Skip to main content

Evolutionary Trends of Triassic Ammonoids

  • Chapter
  • First Online:
Ammonoid Paleobiology: From macroevolution to paleogeography

Part of the book series: Topics in Geobiology ((TGBI,volume 44))

Abstract

The Triassic represents a key interval in the evolutionary history of ammonoids. Characterized by the dominance of the Ceratitida with their typical suture line indented on the lobes only, the Triassic quasi-monophyletic clade shows a remarkable biostratigraphic and geographic record. However, very few studies have thoroughly investigated their evolutionary trends, except for taxonomic richness. Although Triassic ammonoids show a very large range of morphologies, suture complexity and adult size, little is currently known about their trends, except for peculiar time intervals or taxonomic groups. Nevertheless, it seems that taxonomic diversity and morphological disparity of Triassic ammonoids are uncoupled, at least during part of the Early Triassic recovery. Finally, Triassic ammonoids still have many properties to contribute to evolutionary biology, but going further now requires the construction of quantitative databases of the various morphological characters and reconstruction of Triassic ammonoid phylogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen EG (2006) New approaches to Fourier analysis of ammonoid sutures and other complex, open curves. Paleobiology 32:299–315

    Article  Google Scholar 

  • Alroy J (1998) Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731–734

    Article  CAS  Google Scholar 

  • Alroy J, Aberhan M, Bottjer DJ, Foote M, Fürsich FT, Harries PJ, Hendy AJW, Holland SM, Ivany LC, Kiessling W, Kosnik MA, Marshall CR, McGowan AJ, Miller AI, Olszewski TD, Patzkowsky ME, Peters SE, Villier L, Wagner PJ, Bonuso N, Borkow PS, Brenneis B, Clapham ME, Fall LM, Ferguson CA, Hanson VL, Krug AZ, Layou KM, Leckey EH, Nurnberg S, Powers CM, Sessa JA, Simpson C, Tomasovych A, Visaggi CC (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100

    Article  CAS  Google Scholar 

  • Balini M, Lucas SG, Jenks JF, Spielmann JA (2010) Triassic ammonoid biostratigraphy: an overview. In: Lucas SG (ed) The Triassic timescale, vol 334. Geological Society Special Publication, London

    Google Scholar 

  • Bayer U, McGhee GR (1984) Iterative evolution of Middle Jurassic ammonite faunas. Lethaia 17:1–6

    Article  Google Scholar 

  • Bayer U, McGhee GR (1985) Evolution in marginal epicontinental basins: the role of phylogenetic and ecological factors. In: Bayer U, Seilacher A (eds) Sedimentary and evolutionary cycles, Lecture Notes in Earth Science 1:163–220

    Google Scholar 

  • Becker RT, Kullmann J (1996) Paleozoic ammonoids in space and time. In: Landman NH, Tanabe K, Davies RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Boyajian G, Lutz T (1992) Evolution of biological complexity and its relation to taxonomic longevity in the Ammonoidea. Geology 20:983–986

    Article  Google Scholar 

  • Brayard A, Bucher H (2008) Smithian (Early Triassic) ammonoid faunas from northwestern Guangxi (South China): taxonomy and biochronology. Foss Strata 55:1–179

    Google Scholar 

  • Brayard A, Bucher H (2015) Permian-Triassic extinctions and rediversifications. This volume

    Google Scholar 

  • Brayard A, Escarguel G (2013) Untangling phylogenetic, geometric and ornamental imprints on Early Triassic ammonoid biogeography: a similarity-distance decay study. Lethaia 46:19–33

    Article  Google Scholar 

  • Brayard A, Bucher H, Escarguel G, Fluteau F, Bourquin S, Galfetti T (2006) The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients. Palaeogeogr Palaeoclimatol Palaeoecol 239:374–395

    Article  Google Scholar 

  • Brayard A, Bucher H, Brühwiler T, Galfetti T, Goudemand N, Guodun K, Escarguel G, Jenks JF (2007a) Proharpoceras Chao: a new ammonoid lineage surviving the end-Permian mass extinction. Lethaia 40:175–181

    Article  Google Scholar 

  • Brayard A, Escarguel G, Bucher H (2007b) The biogeography of Early Triassic ammonoid faunas: clusters, gradients, and networks. Geobios 40:749–765

    Article  Google Scholar 

  • Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J (2009) Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:1118–1121

    Article  CAS  Google Scholar 

  • Brayard A, Nützel A, Stephen DA, Bylund KG, Jenks JF, Bucher H (2010) Gastropod evidence against the Early Triassic Lilliput effect. Geology 38:147–150

    Article  Google Scholar 

  • Brayard A, Bylund KG, Jenks JF, Stephen DA, Olivier N, Escarguel G, Fara E, Vennin E (2013) Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss J Palaeont 132:141–219

    Article  Google Scholar 

  • Brayard A, Escarguel G, Monnet C, Jenks JF, Bucher H (2015) Biogeography of Triassic ammonoids. This volume

    Google Scholar 

  • Brosse M, Brayard A, Fara E, Neige P (2013) Ammonoid recovery after the Permian-Triassic mass extinction: a re-exploration of morphological and phylogenetic diversity patterns. J Geol Soc (London) 170:225–236

    Article  Google Scholar 

  • Brühwiler T, Bucher H, Brayard A, Goudemand N (2010) High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Smithian faunas of the Northern Indian Margin. Palaeogeogr Palaeoclimatol Palaeoecol 297:491–501

    Article  Google Scholar 

  • Bucher H (2002) Early Anisian (Middle Triassic) ammonoid biostratigraphy of northeastern British Columbia. Eclog Geol Helv 95:277–287

    Google Scholar 

  • Cecca F (1997) Late Jurassic and Early Cretaceous uncoiled ammonites: trophism-related evolutionary processes. C R Acad Sci Ser IIA Earth Planet Sci 325:629–634

    Google Scholar 

  • Charlesworth B (1984) Some quantitative methods for studying evolutionary patterns in single characters. Paleobiology 10:308–318

    Article  Google Scholar 

  • Chirat R, Moulton DE, Goreily A (2013) Mechanical basis of morphogenesis and convergent evolution of spiny seashells. Proc Natl Acad Sci U S A 110:6015–6020

    Article  CAS  Google Scholar 

  • Dagys AS (1988) Major features of the geographic differentiation of Triassic ammonoids. In: Wiedmann J, Kullmann J (eds) Cephalopods present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Dagys AS (2001) The ammonoid family Arctohungaritidae from the boreal Lower-Middle Anisian (Triassic) of Arctic Asia. Rev Paleobiol 20:543–641

    Google Scholar 

  • Dagys AS, Ermakova SV (1996) Induan (Triassic) ammonoids from northeastern Asia. Rev Paleobiol 15:401–447

    Google Scholar 

  • Daniel TL, Helmuth BS, Saunders WB, Ward PD (1997) Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. Paleobiology 23:470–481

    Article  Google Scholar 

  • De Baets K Klug C Korn D Landman NH (2012) Early Evolutionary trends in ammonoid embryonic development. Evolution 66:1788–1806

    Google Scholar 

  • De Baets K, Bert D, Hoffmann R, Monnet C, Yacobucci MM, Klug C (2015) Ammonoid intraspecific variability. In: Klug C et al (eds) Ammonoid Paleobiology: from anatomy to ecology (Topics in Geobiology 44, Springer, New York, doi: 10.1007/978-94-017-9633-0_13)

    Google Scholar 

  • De Blasio FV (2008) The role of suture complexity in diminishing strain and stress in ammonoid phragmocones. Lethaia 41:15–24

    Article  Google Scholar 

  • Dommergues JL (1990) Ammonoids. In: McNamara K (ed) Evolutionary trends. Belhaven Press, London

    Google Scholar 

  • Dommergues JL, Laurin B, Meister C (1996) Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology 22:219–240

    Article  Google Scholar 

  • Dommergues JL, Montuire S, Neige P (2002) Size patterns through time: the case of the Early Jurassic ammonite radiation. Paleobiology 28:423–434

    Article  Google Scholar 

  • Embry AF (1997) Global sequence boundaries of the Triassic and their identification in the Western Canada Sedimentary Basin. Bull Canadian Petrol Geol 45:415–433

    Google Scholar 

  • Erwin DH (2006) Extinction: how Life on Earth nearly ended 250 million years ago. Princeton University Press, Princeton

    Google Scholar 

  • Escarguel G, Fara E, Brayard A, Legendre S (2011) Biodiversity is not (and never has been) a bed of roses! C R Biol 334:351–359

    Article  Google Scholar 

  • Foote M (1993) Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185–204

    Article  Google Scholar 

  • Galfetti T, Bucher H, Brayard A, Hochuli PA, Weissert H, Guodun K, Atudorei V, Guex J (2007a) Late Early Triassic climate change: insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. Palaeogeogr Palaeoclim Palaeoecol 243:394–411

    Article  Google Scholar 

  • Galfetti T, Bucher H, Ovtcharova M, Schaltegger U, Brayard A, Brühwiler T, Goudemand N, Weissert H, Hochuli PA, Cordey F, Guodun KA (2007b) Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth Planet Sci Lett 258:593–604

    Article  CAS  Google Scholar 

  • Galfetti T, Hochuli PA, Brayard A, Bucher H, Weissert H, Vigran JO (2007c) Smithian-Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35:291–294

    Article  Google Scholar 

  • Gerber S, Eble G, Neige P (2008) Allometric space and allometric disparity: a developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution 62:1450–1457

    Article  Google Scholar 

  • Gingerich PD (1993) Quantification and comparison of evolutionary rates. Am J Sci 293:453–478

    Article  Google Scholar 

  • Glenister BF, Furnish WM (1980) Permian ammonoids. In: House MR, Senior JR (eds) The Ammonoidea, Systematics Association Special, vol 18. Academic Press, London

    Google Scholar 

  • Gould SJ (1988) Trends as changes in variance: a new slant on progress and directionality in evolution. J Paleontol 62:319–329

    Article  Google Scholar 

  • Gould SJ (1990) Speciation and sorting as the source of evolutionary trends, or things are seldom what they seem. In: McNamara KJ (ed) Evolutionary trends. Belhaven Press, London

    Google Scholar 

  • Gould SJ (1991) The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411–423

    Article  Google Scholar 

  • Gould SJ (1996) Full house: the spread of excellence from Plato to Darwin. Harmony Books, New York

    Book  Google Scholar 

  • Gould SJ (1997) Cope’s rule as psychological artefact. Nature 385:199–200

    Article  CAS  Google Scholar 

  • Gould GC, MacFadden BJ (2004) Gigantism, dwarfism and Cope’s rule: ‘nothing in evolution makes sense without a phylogeny’. Bull Am Mus Nat Hist 285:219–237

    Article  Google Scholar 

  • Guex J (2001) Environmental stress and atavism in ammonoid evolution. Eclog Geol Helv 94:321–328

    Google Scholar 

  • Guex J (2003) A generalization of Cope’s rule. Bull Soc Géol France 174:449–452

    Article  Google Scholar 

  • Guex J (2006) Reinitialization of evolutionary clocks during sublethal environmental stress in some invertebrates. Earth Planet Sci Lett 243:240–253

    Article  Google Scholar 

  • Haas O (1942) Recurrence of morphologic types and evolutionary cycles in Mesozoic ammonites. J Paleontol 16:643–650

    Google Scholar 

  • Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hassan MA, Westermann GEG, Hewitt RA, Dokainish MA (2002) Finite-element analysis of simulated ammonoid septa (extinct Cephalopoda): septal and sutural complexities do not reduce strength. Paleobiology 28:113–126

    Article  Google Scholar 

  • Hofmann R, Goudemand N, Wasmer M, Bucher H, Hautmann M (2011) New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 310:216–226

    Article  Google Scholar 

  • Hofmann R, Hautmann M, Brayard A, Nützel A, Bylund KG, Jenks JF, Vennin E, Olivier N, Bucher H (2014) Recovery of benthic marine communities from the end-Permian mass extinction at the low-latitudes of Eastern Panthalassa. Palaeontology 57:547–589

    Article  Google Scholar 

  • Hone DWE, Benton MJ (2005) The evolution of large size: how does Cope’s rule work? Trends Ecol Evol 20:4–6

    Article  Google Scholar 

  • House MR (1985) The ammonoid time-scale and ammonoid evolution. Memoir Geol Soc (London) 10:273–283

    Article  Google Scholar 

  • Ifrim C (2013) Paleobiology and paleoecology of the early Turonian (Late Cretaceous) ammonite Pseudaspidoceras flexuosum. Palaios 28:9–22

    Article  Google Scholar 

  • Jablonski D (1997) Body-size evolution in Cretaceous molluscs and the status of Cope’s rule. Nature 385:250–252

    Article  CAS  Google Scholar 

  • Jenks JF, Spielmann JA, Lucas SG (2007) Triassic ammonoids: a photographic journey. In: Lucas SG, Spielmann JA (eds) Triassic of the American West. New Mexico Mus Nat History and science Bull 40:33–80

    Google Scholar 

  • Jenks JF, Monnet C, Balini M, Brayard A, Meier M (2015) Biostratigraphy of Triassic ammonoids. This volume

    Google Scholar 

  • Kennedy WJ (1977) Ammonite evolution In: Hallam A (ed) Patterns of evolution. Elsevier, Amsterdam

    Google Scholar 

  • Kennedy WJ (1989) Thoughts on the evolution and extinction of Cretaceous ammonites. Proc Geol Assoc 100:251–279

    Article  Google Scholar 

  • Kennedy WJ, Cobban WA (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. Special Papers Palaeontol 17: 1–94

    Google Scholar 

  • Kennedy WJ, Wright CW (1985) Evolutionary patterns in Late Cretaceous ammonites. Special Papers Palaeontol 33:131–143

    Google Scholar 

  • Kirchner JW, Well A (2000) Delayed biological recovery from extinctions throughout the fossil record. Nature 404:177–180

    Article  CAS  Google Scholar 

  • Klug C, Hoffmann R (2015) Ammonoid septa and sutures. In: Klug C et al (eds) Ammonoid Paleobiology: from anatomy to ecology (Topics in Geobiology 44, Springer, New York, doi: 10.1007/978-94-017-9633-0_13)

    Google Scholar 

  • Klug C, Schatz W, Korn D, Reisdorf AG (2005) Morphological fluctuations of ammonoid assemblages from the Muschelkalk (Middle Triassic) of the Germanic Basin—indicators of their ecology, extinctions, and immigrations. Palaeogeogr Palaeoclimatol Palaeoecol 221:7–34

    Article  Google Scholar 

  • Konstantinov AG (2008) Triassic ammonoids of Northeast Asia: diversity and evolutionary stages. Stratigr Geol Correl 16:490–502

    Article  Google Scholar 

  • Korn D (2000) Morphospace occupation of ammonoids over the Devonian-Carboniferous boundary. Paläontol Z 74:247–257

    Article  Google Scholar 

  • Korn D, Hopkins MJ, Walton SA (2013a) Extinction space—a method for the quantification and classification of changes in morphospace across extinction boundaries. Evolution 67:2795–2810

    Google Scholar 

  • Korn D, Leda L, Ghaderi A, Hairapetian V, Schobben M (2013b) The Lilliput effect in the latest Permian ammonoids from Iran. Progr Abstr 57th Ann Meeting Palaeont Ass, pp 41–42

    Google Scholar 

  • Kröger B (2005) Adaptive evolution in Paleozoic coiled Cephalopods. Paleobiology 31:253–268

    Article  Google Scholar 

  • Kullmann J, Wiedmann J (1970) Significance of sutures in phylogeny of Ammonoidea. University of Kansas Paleontological Contributions, Paper 47, University of Kansas Paleontological Institute, pp 1–32

    Google Scholar 

  • Kummel B (1973) Lower Triassic (Scythian) molluscs. In: Hallam A (ed) Atlas of paleobiogeography. Elsevier, Amsterdam

    Google Scholar 

  • Kummel B, Steele G (1962) Ammonites from the Meekoceras gracilitatus zone at Crittenden Spring, Elko County, Nevada. J Paleontol 36:638–703

    Google Scholar 

  • MacFadden BJ (1986) Fossil horses from “Eohippus” (Hyracotherium) to Equus: scaling, Cope’s law, and the evolution of body size. Paleobiology 12:355–369

    Article  Google Scholar 

  • MacFadden BJ (1992) Fossils horses: systematics, paleobiology, and evolution of the family equidae. Cambridge University Press, Cambridge

    Google Scholar 

  • McGhee GR Jr (1999) Theoretical morphology: the concepts and its applications. Columbia University Press, New York

    Google Scholar 

  • McGhee GR Jr (2007) The geometry of evolution: adaptive landscapes and theoretical morphospaces. Cambridge University Press, New York

    Google Scholar 

  • McGowan AJ (2004) Ammonoid taxonomic and morphologic recovery patterns after the Permian-Triassic. Geology 32:665–668

    Article  Google Scholar 

  • McGowan AJ (2005) Ammonoid recovery from the Late Permian mass extinction event. C R Palevol 4:517–530

    Article  Google Scholar 

  • McGowan AJ, Smith AB (2007) Ammonoids across the Permian/Triassic boundary: a cladistic perspective. Palaeontology 50:573–590

    Article  Google Scholar 

  • McKinney ML (1990) Trends in body-size evolution. In: McNamara KJ (ed) Evolutionary trends. Belhaven Press, London

    Google Scholar 

  • McLearn FH (1960) Ammonoid faunas of the upper Triassic Pardonet formation, Peace River foothills, British Columbia. Geol Surv Canada Memoir 311:1–118

    Google Scholar 

  • McNamara KJ (1990) Evolutionary trends. Belhaven Press, London

    Google Scholar 

  • McNamara KJ (2006) Evolutionary trends. In: Encyclopedia of life sciences. Wiley, Chichester. doi:10.1038/npg.els.0004136

    Google Scholar 

  • McShea DW (1994) Mechanisms of large-scale evolutionary trends. Evolution 48:1747–1763

    Article  Google Scholar 

  • McShea DW (1996) Metazoan complexity and evolution: is there a trend? Evolution 50:477–492

    Google Scholar 

  • McShea DW (2000) Trends, tools, and terminology. Paleobiology 26:330–333

    Article  Google Scholar 

  • Mojsisovics E, Waagen WH, Diener C (1895) Entwurf einer Gliederung der pelagischen Sediments des Trias-Systems. Sitz Ber Akad Wiss Wien math-naturwiss Kl 104:1271–1302

    Google Scholar 

  • Monnet C, Bucher H (2005) New middle and late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): taxonomy and biochronology. Foss Strata 52:1–121

    Google Scholar 

  • Monnet C, Brack P, Bucher H, Rieber H (2008) Ammonoids of the middle/late Anisian boundary (Middle Triassic) and the transgression of the Prezzo Limestone in eastern Lombardy-Giudicarie (Italy). Swiss J Geosci 101:61–84

    Article  Google Scholar 

  • Monnet C, Bucher H, Wasmer M, Guex J (2010) Revision of the genus Acrochordiceras Hyatt, 1877 (Ammonoidea, Middle Triassic): morphology, biometry, biostratigraphy and intraspecific variability. Palaeontology 53:961–996

    Article  Google Scholar 

  • Monnet C, De Baets K, Klug C (2011) Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evol Biol 11:115. doi:10.1186/1471-2148-11-115

    Article  Google Scholar 

  • Monnet C, Bucher H, Guex J, Wasmer M (2012) Large-scale evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope’s rule. Palaeontology 55:87–107

    Article  Google Scholar 

  • Monnet C, Bucher H, Brayard A, Jenks JF (2013) Globacrochordiceras gen. nov. (Acrochordiceratidae, late Early Triassic) and its significance for stress-induced evolutionary jumps in ammonoid lineages (cephalopods). Fossil Rec 16:197–215

    Article  Google Scholar 

  • Monnet C, Klug C, De Baets K (2015) Evolutionary patterns of ammonoids: phenotypic trends, convergence, and parallel evolution. In: Klug C et al (eds), Ammonoid Paleobiology: from macroevolution to paleogeography (Topics in Geobiology 44, Springer, New York, doi: 10.1007/978-94-017-9633-0_13)

    Google Scholar 

  • Moulton DE, Goreily A, Chirat R (2012) Mechanical growth and morphogenesis of seashells. J Theor Biol 311:69–79

    Article  CAS  Google Scholar 

  • Moyne S, Neige P (2007) The space-time relationship of taxonomic diversity and morphological disparity in the Middle Jurassic ammonite radiation. Palaeogeogr Palaeoclimatol Palaeoecol 248:82–95

    Article  Google Scholar 

  • Neige P, Elmi S, Rulleau L (2001) Existe-t-il une crise au passage Lias–Dogger chez les ammonites? Approche morphométrique par quantification de la disparité morphologique. Bull Soc Geol France 172:125–132

    Article  Google Scholar 

  • Newell ND (1949) Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3:103–124

    Article  CAS  Google Scholar 

  • Norris RD (1991) Biased extinction and evolutionary trends. Paleobiology 17:388–399

    Article  Google Scholar 

  • Novack-Gottshall PM, Lanier MA (2008) Scale-dependence of Cope’s rule in body size evolution of Paleozoic brachiopods. Proc Natl Acad Sci U S A 105:5430–5434

    Article  Google Scholar 

  • Ogg JG (2012) Triassic. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012. Elsevier, Amsterdam

    Google Scholar 

  • Olóriz F, Palmqvist P (1995) Sutural complexity and bathymetry in ammonites: fact or artifact? Lethaia 28:167–170

    Article  Google Scholar 

  • Olóriz F, Palmqvist P, Pérez-Claros JA (1999) Recent advances in morphometric approaches to covariation of shell features and the complexity of suture lines in Late Jurassic ammonites, with reference to the major environments colonized. In: Olóriz F, Rodriguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Kluwer Academic/Plenum Publishers, New York

    Chapter  Google Scholar 

  • Page KN (1996) Mesozoic ammonoids in space and time. In: Landman NH, Tanabe K, Davies RA (eds) Ammonoid paleobiology. Plenum Press, New York

    Google Scholar 

  • Payne JL (2005) Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269–290

    Article  Google Scholar 

  • Payne JL, Lehrmann DJ, Wei J, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506–509

    Article  CAS  Google Scholar 

  • Phillips J (1860) Life on the earth: its origin and succession. Macmillan, Cambridge

    Google Scholar 

  • Raup DM (1966) Geometric analysis of shell coiling: general problems. J Paleontol 40:1178–1190

    Google Scholar 

  • Raup DM (1967) Geometrical analysis of shell coiling: coiling in ammonoids. J Paleontol 41:43–65

    Google Scholar 

  • Raup DM (1979) Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217–218

    Article  CAS  Google Scholar 

  • Raup DM, Crick RE (1981) Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology 7:200–215

    Article  Google Scholar 

  • Raup DM, Crick RE (1982) Kosmoceras evolutionary jumps and sedimentary breaks. Paleobiology 8:90–100

    Article  Google Scholar 

  • Raup DM, Sepkoski JJ (1982) Mass extinctions in the marine fossil record. Science 215:1501–1503

    Article  CAS  Google Scholar 

  • Ritterbush KA, Bottjer DJ (2012) Westermann morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38:424–446

    Article  Google Scholar 

  • Romano C, Goudemand N, Vennemann TW, Ware D, Schneebeli-Hermann E, Hochuli PA, Brühwiler T, Brinkmann W, Bucher H (2013) Climate and biotic upheavals following the end-Permian mass extinction. Nat Geosci 6:57–60

    Article  CAS  Google Scholar 

  • Roopnarine PD, Byars G, Fitzgerald P (1999) Anagenetic evolution, stratophenetic patterns, and random walk models. Paleobiology 25:41–57

    Google Scholar 

  • Roy K, Foote M (1997) Morphological approaches to measuring biodiversity. Trends Ecol Evol 12:277–281

    Article  CAS  Google Scholar 

  • Saunders WB (1995) The ammonoid suture problem: relationships between shell and septum thickness and suture complexity in Paleozoic ammonoids. Paleobiology 21:343–355

    Article  Google Scholar 

  • Saunders WB, Swan ARH (1984) Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195–228

    Article  Google Scholar 

  • Saunders WB, Work DM, Nikolaeva SV (1999) Evolution of complexity in Paleozoic ammonoid sutures. Science 286:760–763

    Article  CAS  Google Scholar 

  • Sepkoski JJ (1993) Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:43–51

    Article  Google Scholar 

  • Shevyrev AA (2005) Heteromorph ammonoids of the Triassic: a review. Paleontol J 39(5):614–628

    Google Scholar 

  • Simpson C, Kiessling W (2010) Diversity of life through time. In: Encyclopedia of life sciences (ELS). Wiley, Chichester

    Google Scholar 

  • Spinosa C, Furnish WM, Glenister BF (1975) The Xenodiscidae, Permian ceratitoid ammonoids. J Paleontol 49:239–283

    Google Scholar 

  • Stanley SM (1973) An explanation for Cope’s rule. Evolution 27:1–26

    Article  Google Scholar 

  • Swan ARH, Saunders WB (1987) Function and shape in late Paleozoic (mid-Carboniferous) ammonoids. Paleobiology 13:297–311

    Article  Google Scholar 

  • Tozer ET (1980) Triassic ammonoidea: classification, evolution and relationship with Permian and Jurassic forms. In: House MR, Senior JR (eds) The Ammonoidea. Syst Ass Spec 18. Academic Press, London

    Google Scholar 

  • Tozer ET (1982) Marine Triassic faunas of North America: their significance for assessing plate and terrane movements. Geol Rundschau 71:1077–1104

    Article  Google Scholar 

  • Tozer ET (1984) The Trias and its ammonites: the evolution of a time scale. Geological Survey of Canada (Misc Report 35), pp 1–171

    Google Scholar 

  • Tozer ET (1994) Canadian Triassic ammonoid faunas. Geological Survey of Canada Bulletin 467, Ottawa, pp 1–663

    Google Scholar 

  • Twitchett RJ (2007) The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr Palaeoclimatol Palaeoecol 252:132–144

    Article  Google Scholar 

  • Urlichs M, Mundlos R (1985) Immigrations of cephalopods into the Germanic Muschelkalk basin and its influence on their suture line. In: Bayer U, Seilacher A (eds) Sedimentary and evolutionary cycles, Lecture notes on earth sciences, vol 1. Springer, Berlin

    Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation an ecological history of life. Princeton University Press, Princeton

    Book  Google Scholar 

  • Villier L, Korn D (2004) Morphological disparity of ammonoids and the mark of Permian mass extinctions. Science 306:264–266

    Article  CAS  Google Scholar 

  • Ward P (1980) Comparative shell shape distributions in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautilids. Paleobiology 6:32–43

    Article  Google Scholar 

  • Ward PD (1981) Shell sculpture as a defensive adaptation in ammonoids. Paleobiology 7:96–100

    Article  Google Scholar 

  • Westermann GEG (1971) Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids, Life science contribution, Series no 78. Royal Ontario Museum, pp 1–39

    Google Scholar 

  • Wiedmann J (1969) The heteromorphs and ammonoid extinction. Biol Rev 44:563–602

    Article  Google Scholar 

  • Wiedmann J (1973) Upper Triassic heteromorph ammonites. In Hallam A (ed) Atlas of palaeobiogeography. Elsevier, Amsterdam

    Google Scholar 

  • Yang F, Wang H (2000) Ammonoid succession model across the Paleozoic-Mesozoic transition in South China. In: Yin H, Dickins JM, Shi GR, Tong J (eds) Permian-Triassic evolution of Tethys and Western Circum-Pacific. Elsevier, Amsterdam

    Google Scholar 

  • Zakharov YD, Abnavi NM (2013) The ammonoid recovery after the end-Permian mass extinction: evidence from the Iran-Transcaucasia area, Siberia, Primorye, and Kazakhstan. Acta Palaeont Pol 58:127–147

    Google Scholar 

  • Zhang J (2002) From extinction to recovery: Late Triassic and Early–Middle Jurassic ammonoid morphology. PhD thesis, University of British Columbia, Vancouver

    Google Scholar 

Download references

Acknowledgments

This work is a contribution to the ANR project AFTER (ANR-13-JS06-0001). We thank Kenneth De Baets (Erlangen) and Sonny Walton (Berlin) for constructive comments and suggestions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Monnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Monnet, C., Brayard, A., Brosse, M. (2015). Evolutionary Trends of Triassic Ammonoids. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From macroevolution to paleogeography. Topics in Geobiology, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9633-0_2

Download citation

Publish with us

Policies and ethics