Skip to main content

Permian-Triassic Extinctions and Rediversifications

  • Chapter
  • First Online:

Part of the book series: Topics in Geobiology ((TGBI,volume 44))

Abstract

Ammonoids were a major component of Permian marine faunas, but were on the verge of extinction during the Permian-Triassic crisis ~ 252 myr ago. Despite the severity of this extinction, their recovery was explosive in less than 1.5 myr. By Smithian time, they had already reached levels of taxonomic richness much higher than those of the Permian. The causes for the rapid Early Triassic diversification and proliferation of these organisms still remain elusive, but the evolution of their spatio-temporal diversity and disparity patterns closely correlates with the numerous environmental changes recorded during this time interval.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Becker RT, Kullmann J (1981) Paleozoic ammonoids in space and time. In: Landman NH, Tanabe K, Davies RA (eds) Ammonoid Paleobiology, Plenum Press, New York

    Google Scholar 

  • Bond DPG, Hilton J, Wignall PB, Ali JR, Stevens LG, Sun Y, Lai X (2010) The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth Sci Rev 102:100–116

    Article  Google Scholar 

  • Brayard A, Bucher H (2008) Smithian (Early Triassic) ammonoid faunas from northwestern Guangxi (South China): taxonomy and biochronology. Fossils Strata 55:1–179

    Article  Google Scholar 

  • Brayard A, Bucher H, Escarguel G, Fluteau F, Bourquin S, Galfetti T (2006) The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients. Palaeogeogr Palaeoclim Palaeoecol 239:374–395

    Article  Google Scholar 

  • Brayard A, Bucher H, Brühwiler T, Galfetti T, Goudemand N, Guodun K, Escarguel G, Jenks J (2007a) Proharpoceras Chao: a new ammonoid lineage surviving the end-Permian mass extinction. Lethaia 40:175–181

    Article  Google Scholar 

  • Brayard A, Escarguel G, Bucher H (2007b) The biogeography of Early Triassic ammonoid faunas: clusters, gradients and networks. Geobios 40:749–765

    Article  Google Scholar 

  • Brayard A, Brühwiler T, Bucher H, Jenks J (2009a) Guodunites, a low-palaeolatitude and trans-Panthalassic Smithian (Early Triassic) ammonoid genus. Palaeontology 52:471–481

    Article  Google Scholar 

  • Brayard A, Escarguel G, Bucher H, Brühwiler T (2009b) Smithian and Spathian (Early Triassic) ammonoid assemblages from terranes: paleoceanographic and paleogeographic implications. J Asian Earth Sci 36:420–433

    Article  Google Scholar 

  • Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J (2009c) Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:1118–1121

    Article  CAS  Google Scholar 

  • Brayard A, Bylund KG, Jenks JF, Stephen D, Olivier N, Escarguel G, Fara E, Vennin E (2013) Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss J Pal 132:141–219

    Article  Google Scholar 

  • Brayard A, Escarguel G, Monnet C, Jenks JF, Bucher H (2015) Biogeography of Triassic ammonoids. This volume

    Google Scholar 

  • Brosse M, Brayard A, Fara E, Neige P (2013) Ammonoid recovery after the Permian–Triassic mass extinction: a re-exploration of morphological and phylogenetic diversity patterns. J Geol Soc London 170:225–236

    Article  Google Scholar 

  • Brühwiler T, Brayard A, Bucher H, Guodun K (2008) Griesbachian and Dienerian (Early Triassic) ammonoid faunas from Northwestern Guangxi and Southern Guizhou (South China). Palaeontology 51:1151–1180

    Article  Google Scholar 

  • Brühwiler T, Bucher H, Brayard A, Goudemand N (2010) High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Smithian faunas of the Northern Indian margin. Palaeogeogr Palaeoclim Palaeoecol 297:491–501

    Article  Google Scholar 

  • Chen Z-Q, Benton M (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383

    Article  CAS  Google Scholar 

  • Dagys AS (1988) Major features of the geographic differentiation of Triassic ammonoids. In: Wiedmann J, Kullman J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Dagys AS, Ermakova SP (1996) Induan (Triassic) ammonoids from North-Eastern Asia. Rev Paléobiol 15:401–447

    Google Scholar 

  • Glenister BF, Furnish WM (1981) Permian ammonoids. In: House MR, Senior JR (eds) The Ammonoidea, The Systematics Association, London

    Google Scholar 

  • Galfetti T, Bucher H, Brayard A, Hochuli PA, Weissert H, Guodun K, Atudorei V, Guex J (2007a) Late Early Triassic climate change: insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. Palaeogeogr Palaeoclim Palaeoecol 243:394–411

    Article  Google Scholar 

  • Galfetti T, Bucher H, Ovtcharova M, Schaltegger U, Brayard A, Brühwiler T, Goudemand N, Weissert H, Hochuli PA, Cordey F, Guodun KA (2007b) Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth Planet Sci Lett 258:593–604

    Article  CAS  Google Scholar 

  • Galfetti T, Hochuli PA, Brayard A, Bucher H, Weissert H, Vigran JO (2007c) The Smithian/Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35:291–294

    Article  Google Scholar 

  • Grasby SE, Beauchamp B, Embry A, Sanei H (2013) Recurrent Early Triassic ocean anoxia. Geology 41:175–178

    Google Scholar 

  • Guex J, Hungerbühler A, Jenks J, O'Dogherty L, Atudorei V, Taylor DG, Bucher H, Bartolini A (2010) Spathian (Lower Triassic) ammonoids from western USA (Idaho, California, Utah and Nevada). Mém Géol Lausanne 49:1–81

    Google Scholar 

  • Hermann E, Hochuli PA, Bucher H, Brühwiler T, Hautmann M, Ware D, Roohi G (2011) Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Res 20:630–637

    Article  Google Scholar 

  • Hermann E, Hochuli PA, Bucher H, Brühwiler T, Hautmann M, Ware D, Weissert H, Roohi G, Yaseen A, Rehman K (2012) Climatic oscillations at the onset of the Mesozoic inferred from palynological records from the North Indian margin. J Geol Soc 169:227–237 (London)

    Article  Google Scholar 

  • Jenks JF, Brayard A, Brühwiler T, Bucher H (2010) New Smithian (Early Triassic) ammonoids from Crittenden Springs, Elko County, Nevada: implications for taxonomy, biostratigraphy and biogeography. New Mexico Mus Nat Hist Sci Bull 48:1–41

    Google Scholar 

  • Jenks JF, Monnet C, Balini M, Brayard A, Meier M (2015) Biostratigraphy of Triassic ammonoids. This volume

    Google Scholar 

  • Korn D, Ilg A (2007) AMMON. www.wahre-staerke.com/ammon/. Accessed Dec 2012

  • Kummel B (1972) The Lower Triassic (Scythian) ammonoid Otoceras. Bull Mus Comp Zool 143:365–417

    Google Scholar 

  • Kummel B, Steele G (1962) Ammonites from the Meekoceras gracilitatus zone at Crittenden Spring, Elko County, Nevada. J Paleont 36:638–703

    Google Scholar 

  • Leonova TB (2002) Permian ammonoids: Classification and phylogeny. Pal J, Suppl 36:1–114

    Google Scholar 

  • Leonova TB (2005) Morphological evolution of Permian ammonoids. Pal J, Suppl 39:573–586

    Google Scholar 

  • Leonova TB (2011) Permian ammonoids: biostratigraphic, biogeographical, and ecological analysis. Paleont J 45:1206–1312

    Article  Google Scholar 

  • McGowan AJ (2004) Ammonoid taxonomic and morphologic recovery patterns after the Permian–Triassic. Geology 32:665–668

    Article  Google Scholar 

  • McGowan AJ (2005) Ammonoid recovery from the Late Permian mass extinction event. Comptes Rendus Palevol 4:517–530

    Article  Google Scholar 

  • McGowan AJ, Smith AB (2007) Ammonoids across the Permian/Triassic boundary: a cladistic perspective. Palaeontology 50:573–590

    Article  Google Scholar 

  • Monnet C, Bucher H, Brayard A, Jenks JF (2013) Globacrochordiceras gen. nov. (Acrochordiceratidae, late Early Triassic) and its significance for stress-induced evolutionary jumps in ammonoid lineages (cephalopods). Fossil Rec 16:197–215

    Article  Google Scholar 

  • Monnet C, Brayard A, Bucher H (2015) Ammonoids and quantitative biochronology—a unitary association perspective. This volume

    Google Scholar 

  • Orchard MJ (2007) Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr Palaeoclim Palaeoecol 252:93–117

    Article  Google Scholar 

  • Ovtcharova M, Bucher H, Schaltegger U, Galfetti T, Brayard A, Guex J (2006) New Early to Middle Triassic U-Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth Planet Sci Lett 243:463–475

    Article  CAS  Google Scholar 

  • Payne JL, Lehrmann DJ, Wei J, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506–509

    Article  CAS  Google Scholar 

  • Payne JL, Turchyn AV, Paytan A, DePaolo DJ, Lehrmann DJ, Yu M, Wei J (2010) Calcium isotope constraints on the end-Permian mass extinction. Proc Natl Acad Sci U S A 107:8543–8548

    Article  CAS  Google Scholar 

  • Raup DM (1979) Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217–218

    Article  CAS  Google Scholar 

  • Reichow MK, Pringle MS, Al'Mukhamedov AI, Allen MB, Andreichev VL, Buslov MM, Davies CE, Fedoseev GS, Fitton JG, Inger S, Medvedev AY, Mitchell C, Puchkov VN, Safonova IY, Scott RA, Saunders AD (2009) The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet Sci Lett 277:9–20

    Article  CAS  Google Scholar 

  • Romano C, Goudemand N, Vennemann TW, Ware D, Schneebeli-Hermann E, Hochuli PA, Brühwiler T, Brinkmann W, Bucher H (2013) Climatic and biotic upheavals following the end-Permian mass extinction. Nat Geosci 6:57–60

    Article  CAS  Google Scholar 

  • Ruzhencev VE (1960) Printsipy sistematiki, sistema i filogeniya paleozoiskikh ammonoidei (Principles of Systematics: System and Phylogeny of Paleozoic Ammonoids). Proc Pal Inst Acad Sci USSR 33: 1–331

    Google Scholar 

  • Saunders WB, Greenfest-Allen E, Work DM, Nikolaeva SV (2008) Morphologic and taxonomic history of Paleozoic ammonoids in time and morphospace. Paleobiology 34:128–154

    Article  Google Scholar 

  • Sepkoski JJJr (1978) A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4:223–251

    Article  Google Scholar 

  • Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao CQ, Rothman DH, Henderson CM, Ramezani J, Zhang H, Shen Y, Wang XD, Wang W, Mu L, Li WZ, Tang YG, Liu XL, Liu LJ, Zeng Y, Jiang YF, Jin YG (2011) Calibrating the End-Permian mass extinction. Science 334:1367–1372

    Article  CAS  Google Scholar 

  • Shevyrev AA (2001) Ammonite zonation and interregional correlation of the Induan stage. Strati Geol Correl 9:473–482

    Google Scholar 

  • Shevyrev AA (2006) Triassic biochronology: state of the art and main problems. Strati Geol Correl 14:629–641

    Article  Google Scholar 

  • Stanley SM, Yang X (1994) A double mass extinction at the end of the Paleozoic era. Science 266:1340–1344

    Article  CAS  Google Scholar 

  • Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366–370

    Article  CAS  Google Scholar 

  • Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277:490–500

    Article  CAS  Google Scholar 

  • Tozer ET (1974) Definitions and limits of Triassic stages and substages: suggestions prompted by comparisons between North America and the Alpine–Mediterranean region. Schriftenreihe Erdwiss Komm Österr Akad Wiss 2:195–206

    Article  Google Scholar 

  • Tozer ET (1981) Triassic Ammonoidea: classification, evolution and relationship with Permian and Jurassic forms. In: House MR, Senior JR (eds) The Ammonoidea. The Systematics Association, London

    Google Scholar 

  • Tozer ET (1982) Marine Triassic faunas of North America: their significance for assessing plate and terrane movements. Geol Rundschau 71:1077–1104

    Article  Google Scholar 

  • Tozer ET (1994) Age and Correlation of the Otoceras beds at the Permian–Triassic boundary. Albertiana 14:31–37

    Google Scholar 

  • Tozer ET (2003) Interpretation of the Boreal Otoceras beds: Permian or Triassic? Albertiana 28:90–91

    Google Scholar 

  • Villier L, Korn D (2004) Morphological disparity of ammonoids and the mark of Permian mass extinctions. Science 306:264–266

    Article  CAS  Google Scholar 

  • Ware D, Jenks J, Hautmann M, Bucher H (2011) Dienerian (Early Triassic) ammonoids from the Candelaria Hills (Nevada, USA) and their significance for palaeobiogeography and palaeoceanography. Swiss J Geosci 104:161–181

    Article  CAS  Google Scholar 

  • Zakharov YD (2002) Ammonoid succession of Setorym River (Verkhoyansk Area) and problem of Permian-Triassic boundary in Boreal Realm. J China Univ Geosci 13:107–123

    Google Scholar 

  • Zakharov YD, Abnavi NM (2013) The ammonoid recovery after the end-Permian mass extinction: evidence from the Iran-Transcaucasia area, Siberia, Primorye, and Kazakhstan. Acta Palaeont Pol 58:127–147

    Google Scholar 

  • Zhou Z, Glenister BF, Furnish WM, Spinosa C (1996) Multi-episodal extinction and ecological differentiation of Permian ammonoids. Permophiles 29:52–62

    Google Scholar 

Download references

Acknowledgments

We thank D. Korn, J. Jenks and K. Bylund for their constructive comments and suggestions. The CNRS INSU Interrvie supported A.B. for his study. This is also a contribution to the ANR project AFTER (ANR-13-JS06-0001). H.B. acknowledges the support of the Swiss National Science Foundation (project 200021_135446).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Brayard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brayard, A., Bucher, H. (2015). Permian-Triassic Extinctions and Rediversifications. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From macroevolution to paleogeography. Topics in Geobiology, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9633-0_17

Download citation

Publish with us

Policies and ethics