  Google Scholar 

  • Neige P (1992) Mise en place du dimorphisme (sexuel) chez les Ammonoides: Approche ontogénétique et interpretation hétérochronique. Diplome D’Etudes Approfondies (D.E.A.), Université de Bourgogne, France (unpublished thesis)

    Google Scholar 

  • Neige P, Marchand D, Laurin B (1997) Heterochronic differentiation of sexual dimorphs among Jurassic ammonite species. Lethaia 30:145–155

    Article  Google Scholar 

  • Neige P, Rouget I, Moyne S (2007) Phylogenetic practices among scholars of fossil cephalopods, with special reference to cladistics. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods—Present and past: new insights and fresh perspectives. Springer, Berlin

    Google Scholar 

  • Neige P, Dera G, Dommergues J-L (2013) Adaptive radiation in the fossil record: a case study among Jurassic ammonoids. J Paleontol 56:1247–1261

    Article  Google Scholar 

  • Norris RD, Hull PM (2012) The temporal dimension of marine speciation. Evol Ecol 26:393–415

    Article  Google Scholar 

  • Nosil P (2008) Speciation with gene flow could be common. Mol Ecol 17:2103–2106

    Article  Google Scholar 

  • Nosil P (2012) Ecological Speciation. Oxford series in ecology and evolution. Oxford University, Oxford

    Book  Google Scholar 

  • Nürnberg S, Aberhan M (2013) Habitat breadth and geographic range predict diversity dynamics in marine Mesozoic bivalves. Paleobiology 39:360–372

    Article  Google Scholar 

  • Obata I (1975) Lower Cretaceous ammonites from the Miyako Group; Diadochoceras from the Miyako Group. Bull Natl Sci Mus Ser C (Geol) 1:1–10

    Google Scholar 

  • Obata I, Matsukawa M (2007) Barremian-Aptian (Early Cretaceous) ammonoids from the Choshi Group, Honshu (Japan). Cretac Res 28:363–391

    Article  Google Scholar 

  • O’Dogherty L, Sandoval J, Bartolini A, Bruchez S, Bill M, Guex J (2006) Carbon-isotope stratigraphy and ammonite faunal turnover for the Middle Jurassic in the Southern Iberian palaeomargin. Paleogeogr Paleoclimatol Paleoecol 239:311–333

    Article  Google Scholar 

  • Ohkouchi N, Tsuda R, Chikaraishi Y, Tanabe K (2013) A preliminary estimate of the trophic position of the deep-water ram’s horn squid Spirula spirula based on the nitrogen isotopic composition of amino acids. Mar Biol 160:773–779

    Article  CAS  Google Scholar 

  • Olivero EB, Medina FA (2000) Patterns of Late Cretaceous ammonite biogeography in southern high latitudes: the family Kossmaticeratidae in Antarctica. Cretac Res 21:269–279

    Article  Google Scholar 

  • Olóriz F, Villaseñor AB (2006) Ceratosphinctes (Ammonitina, Kimmeridgian) in Mexico: from rare but typical inhabitant of west-Tethyan epioceanic and epicontinental waters to a geographically widespread ammonite genus. Geobios 39:255–266

    Article  Google Scholar 

  • Owen HG, Mutterlose J (2006) Late Albian ammonites from offshore Suriname: implications for biostratigraphy and palaeobiogeography. Cretac Res 27:717–727

    Article  Google Scholar 

  • Page KN (1996) Mesozoic ammonoids in space and time. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in geobiology, vol 13. Plenum Press, New York

    Google Scholar 

  • Page KN (2008) The evolution and geography of Jurassic ammonoids. Proc Geol Assoc 119:35–57

    Article  Google Scholar 

  • Pardo JD, Huttenlocker AK, Marcot JD (2008) Stratocladistics and evaluation of evolutionary modes in the fossil record: An example from the ammonite genus Semiformiceras. J Paleontol 51:767–773

    Article  Google Scholar 

  • Parent H (1997) Ontogeny and sexual dimorphism of Eurycephalites gottschei (Tornquist) (Ammonoidea) of the Andean Lower Callovian (Argentine-Chile). Geobios 30:407–419

    Article  Google Scholar 

  • Parent H (1998) Upper Bathonian and lower Callovian ammonites from Chacay Melehué (Argentina). Acta Palaeontol Pol 43:69–130

    Google Scholar 

  • Payne JL, Finnegan S (2007) The effect of geographic range on extinction risk during background and mass extinction. Proc Natl Acad Sci U S A 104:10506–10511

    Google Scholar 

  • Peters SE (2005) Geological constraints on the macroevolutionary history of marine animals. Proc Natl Acad Sci U S A 102:12326–12331

    Google Scholar 

  • Peters SE, Foote M (2001) Biodiversity in the Phanerozoic: A reinterpretation. Paleobiology 27:583–601

    Article  Google Scholar 

  • Peters SE, Heim NA (2010) The geological completeness of paleontological sampling in North America. Paleobiology 36:61–79

    Article  Google Scholar 

  • Peters SE, Heim NA (2011) Macrostratigraphy and macroevolution in marine environments: Testing the common-cause hypothesis. In: McGowan AJ, Smith AB (eds) Comparing the geological and fossil records: implications for biodiversity studies. Special Publication, vol 358. Geological Society, London

    Google Scholar 

  • Pinho C, Hey J (2010) Divergence with gene flow: models and data. Ann Rev Ecol Evol Syst 41:215–230

    Article  Google Scholar 

  • Poe S, Wiens JJ (2000) Character selection and the methodology of morphological phylogenetics. In: Wiens JJ (ed) Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Raup DM (1976) Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289–297

    Article  Google Scholar 

  • Raup DM, Stanley SM (1978) Principles of paleontology, 2nd edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Rawson PF (1981) Early Cretaceous ammonite biostratigraphy and biogeography. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, London

    Google Scholar 

  • Rawson PF (1993) The influence of sea-level changes on the migration and evolution of Early Cretaceous (pre-Aptian) ammonites. In: House MR (ed) The Ammonoidea: environment, ecology, and evolutionary change. Systematics Association. Special volume, vol 47. Clarendon, London

    Google Scholar 

  • Rawson PF (2007) Global relationships of Argentine (Neuquén Basin) Early Cretaceous ammonite faunas. Geol J 42:175–183

    Article  Google Scholar 

  • Reboulet S (2001) Limiting factors on shell growth, mode of life and segregation of Valanginian ammonoid populations: Evidence from adult-size variations. Geobios 34:423–435

    Article  Google Scholar 

  • Reeside JB Jr, Cobban WA (1960) Studies of the Mowry Shale (Cretaceous) and contemporary formations in the United States and Canada. US Geological Survey Professional Paper 335, Washington, DC, p 1–126

    Google Scholar 

  • Reyment RA (1955) Some examples of homeomorphy in Nigerian Cretaceous ammonites. Geol Foren Stockholm Forh 77:567–594

    Article  Google Scholar 

  • Reyment RA (1958) Some factors in the distribution of fossil cephalopods. Stockholm contributions in geology, vol 1, 6 Almqvist & Wiksell, Stockholm, pp 97–184

    Google Scholar 

  • Reyment RA (1973) Factors in the distribution of fossil cephalopods. Part 3. Experiments with exact models of certain shell type. Bull Geol Inst Univ Uppsala N S 4:7–41

    Google Scholar 

  • Reyment RA (1980) Biogeography of the Saharan Cretaceous and Paleocene epicontinental transgressions. Cretac Res 1:299–327

    Article  Google Scholar 

  • Reyment RA (2008) A review of the post-mortem dispersal of cephalopod shells. Palaeontol Electron 11(3):12A, 13

    Google Scholar 

  • Reyment RA (2011) Morphometric analysis of polyphenism in Lower Cretaceous ammonite genus Knemiceras. In: Elewa AMT (ed) Computational paleontology. Springer, Berlin

    Google Scholar 

  • Rogov MA (2012) Latitudinal gradient of taxonomic richness of ammonites in the Kimmeridgian-Volgian in the northern hemisphere. Paleontol J 46:148–156

    Article  Google Scholar 

  • Ross CA, Moore GT, Hayashida DN (1992) Late Jurassic paleoclimate simulation—Palaeoecological implications for ammonoid provinciality. Palaios 7:487–507

    Article  Google Scholar 

  • Rouget I, Neige P, Dommergues J-L (2004) L’analyse phylogénétique chez les ammonites: État des lieux et perspectives. Bull Soc Geol France 175:507–512

    Article  Google Scholar 

  • Ruban DA (2013) Spatial heterogeneity of the Early-Middle Toarcian (Jurassic) ammonite diversity and basin geometry in the Northwestern Caucasus (southwestern Russia; northern Neo-Tethys). Paleogeogr Paleoclimatol Paleoecol 386:225–232

    Article  Google Scholar 

  • Ruiz-Martínez VC, Torsvik TH, van Hinsbergen DJJ, Gaina C (2012) Earth at 200 Ma: Global palaeogeography refined from CAMP palaeomagnetic data. Earth Planet Sci Lett 331-332:67–79

    Article  Google Scholar 

  • Rulleau L, Bécaud M, Neige P (2003) Les ammonites traditionnellement regroupées dans la sous-famille des Bouleiceratinae (Hildoceratidae, Toarcien): aspects phylogénétiques, biogéographiques et systématiques. Geobios 36:317–348

    Article  Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352

    Article  Google Scholar 

  • Rundle HD, Schluter D (2004) Natural selection and ecological speciation in sticklebacks. In: Dieckmann U, Doebeli M, Metz JAJ, Tautz D (eds) Adaptive speciation. Cambridge studies in adaptive dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Sandoval J, O’Dogherty L, Guex J (2001) Evolutionary rates of Jurassic ammonites in relation to sea-level fluctuations. Palaios 16:311–335

    Article  Google Scholar 

  • Sandoval J, Henriques MH, Chandler RB, Ureta S (2013) Latest Toarcian-earliest Bajocian (Jurassic) Grammoceratinae (Hildoceratidae, Ammonitina) of the western Tethys: their palaeobiogeographic and phylogenetic significance. Geobios 45:109–119

    Article  Google Scholar 

  • Sarih S, Dommergues J-L, El Hariri K, Garcia J-P, Quiquerez A (2007) Pseudoskirroceras, a remarkable but poorly known Early Pliensbachian Tethyan ammonite genus: new data from the High Atlas (Morocco). J Afr Earth Sci 49:90–102

    Article  Google Scholar 

  • Saunders WB, Swan ARH (1984) Morphology and morphological diversity of mid-Carboniferous Namurian ammonoids in time and space. Paleobiology 10:195–228

    Article  Google Scholar 

  • Schander C, Sundberg P (2001) Useful characters in gastropod phylogeny: soft information or hard facts? Syst Biol 50:136–141

    CAS  Google Scholar 

  • Schindewolf OH (1940) Konvergenz bei Korallen und Ammoniten. Fortschr Geol Paläont 12:387–491

    Google Scholar 

  • Schindewolf OH (1962) Studien zur Stammesgeschichte der Ammoniten: Lief. 2. Abh Math-Naturwiss Kl Akad Wiss Lit Mainz 8:425–572

    Google Scholar 

  • Schlögl J, Elmi S, Rakús M, Mangold C, Ouahhabi M (2006) Specialization and iterative evolution of some Western Tethyan Bathonian ammonites [Benatinites (B. ) nov., B. (Lugariceras) nov. and Hemigarantia]. Geobios 39:113–124

    Article  Google Scholar 

  • Schneider JA (2001) Bivalve systematics during the 20th century. J Paleontol 75:1119–1127

    Article  Google Scholar 

  • Schweigert G, Zeiss A, Westermann GEG (2012) The Gravesia homeomorphs from the latest Kimmeridgian of Mombasa, Kenya. Rev Paleobiol 11:13–25

    Google Scholar 

  • Seilacher A, Gunji PY (1993) Morphogenetic countdowns in heteromorph shells. N Jahrb Geol Paläontol Abh 190:237–265

    Google Scholar 

  • Shigeta Y (1993) Post-hatching early life history of Cretaceous ammonoids. Lethaia 26:133–145

    Article  Google Scholar 

  • Smith AB (2007) Marine diversity through the Phanerozoic: problems and prospects. J Geol Soc Lond 164:731–745

    Article  Google Scholar 

  • Smith AB, McGowan AJ (2005) Cyclicity in the fossil record mirrors rock outcrop area. Biol Lett 1:443–445

    Article  Google Scholar 

  • Smith PL, Tipper HW (1986) Plate tectonics and paleobiogeography: Early Jurassic (Pliensbachian) endemism and diversity. Palaios 1:399–412

    Article  Google Scholar 

  • Smith AB, Gale AS, Monks NEA (2001) Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27:241–253

    Article  Google Scholar 

  • Stevens GR (1988) Giant ammonites, a review. In: Wiedmann J, Kullmann J (eds) Cephalopods: present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Stevens GR (2012) The Early Jurassic of New Zealand: refinements of the ammonite biostratigraphy and palaeobiogeography. Rev Paléobiologie 11:187–204

    Google Scholar 

  • Stigall AL (2011) Integrating GIS and phylogenetic biogeography to assess species-level biogeographic patterns: A case study of Late Devonian faunal dynamics. In: Upchurch P, McGowan AJ, Slater CSC (eds) Palaeogeography and palaeobiogeography: biodiversity in space and time. Systematics association special volume, vol 77. CRC, Boca Raton

    Google Scholar 

  • Tajika A, Wani R (2011) Intraspecific variation of hatchling size in Late Cretaceous ammonoids from Hokkaido, Japan: implication for planktic duration at early ontogenetic stage. Lethaia 44:287–298

    Article  Google Scholar 

  • Takashima R, Nishi H, Yamanaka T, Tomosugi T, Fernando AG, Tanabe K, Moriya K, Kawabe F, Hayashi K (2011) Prevailing oxic environments in the Pacific Ocean during the mid-Cretaceous Oceanic Anoxic Event 2. Nat Commun 2:234

    Article  Google Scholar 

  • Tanabe K, Landman NH, Yoshioka Y (2003) Intra- and interspecific variation in the early internal shell features of some Cretaceous ammonoids. J Paleontol 77:876–887

    Article  Google Scholar 

  • Tanabe K, Misaki A, Landman NH, Kato T (2013) The jaw apparatuses of Cretaceous Phylloceratina (Ammonoidea). Lethaia 46:399–408

    Article  Google Scholar 

  • Tanabe K, Kruta I, Landman NH (2015) Ammonoid buccal mass and jaw apparatus. In: Klug C, Korn D, De Baets K, Kruta I, Mapes R (eds) Ammonoid paleobiology: from anatomy to ecology. Topics in geobiology, vol 44. Springer, Dordrecht

    Google Scholar 

  • Thierry J (1976) Paléobiogéographie de quelques Stephanocerataceae (Ammonitina) du Jurassique Moyen et Supérieur: Une confrontation avec la théorie mobiliste. Geobios 9:291–331

    Article  Google Scholar 

  • Thierry J (1988) Provincialisme et/ou ecologie des ammonites du Callovien en France. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart, pp 387–402

    Google Scholar 

  • Thierry J (2003) Les ammonites du Bathonien-Callovien du Boulonnais: Biodiversité, biostratigraphie, et biogéographie. Geobios 36:93–126

    Article  Google Scholar 

  • Tintant H (1963) Les Kosmoceratides du Callovien inférieur et moyen d’Europe occidentale. University of Dijon, France

    Google Scholar 

  • Toriyama R, Sato T, Hamada T, Komolarhun P (1965) Nautilus pompilius drift on the west coast of Thailand. Jpn J Geol Geogr 36:149–161

    Google Scholar 

  • Torsvik TH, Rousse S, Labails C, Smethurst MA (2009) A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys J Int 177:1315–1333

    Article  Google Scholar 

  • Tsujita CJ, Westermann GEG (1998) Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Paleogeogr Paleoclimatol Paleoecol 144:135–160

    Article  Google Scholar 

  • Valentine JW, Foin TC, Peart D (1978) A provincial model of Phanerozoic marine diversity. Paleobiology 4:55–66

    Article  Google Scholar 

  • Vinarski MV, Bondarev AA, Markov AV (2011) Mollusks in Phanerozoic marine communities: implications from the analysis of global paleontological databases. J Paleontol 45:358–369

    Article  Google Scholar 

  • Wagner PJ (2000) The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Syst Biol 49:65–86

    Article  CAS  Google Scholar 

  • Wagner PJ (2001) Gastropod phylogenetics: progress, problems, and implications. J Paleontol 75:1128–1140

    Article  Google Scholar 

  • Wagner CE, Harmon LJ, Seehausen O (2012) Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487:366–369

    Article  CAS  Google Scholar 

  • Wall PD, Ivany LC, Wilkinson BH (2009) Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques. Paleobiology 35:146–167

    Article  Google Scholar 

  • Wani R (2004) Experimental fragmentation patterns of modern Nautilus shells and the implications for fossil cephalopod taphonomy. Lethaia 37:113–123

    Article  Google Scholar 

  • Wani R (2007) How to recognize in situ fossil cephalopods: evidence from experiments with modern Nautilus. Lethaia 40:305–311

    Article  Google Scholar 

  • Wani R (2011) Sympatric speciation drove the macroevolution of fossil cephalopods. Geology 39:1079–1082

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University, Oxford

    Book  Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U S A 102:6543-6549

    Article  CAS  Google Scholar 

  • Westermann GEG (1966) Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). N Jahrb Geol Paläontol Abh 124:289–312

    Google Scholar 

  • Westermann GEG (1981) Ammonite biochronology and biogeography of the circum-Pacific Middle Jurassic. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, London

    Google Scholar 

  • Westermann GEG (2000) Marine faunal realms of the Mesozoic: review and revision under the new guidelines for biogeographic classification and nomenclature. Paleogeogr Paleoclimatol Paleoecol 163:49–68

    Article  Google Scholar 

  • Wiedmann J (1966) Stammesgeschichte und System der posttriadischen Ammonoideen. N Jahrb Geol Paläontol Abh 125:49–79

    Google Scholar 

  • Wiedmann J (1969) The heteromorphs and ammonoid extinction. Biol Rev 44:563–602

    Article  Google Scholar 

  • Wiedmann J (1973) Evolution or revolution of ammonoids at Mesozoic system boundaries. Biol Rev 48:159–194

    Article  Google Scholar 

  • Wiedmann J (1988) Plate tectonics, sea level changes, climate, and the relationship to ammonite evolution, provincialism, and mode of life. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Wiedmann J, Kullmann J (1996) Crises in ammonoid evolution. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in geobiology, vol 13. Plenum Press, New York

    Google Scholar 

  • Wierzbowski H, Rogov M (2011) Reconstructing the palaeoenvironment of the Middle Russian Sea during the Middle-Late Jurassic transition using stable isotope ratios of cephalopod shells and variations in faunal assemblages. Paleogeogr Paleoclimatol Paleoecol 299:250–264

    Article  Google Scholar 

  • Wright CW (1981) Cretaceous Ammonoidea. In: House MR, Senior JR (eds) The Ammonoidea: The evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, London

    Google Scholar 

  • Wright CW, Kennedy WJ (1980) Origin, evolution and systematics of the dwarf acanthoceratid Protacanthoceras Spath, 1923 (Cretaceous Ammonoidea). Bull Brit Mus Nat Hist Geol 34:65–108

    Google Scholar 

  • Wright CW, Callomon JH, Howarth MK (1996) Treatise on Invertebrate Paleontology, part l, Mollusca 4, revised, volume 4: Cretaceous Ammonoidea. GSA and University of Kansas Press, Boulder and Lawrence

    Google Scholar 

  • Yacobucci MM (1999) Plasticity of developmental timing as the underlying cause of high speciation rates in ammonoids: an example from the Cenomanian Western Interior Seaway of North America. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Proceedings, IV international symposium Cephalopods—Present and past. Plenum Press, New York

    Google Scholar 

  • Yacobucci MM (2003) Controls on shell shape in acanthoceratid ammonites from the Cenomanian-Turonian Western Interior Seaway of North America. In: Harries P, Geary DH (eds) High-resolution approaches in stratigraphic paleontology. Topics in Geobiology, vol 21. Plenum Press, New York

    Google Scholar 

  • Yacobucci MM (2004a) Buckman’s paradox: constraints on ammonoid ornament and shell shape. Lethaia 37:59–71

    Article  Google Scholar 

  • Yacobucci MM (2004b) Neogastroplites meets Metengonoceras: Morphological response of an endemic hoplitid ammonite to a new invader in the mid-Cretaceous Mowry Sea of North America. Cretac Res 25:927–944

    Article  Google Scholar 

  • Yacobucci MM (2005) Multifractal and white noise evolutionary dynamics in Jurassic-Cretaceous Ammonoidea. Geol 33:97–100

    Article  Google Scholar 

  • Yacobucci MM (2012) Meta-analysis of character utility and phylogenetic information content in cladistic studies of ammonoids. Geobios 45:139–143

    Article  Google Scholar 

  • Yacobucci MM (in press (2015) Towards a model for speciation in ammonoids. In: Allmon WD, Yacobucci MM (eds) Species and speciation in the fossil record. University of Chicago, Chicago

    Google Scholar 

  • Yacobucci MM, MacKenzie RA III (2007a) Applications of a new GIS database of cephalopod occurrences in the Cretaceous Western Interior Seaway of North America: The Cenomanian-Turonian Ocean Anoxic Event (OAE2), sea level rise, and ammonoid turnover. Seventh international symposium, Cephalopods—Present and Past, Abstracts

    Google Scholar 

  • Yacobucci MM, MacKenzie RA III (2007b) Moving on up: latitudinal diversity patterns of ammonoids within the Cretaceous Western Interior Seaway of North America. Abstracts with programs. GSA 39(6):92

    Google Scholar 

  • Yacobucci MM, MacKenzie RA III (2008) Ammonoid paleobiogeography in the Cenomanian Western Interior Seaway. Abstracts with Programs. GSA 40(6):377

    Google Scholar 

  • Yahada H, Wani R (2013) Limited migration of scaphitid ammonoids: Evidence from the analyses of shell whorls. J Paleontology 87:406–412

    Article  Google Scholar 

  • Zakharov YD, Melnikov ME, Popov AM, Pletnev SP, Khudik VD, Punina TA (2012) Cephalopod and brachiopod fossils from the Pacific: evidence from the Upper Cretaceous of the Magellan Seamounts. Geobios 45:145–156

    Article  Google Scholar 

  • Zatoń M (2008) Taxonomy and palaeobiology of the Bathonian (Middle Jurassic) tulitid ammonite Morrisiceras. Geobios 41:699–717

    Article  Google Scholar 

  • Ziegler B (1967) Ammoniten-Ökologie am Beispiel des OberJura. Geol Rundsch 56:439–464

    Article  Google Scholar 

  • Ziegler B (1981) Ammonoid biostratigraphy and provincialism: Jurassic-Old World. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, London

    Google Scholar 

Download references

Acknowledgements

This chapter is dedicated to William A. Cobban, William J. Kennedy, Richard A. Reyment, and Gerd E. G. Westermann, pioneers in the integrative study of Jurassic-Cretaceous ammonoid evolution. The author wishes to thank the many colleagues with whom she has discussed ammonoid evolution, especially Warren D. Allmon, Kenneth De Baets, Silvain Gerber, David K. Jacobs, Susan M. Klofak, Christian Klug, Matthew J. Knauss, Dieter Korn, Björn Kröger, Isabelle Kruta, Neil H. Landman, Richard A. MacKenzie, Royal H. Mapes, Lori L. Manship, Al McGowan, Claude Monnet, Pascal Neige, Roy Plotnick, Isabelle Rouget, W. Bruce Saunders, Kazushige Tanabe, Karen J. Waggoner, Steve Wang, Ryoji Wani, and Gerd E. G. Westermann. Isabelle Rouget, Kazushige Tanabe, Christian Klug, and Tony Avruch also provided helpful feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Yacobucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yacobucci, M. (2015). Macroevolution and Paleobiogeography of Jurassic-Cretaceous Ammonoids. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From macroevolution to paleogeography. Topics in Geobiology, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9633-0_8

Download citation

Publish with us

Policies and ethics