Skip to main content

Ammonoid Habitats and Life History

  • Chapter
  • First Online:
Ammonoid Paleobiology: From anatomy to ecology

Part of the book series: Topics in Geobiology ((TGBI,volume 43))

Abstract

The current knowledge about the ammonoid/habitat relation is reviewed and in part newly interpreted. The autecology of ammonoids, such as ontogeny and habitat, based on morphological and geochemical analyses in association with results from modern relatives, forms the foundation for subsequent interpretations. Synecological interactions (predator-prey, infestation) are discussed with reference to sedimentary facies and the corresponding biofacies. Arguments for a possible mode of life and habitat are given based on the modern data on the food/prey habits and predation habitats of ammonoids. The state of the art in scientific investigations on ammonoid life and habitat is summarized, reviewed and in part reinterpreted. Traditional assumptions based on facies analyses are strengthened or contradicted by more recent methods such as morphospace and stable isotope analyses. Not yet tested hypotheses, speculations and mathematical models are tested by comparing the results with new geophysical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel O (1916) Paläobiologie der Cephalopoden. Aus der Gruppe der Dibranchiaten. Verlag Gustav Fischer, Jena

    Google Scholar 

  • Alberti M, Fürsich FT, Pandey DK, Ramkumar M (2011) Stable isotope analyses of belemnites from the Kachchh Basin, western India: paleoclimatic implications for the Middle to Late Jurassic transition. Facies 58:261–278

    Google Scholar 

  • Anderson TF, Popp BN, Williams AC, Ho LZ, Hudson JD (1994) The stable isotopic record of fossils from the Peterborough Member, Oxford Clay Formation (Jurassic), UK: Palaeoenvironmental implications. J Geol Soc Lond 151:125–138

    Google Scholar 

  • Andrew C, Hoew P, Paul CRC, Donovam SK (2010) Fatally bitten ammonoids from the lower Lias Group (Lower Jurassic) of Lyme Regis, Dorset. Proc York Geol Soc 58:81–94

    Google Scholar 

  • Andrew C, Hoew P, Paul CRC, Donovam SK (2011) Epifaunal worm tubes on Lower Jurassic (Lower Lias) ammonites from Dorset. Proc Geol Assoc 34–46

    Google Scholar 

  • Arkell W (1957) Introduction to Mesozoic Ammonoidea. In: Moore RC (ed) Treatise on Invertebrate Paleontology Part L Mollusca 4 Cephalopoda Ammonoidea. The University of Kansas Press, New York, pp. L81–L129

    Google Scholar 

  • Arnold JM (1985) Shell growth, trauma and repair as an indicator of life history for Nautilus. Veliger 27:386–396

    Google Scholar 

  • Assereto R (1969) Sul significato stratigrafico della ‘Zona ad Avisianus’ del Trias medio delle Alpi. Boll Soc Geol Italia 88:123–145

    Google Scholar 

  • Auclair A-C, Lecuyer C, Bucher H, Sheppard SMF (2004) Carbon and oxygen isotope composition of Nautilus macromphalus: a record of thermocline waters off New Caledonia. Chem Geol 207:91–100

    Google Scholar 

  • Ballentine CM (2007) A mathematical analyses of some indices used to classify ammonite shells. Lethaia 40:197–198

    Google Scholar 

  • Bandel K (1988) Operculum and buccal mass of ammonites. In: Wiedmann J, Kullmann J (eds) Cephalopods–present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Bandel K, Hoefs J (1975) Die Isotopenzusammensetzung von Molluskenschalen am Beispiel der Gastropoden. Neues Jahrb Geol Paläontol Monatshefte 1975:1–11

    Google Scholar 

  • Bandel K, Landman NH, Waage KM (1982) Micro-ornament on early whorls of Mesozoic ammonites: implications for early ontogeny. J Paleontol 56:386–391

    Google Scholar 

  • Batt RJ (1987) Pelagic biofacies of the Western Interior Greenhorn Sea (Cretaceous). Evidence from ammonites and planktonic foraminiferas [Ph.D. Thesis]: University of Colorado, p 778

    Google Scholar 

  • Batt RJ (1989) Ammonite shell morphotype distribution in the Western Interior Greenhorn sea and some paleoecological implication. Palaios 4:32–42

    Google Scholar 

  • Batt RJ (1991) Sutural amplitude of ammonite shells as a paleoenvironmental indicator. Lethaia 24:219–225

    Google Scholar 

  • Batt RJ (1993) Ammonite shell morphotypes as indicators of oxygenation in ancient epicontinental seas: example from Late Cretaceous Greenhorn Cyclothem (U.S.A.). Lethaia 26:49–64

    Google Scholar 

  • Bayer U (1970) Anomalies in Aalenian and Bajocian ammonites as clues to their mode of life. Neues Jahrb Geol Paläontol Abh 135:19–41

    Google Scholar 

  • Bayer U (1977) Cephalopod septa I. Constructional morphology of the ammonite septum. Neues Jahrb Geol Paläontol Abh 154:290–366

    Google Scholar 

  • Bayer U (1982) Ammonite maneuverability-a new look at the functions of shell geometry. Neues Jahrb Geol Paläontol Abh 164:154–156

    Google Scholar 

  • Bayer U, McGhee GR Jr (1984) Iterative evolution of Middle Jurassic ammonite faunas. Lethaia 17:1–16

    Google Scholar 

  • Becker RT (1993) Anoxia, eustatic changes, and Upper Devonian to lowermost Carboniferous global ammonoid diversity. In: House MR (ed) The Ammonoidea: Environment, Ecology, and Evolutionary Change. The Systematics Association, special vol 47. Clarendon Press, Oxford

    Google Scholar 

  • Bettencourt V, Guerra A (1999) Carbon- and oxygen-isotope composition of the cuttlebone of Sepia officinalis: a tool for predicting ecological information? Marine Biol 133:651–657

    Google Scholar 

  • Bettencourt V, Guerra A (2001) Age studies based on daily growth increments in statoliths and growth lamellae in cuttlebone of cultured Sepia officinalis. Marine Biol 139:327–334

    Google Scholar 

  • Birkelund T (1981) Ammonoid shell structure. In: House MR, Senior J (eds) The Ammonoidea. Systematics Association, special vol 18. Academic Press, London

    Google Scholar 

  • Boletzky S v (1974) The “larvae” of Cephalopoda: a review. Thalassia Jugosl 10:45–76

    Google Scholar 

  • Boletzky SV (1987) Juvenile behaviour. In: Boyle PR (ed) Cephalopod life cycles, vol II. Academic Press, London

    Google Scholar 

  • Boletzky SV (1992) Evolutionary aspects of development, life style, and reproductive mode in incirrate octopods (Molluscs, Cephalopoda). Rev Suisse Zool 99:755–770

    Google Scholar 

  • Bond PN, Saunders WB (1989) Sublethal shell repair in Upper Mississippian ammonoids. Paleobiol 15:414–428

    Google Scholar 

  • Böse E (1928) Cretaceous ammonites from Texas and northern Mexico. Bull Univ Tex 2748:143–312

    Google Scholar 

  • Boston WB, Mapes RH (1991) Ectocochleate cephalopod taphonomy. In: Donovan SK (ed) Processes of fossilization. Bellhaven Press, London

    Google Scholar 

  • Boucot AJ (1981) Principles of benthic marine paleoecology. Academic Press, New York

    Google Scholar 

  • Boyajian G, Lutz T (1992) Evolution of biological complexity and its relation to taxonomic longevity in the ammonoidea. Geology 20:983–986

    Google Scholar 

  • Brack P, Rieber H (1993) Towards a better definition of the Anisian/Ladinian boundary: new biostratigraphic data and correlations of boundary sections from the Southern Alps. Eclogae Geol Helvetiae 86:415–527

    Google Scholar 

  • Brack P, Rieber H (1996) The ‘High resolution Middle Triassic ammonoid standard scale’ proposed by Triassic researchers from Padova–a discussion of the Anisian/Ladinian boundary interval. Albertiana 17:42–50

    Google Scholar 

  • Brand U (1986) Paleoenvironmental analysis of Middle Jurassic (Callovian) ammonoids from Poland: trace elements and stable isotopes. J Paleontol 60:293–301

    Google Scholar 

  • Brett CE, Miller KB, Baird GC (1990) A temporal hierarchy of paleoecologic processes within a Middle Devonian epeiric sea. In: Miller W (ed) Paleocommunity Temporal Dynamics: The Longterm Development of Multispecles Assemblages. Paleontol Soc Spec Publ 5:178–203

    Google Scholar 

  • Brett CE, Dick VB, Baird GC (1991) Comparative taphonomy and paleoecology of Middle Devonian dark gray and black shale facies from western New York. State Mus Bull 469:5–36

    Google Scholar 

  • Brumsack HJ (1991) Inorganic geochemistry of the German ‘Posidonia Shale’: Palaeoenvironmental consequences. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geol Soc Spec Publ 58:353–362

    Google Scholar 

  • Bruna GD, Martire L (1985) La successione giurassica (Pliensbachiano-Kimmeridgiano) delle Alpi Feltrine (Belluno). Riv Ital Paleontol Stratigr 91:15–62

    Google Scholar 

  • Bucher H, Landman NH, Klofak SM, Guex J (1996) Mode and rate of growth in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Topics in Geobiology 13, Plenum, New York

    Google Scholar 

  • Bulot L (1989) Les Olcostephaninae (Ammonitina, Cephalopoda) dans le Crétacé inférieur du Jura Suisse et Francais. In: Museé d’Histoire Naturelle de Genève Résumés (ed) Réunion Commune APF-SPS, 21–22 Octobre 1989, Geneva, p 5

    Google Scholar 

  • Bulot L (1992) Les Olcostephaninae Valanginiens et Hauteriviens (Ammonitina, Cephalopoda) du Jura Franco-Suisse: systematique et interet biostratigraphique. Rev Paléobiol 11:149–166

    Google Scholar 

  • Bulot L (1993) Stratigraphic implications of the relationship between ammonites and facies: examples taken from the Lower Cretaceous (Valanginian-Hauterivian) of the western Tethys. In: House MR (ed) The Ammonoidea: Environment, Ecology, and Evolutionary Change, Systematics Association, special vol 47. Clarendon Press, Oxford

    Google Scholar 

  • Bulot L (1995) Les formations à ammonites du Crétacé inférieur dans le SE de la France (Berriasien-Hauterivien): Biostratigraphie, paléontologie et cycles sédimentaires [PhD thesis]: Paris, University Paris, p. 374

    Google Scholar 

  • Bulot L, Company M (1990) Les Olcostephanus du groupe atherstoni (Ammonitina, Cephalopoda): potential d’utilisation pour les correlations biostratigraphiques à longue distance. In: VI J Soc Esp Paleontol rés, p. 34

    Google Scholar 

  • Burnaby TP (1966) Allometric growth of ammonoid shells: a generalization of the logarithmic spiral. Lett Nat 209:904–906

    Google Scholar 

  • Callomon JH (1980) Dimorphism in ammonoids. In: House MR, Senior JR (eds) The Ammonoidea, Systematics Association, special vol 18. Academic Press, London

    Google Scholar 

  • Callomon JH (1985) The evolution of the Jurassic ammonite family Cardioceratidae. Spec Pap Palaeontol 33:49–90

    Google Scholar 

  • Carlson BA, McKibben, JN, deGruy, MV (1984) Telemetric investigation of vertical migration of Nautilus belauensis. Pac Sci 38:183–188

    Google Scholar 

  • Casadío S, Concheyro A (1992) Facies y ambientes de sedimentación en el límite Cretácico-Terciario de La Pampa, Argentina. Act VIII Cong Latin Geol Salamanca 4:30–34

    Google Scholar 

  • Cecca F (1988) Ammonites méditerranéennes du Tithonique inférieur de l'Ardèche (Sud-Est de la France): analyse des afflux téthysiens. Geobios 21:169–186

    Google Scholar 

  • Cecca F (1992) Ammonite habitats in the Early Tithonian of Western Tethys. Lethaia 25:257–267

    Google Scholar 

  • Cecca F (1997) Late Jurassic and Early Cretaceous uncoiled ammonites: trophism-related evolutionary processes. Comptes Rendus Acad Sci Paris, Ser II 325:629–634

    Google Scholar 

  • Cecca F (1998) Hypothesis about the role of the trophism in the evolution of the uncoiled ammonites: the adaptive radiations of the Ancyloceratina (Ammonoidea) at the end of the Jurassic and in the Lower Cretaceous. Rend Fis Acc Lincei 9:213–226

    Google Scholar 

  • Cecca F, Cresta S, Pallini G, Santantonio M (1990) Il Giurassico di Monte Nerone (Appennino marchigiano, Italia Centrale): biostratigrafia, litostratigrafia ed evoluzione paleogeografica. In: Pallini G, Cecca F, Cresta S, Santantonio M (eds) Fossili, Evoluzione e Ambiente. Atti de Secondo Convegno Internazionale, Pergola ottobre 1987, Ed Comitato Centenario R Piccinini, Ancona

    Google Scholar 

  • Cecca F, Fozy I, Wierzbowski A (1993) Ammonites et paléoécologie: étude quantitative d’associations du Tithonien inférieur de la Tethys occidentale: In: Elmi S, Mangold C, Alméras Y (eds) 3ème Symposium International, Céphalopodes Actuels et Fossiles (Lyon, 1990), Geobios Mém Spéc 15:39–48

    Google Scholar 

  • Ceriola L, Milone N (2007) Cephalopods age determination by statolith reading: a technical manual. Adria Med Technical Documents 22, Rome, 78 p

    Google Scholar 

  • Challier L, Dunn M R, Robin J-P (2005) Trends in age-at-recruitment and juvenile growth of cuttlefish, Sepia officinalis, from the English Channel. ICES J Mar Sci 62:1671–1682

    Google Scholar 

  • Chamberlain JA (1976) Flow patterns and drag coefficients of cephalopod shells. Paleobiology 19:539–563

    Google Scholar 

  • Chamberlain JA Jr (1980) Hydrodynamical design of fossil cephalopods. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life and geological usefulness of a major fossil group. The Systematics Association, special, vol 18. Academic Press, London

    Google Scholar 

  • Chamberlain JA Jr (1991) Cephalopod locomotor design and evolution: the constraints of jet propulsion. In: Rayner JMV, Wooton RJ (eds) Biomechanics and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Chamberlain JA Jr, Moore WA Jr (1982) Rupture strength and flow rate of Nautilus siphuncular tube. Paleobiology 8:408–5452

    Google Scholar 

  • Chamberlain JA Jr, Weaver JS (1978) Equations of motion for post-mortem sinking of cephalopod shells. Math Geol 10:673–689

    Google Scholar 

  • Chamberlain JA Jr, Ward PD, Weaver JS (1981) Postmortem ascent of Nautilus shells: implications for cephalopod paleogeography. Paleobiology 7:494–509

    Google Scholar 

  • Checa AG (2003) Fabrication and function of ammonite septa—comment on Lewy. J Paleontol 77:790–791

    Google Scholar 

  • Checa AG, Garcia-Ruiz JM (1996) Morphogenesis of the septum in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. vol 13 of Topics in Geobiology, Plenum, New York

    Google Scholar 

  • Checa A, Westermann GEG (1989) Segmental growth in planulate ammonites: inferences on costae function. Lethaia 22:95–100

    Google Scholar 

  • Cherel Y, Hobson KA (2005) Stable isotopes, beaks and predators: a new tool to study the trophic ecology of cephalopods, including giant and colossal squids. Proc Biol Soc 272:1601–1607

    Google Scholar 

  • Cherel Y, Ridoux V, Spitz J, Richard P (2009) Stable isotopes document the trophic structure of a deep-sea cephalopod assemblage including giant octopod and giant squid. Biol Lett 5:364–367

    Google Scholar 

  • Chikaraishi Y, Ogawa NO, Kashiyama Y, Takano Y, Suga H, Tomitani A, Miyashita H, Kitazato H, Ohkouchi N (2009) Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids: Liminology and Oceanography. Methods 7:740–750

    Google Scholar 

  • Chirat R (2000) The so-called “cosmopolitan palaeobiogeographic distribution” of Tertiary Nautilida of the genus Aturia Bronn 1838: the result of post-mortem transport by oceanic palaeocurrents. Palaeogeogr Palaeoclimatol Palaeoecol 157:59–77

    Google Scholar 

  • Chirat R (2001) Anomalies of embryonic shell growth in post-Triassic Nautilida. Paleobiology 27:485–499

    Google Scholar 

  • Christ HA (1960) Beiträge zur Stratigraphie und Paläontologie des Malm von Westsizilien. Mém Soc Paléont Suisse 77:1–138

    Google Scholar 

  • Cichowolski M, Pazos PJ, Tunik MA, Aguirre-Urreta MB (2011) An exceptional storm accumulation of nautilids, Lower Cretaceous, Neuquén Basin, Argentina. Lethaia 45:121–138

    Google Scholar 

  • Clari PA, Marini P, Pastorini M, Pavia G (1984) Il Rosso Ammonitico Inferiore (Baiociano-Calloviano) nei Monti Lessini Settentrionali (Verona). Riv Ital Paleontol Stratigr 90:15–86

    Google Scholar 

  • Clarke MR (1969) Cephalopoda collected on the SOND cruise. J Mar Biol Assoc UK 49:961–976

    Google Scholar 

  • Cochran JK, Rye DM, Landman NH (1981) Growth rate and habitat of Nautilus pompilius inferred from radioactive and stable isotope studies. Paleobiology 7:469–480

    Google Scholar 

  • Cochran JK, Landman NH, Turekian KK, Michard A, Schrag DP (2003) Paleoceanography of the Late Cretaceous (Maastrichtian) Western Interior Seaway of North America: evidence from Sr and O isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 191:45–64

    Google Scholar 

  • Cochran JK, Kallenberg K, Landman NH, Harries PJ, Weinreb D, Turekan KK, Beck AJ, Cobban WA (2010a) Effect of diagensis on the Sr, O and C isotopic composition of Late Cretaceous mollusks from the Western Interior of North America. Am J Sci 310:69–88

    Google Scholar 

  • Cochran JK, Landman NH, Harries PJ, Larson NL, Garb MP, Klofak SM, Myers C, Brezina J (2010b) Stable isotopes in well-preserved shells of a methane seep fauna from the Upper Cretaceous (Campanian) Pierre Shale, U.S. Western Interior. 8th International Symposium, Cephalopods—Present and Past, 30 August–3 September, 2010 Dijon, Abstract Volume, 119

    Google Scholar 

  • Collignon M (1963) Atlas des fossils caractéristiques de Madagascar (Ammonites), Albien. Serv Géol Tananarive 10:184

    Google Scholar 

  • Collignon M (1964) Atlas des fossils caractéristiques de Madagascar (Ammonites), Cenomanien. Serv Géol Tananarive 11:152

    Google Scholar 

  • Collins D, Ward PD (2010) Adolescent growth and maturity in Nautilus. In: Saunders WB, Landman NH (eds) Nautilus. the biology and paleobiology of a living fossil. Topics in Geobiology, 6, Springer Press, New York (reprinted from Saunders WB, Landman NH (eds) 1987 with additions) pp. 421–432

    Google Scholar 

  • Company M (1987) Los Ammonites del Valanginiense del sector oriental de las Cordilleras Béticas (SE de Espana) [PhD thesis]: Universidad de Granada, Granada, p 294

    Google Scholar 

  • Company M, Aguado R, Sandoval J, Tavera JM, Jimenez de Cisneros C, Vera JA (2005) Biotic changes linked to a minor anoxic event (Faraoni Level, Latest Hauterivian, Early Cretaceous). Palaeogeogr Palaeoclimat Palaeoecol 224:186–199

    Google Scholar 

  • Cope JCW (1967) The palaeontology and stratigraphy of the lower part of the Upper Kimmeridge Clay of Dorset. Bull Br Mus Nat Hist Geol 15:1–79

    Google Scholar 

  • Cope JCW (1974) Upper Kimmeridge ammonite faunas of wash area and a subzonal scheme from the lower part of the Upper Kimmeridgian. Bull Geol Surv GB 1974:29–37

    Google Scholar 

  • Crocker KC, DeNio, MJ, Ward, PD (1985) Stable isotopic investigations of early development in extant and fossil chambered cephalopods I. Oxygen isotopic composition of eggwater and carbon isotopic composition of siphuncle organic matter in Nautilus. Geochim Cosmochim Acta 49:2527–2532.

    Google Scholar 

  • Currie ED (1942) Growth stages in the ammonite Promicroceras marstonense Spath. Proc R Soc Edinb B 61:344–367

    Google Scholar 

  • Currie, ED. (1944) Growth stages in some Jurassic ammonites. Trans R Soc Edinb 61:171–198

    Google Scholar 

  • Dagys AS, Weitschat W (1993) Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26:113–122

    Google Scholar 

  • Daniel, TL, Helmuth BS, Sunders WB, Ward PD (1997) Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. Paleobiology 23: 470–481

    Google Scholar 

  • D’Arpa C, Meléndez G. (2004) Oxfordian biostratigraphy and ammonite associations from west Sicily: biostratigraphic succession of genus Gregoryceras ad correlation with Tethyan Perisphinctid scale. Riv Ital Paleontol Strati 110:225–267

    Google Scholar 

  • Davis RA (1972) Mature modification and dimorphism in selected Late Paleozoic ammonoids. Bull Am Paleontol 62:26–130

    Google Scholar 

  • Davis RA, Furnish WM, Glenister BF (1969) Mature modification and dimorphism in Late Paleozoic ammonoids. In: Westermann GEG (ed) Sexual dimorphism in fossil metazoa and taxonomic implications. Schweizerbart, Stuttgart

    Google Scholar 

  • Davis RA, Landman NH, Dommergues J-L, Marchand D, Bucher H (1996) Mature modifications and dimorphism in ammonoid cephalopods. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Davis RA, Mapes RH, Klofak SM (1999) Epizoa on externally shelled cephalopods. In: Rozanov AY, Shevyrev AA (eds) Fossil Cephalopods: recent advances in their study. Russian Academy of Sciences, Palaeontological Institute, Moskva

    Google Scholar 

  • De Baets K Klug C Korn D Landman NH. (2012) Early evolutionary trends in ammonoid embryonic development. Evolution 66:1788–1806

    Google Scholar 

  • De Baets K Klug C Monnet C (2013) Intraspecific variability through ontogeny in early ammonoids. Paleobiology 39: 75–94

    Google Scholar 

  • De Baets K, Landman NH, Tanabe K (2015) Ammonoid embryonic development. This volume

    Google Scholar 

  • Dennis KJ, Cochran JK, Landman NH, Schrag DP (2013) The climate of the Late Cretaceous: new insights from the application of the carbonate clumped isotope thermometer to Western Interior Seaway macrofossil. Earth Planet Sci Lett 362:51–65

    Google Scholar 

  • Denton EJ (1974) On the buoyancy and the lives of modern and fossil cephalopods. Proc R Soc Lond B 185:273–299

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1973) Floatation mechanisms in modern and fossil cephalopods. Adv Mar Biol 11:197–268

    Google Scholar 

  • Ditchfield PW (1997) High Northern palaeolatitude Jurassic-Cretaceous palaeotemperature variation: new data from Kong Karls Land, Svalbard. Palaeogeogr Palaeoclimatol Palaeoecol 61:237–254

    Google Scholar 

  • Doguzhaeva LA (1988) Siphuncular tubes and septal necks in ammonite evolution. In: Wiedmann J, Kullmann J (eds) Cephalopods–present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Doguzhaeva LA (2002) Adolescent bactritoid, orthoceratoid, ammonoid and coleoid shells from the Upper Carboniferous and Lower Permian of the South Urals. In: Summesberger H, Histon K, Daurer A (eds) Cephalopods–present and past. Abh Geol B-A 57: 9–55

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (1989) Ptychoceras—a heteromorphic lytoceratid with truncated shell and modified ultrastructure (Mollusca: Ammonoidea). Palaeontogr Abt A 208:91–121

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (1991) Organization of the soft body in Aconeceras (Ammonitina), interpreted on the basis of shell morphology and muscle scars. Palaeontogr Abt A Palaeoz Stratigr 218:17–33

    Google Scholar 

  • Doguzhaeva LA, Mutvei H. (1992) Radula of the Early Cretaceous ammonite Aconeceras (Mollusca: Cephalopoda). Palaeontogr A 223:167–177

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (1993) Structural features in Cretaceous ammonoids indicative of semiinternal or internal shells. In: House MR (ed) The Ammonoidea: Environment, Ecology, and Evolutionary Change. Systematics Association, special vol 47. Clarendon Press, Oxford

    Google Scholar 

  • Doguzhaeva LA, Mapes RH, Summesberger H, Mutvei H (2007) The preservation of body tissues, shell, and mandibles in the ceratitid Ammonoid Austrotrachyceras (Late Triassic), Austria. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods Present and Past: new insights and fresh perspectives. Springer, Dordrecht

    Google Scholar 

  • Doguzhaeva LA, Bengtson S, Mutvei H (2010) Structural and morphological indicators of mode of life in the Aptian lytoceratid ammonoid Eogaudryceras. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods Present and Past. Tokai University Press, Tokyo

    Google Scholar 

  • Donovan DT (1985) Ammonite shell form and transgression in the British Lower Jurassic. In: Bayer U, Seilacher A (eds) Sedimentary and evolutionary cycles, vol. 1. Springer–Verlag, Berlin

    Google Scholar 

  • Donovan SK (1989) Taphonomic significance of the encrustation of the dead shell of recent Spirula spirula (Linneé) (Cephalopoda: Coleoidea) by Lepas anatifera Linné (Cirripedia: Thoracia). J Paleontol 63:698–702

    Google Scholar 

  • Donovan DT (1993) Ammonites in 1991. In: House MR (ed) The Ammonoidea. environment, ecology and evolutionary change. Systematics Association, special vol. 47. Clarendon Press, Oxford

    Google Scholar 

  • Doyle P, Whitham AG (1991) Palaeoenvironments of the Nordenskjold Formation: an Antarctic Late Jurassic–Early Cretaceous black shale-tuff sequence. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geol Soc Spec Publ 58:397–414

    Google Scholar 

  • Duff KL (1975) Palaeoecology of a bituminous shale—the Lower Oxford Clay of central England. Palaeontology 18:443–482

    Google Scholar 

  • Dunstan A, Bradshaw CJA, Marshall J (2011) Nautilus at Risk—Estimating population size and demography of Nautilus pompilius. PLoS ONE 6(2):e16716. doi:10.1371/journal.pone.0016716

    Google Scholar 

  • Dutton A, Huber BT, Lohmann KC, Zinsmeister WJ (2007) High-resolution stable isotope profiles of a dimitobelid belemnite: implications for a paleodepth habitat and late Maastrichtian climate seasonality. Palaios 22:642–650

    Google Scholar 

  • Ebel K (1983) Calculations on the buoyancy of ammonites. Neues Jahrb Geol Paläontol Monatshefte 1983:614–640

    Google Scholar 

  • Ebel K (1985) Gehäusespirale und Septenformen bei Ammoniten unter Annahme vagil benthischer Lebensweise. Paläontol Z 59:109–123

    Google Scholar 

  • Ebel K (1990) Swimming abilities of ammonites and limitations. Paläontol Z 64:25–37

    Google Scholar 

  • Ebel K (1999) Hydrostatics of fossil ectochochleate cephalopods and its significance for the reconstruction of their lifestyle. Paläontol Z 73:277–288

    Google Scholar 

  • Ebel K (1992) Mode of life and soft body shape of heteromorph ammonites. Lethaia 25:179–193

    Google Scholar 

  • Eichler R, Ristedt H (1966a) Isotopic evidence on the Earth Life History of Nautilus pompilius (Linné). Science 153:734–736

    Google Scholar 

  • Eichler R, Ristedt H (1966b) Untersuchungen zur Frühontogenie von Nautilus pompilius (Linné). Paläontol Z 40:173–191

    Google Scholar 

  • Elmi S (1993) Area-rule, boundary layer and functional morphology of cephalopod shells (Ammonoids). Geobios Mem Spéc 15:121–138

    Google Scholar 

  • Elmi S, Alméras Y (1984) Physiography, palaeotectonics and palaeoenvironment as control of changes in ammonite and brachiopod communities (an example from the Early and Middle Jurassic of western Algeria). Pelaeogeogr Palaeoclimatol Palaeoecol 47:347–360

    Google Scholar 

  • Elmi S, Benshili K (1987) Relations entre la structuration tectonique, la composition des peuplements et l’évolution; exemple du Toarcian du Moyen–Atlas meridional (Maroc). Boll Soc Paleontol Ital 26:47–62

    Google Scholar 

  • Enay R (1980) Paléobiogéographie et ammonites jurassiques: “rythmes fauniques” et variations du niveau marin; voies d’échanges, migrations et domaines biogéographiques. Mém Hors sér Soc Géol France 10:261–81

    Google Scholar 

  • Enay R, Cariou E (1997) Ammonite faunas andpalaeobiogeography of the Himalayan belt during the Jurassic: initiation of a Late Jurassic austral ammonite fauna. Palaeogeogr Palaeoclimat Palaeoecol 134:1–38

    Google Scholar 

  • Enay R, Mangold C (1982) Dynamique biogéographique et évolution des faunes d’ammonites au Jurassique. Bull Soc Géol France 24:1025–1046

    Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Bull GSA 64:1315–1326

    Google Scholar 

  • Etches S, Clarke J, Callomon J (2009) Ammonite eggs and ammonitellae from the Kimmeridge Clay Formation (Upper Jurassic) of Dorset, England. Lethaia 42:204–217

    Google Scholar 

  • Fabricius F, Friedrichsen H, Jacobshagen V (1970) Paläotemperaturen und Paläoklima in Obetrias und Lias der Alpen. Int J Earth Sci 59:805–826

    Google Scholar 

  • Fatherree JW, Harries PJ, Quinn TM (1998) Oxygen and carbon isotopic “dissection” of Baculites compressus (Mollusca: Cephalopoda) from Pierre Shale (Upper Campanian) of South Dakota: implications for paleoenvironmental reconstructions. Palaios 13:376–385

    Google Scholar 

  • Fernandez-López S (1991) Taphonomic concepts for a theoretical biochronology. Rev Esp Paleontol 6:37–49

    Google Scholar 

  • Fernández-López S (1997) Ammonites, taphonomic cycles and stratigraphic cycles in carbonate epicontinental platforms. Cuad Geol Iber 23:95–136

    Google Scholar 

  • Fernández-López S, Meléndez G (1994) Abrasion surfaces on internal moulds of ammonites as palaeobathymetric indicators. Palaeogeogr Palaeoclimat Palaeoecol 110:29–42

    Google Scholar 

  • Fernández-López S, Meléndez G (1995) Taphonomic gradients in Middle Jurassic ammonites of the Iberian Range (Spain). Geobios Mém Spéc 18:155–165

    Google Scholar 

  • Fernandez-López S, Melendez G (1996) Phylloceratina ammonoids in the Iberian Basin during the Middle Jurassic: a model of biogeographical and taphonomic dispersal related to relative sea-level changes. Palaeogeogr Palaeoclimat Palaeoecol 120:291–302

    Google Scholar 

  • Fernandez-López S, Melendez G (2004) Fossilization of ammonites and sedimentary events in deep environments of carbonate platform (highest Middle to lowest Upper Oxfordian, Iberian Range, Spain). Riv It Paleontol Strati 110:219–230

    Google Scholar 

  • Fernandez-López SR, Henriques MH, Linares A, Sandoval J, Ureta MS (1999) Aalenian Tmetoceras (Ammonoidea) from Iberia. taxonomy, habitats and evolution In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing Research on Living and Fossil Cephalopods. Plenum, New York

    Google Scholar 

  • Forester RW, Caldwell WGE, Oro FH (1977) Oxygen and carbon isotopic study of ammonites from Late Cretaceous Bearpaw Formation in southwestern Saskatchewan. Can J Earth Sci 14:2086–2110

    Google Scholar 

  • Forsythe JW, Van Heukelem WF (1987) Growth. In: Boyle PR (ed) Cephalopod life cycles, Vol. 2. Academic Press, New York

    Google Scholar 

  • Fourcade E, Azema J, Cecca F, Bonneau M, Peybernes B, Dercourt J (1991) Essai de reconstitution cartographique de la Paléogéographie et des Paléoenvironnements de la Tethys au Tithonique supérieur (138 Ã 135 Ma). Bull Soc Géol Fr 162:1197–1208

    Google Scholar 

  • Fraaije RHB (2003) The oldest in situ hermit crab from the Lower Cretaceous of Speeton, UK. Palaeontology 46:53–58

    Google Scholar 

  • Frye CJ, Feldman RM (1991) North American Late Devonian cephalopod aptychi. Kirtlandia 49:49–71

    Google Scholar 

  • Galacz A, Horwath E (1985) Sedimentary and structural evolution of the Bakony Mountains (Transdanubian Central Range, Hungary): Paleogeographic implications. Acta Geol Hung 28:85–100

    Google Scholar 

  • Geary D, Brieske TA, Bemis B (1992) The influence and interaction of temperature, salinity, and upwelling on the stable isotopic profiles of strombid gastropod shells. Palaios 7(1):77–85

    Google Scholar 

  • Geczy B (1982) The Davoi Zone in the Bakony Mountains, Hungary. Ann Univ Sci Budap Sect Geol 21:1–11

    Google Scholar 

  • Geczy B (1984) Provincialism of Jurassic ammonites; examples from Hungarian faunas. Acta Geol Hung 27:379–389

    Google Scholar 

  • Geosecs Atlantic, Pacific and Indian Ocean Expeditions (1987) Shore-based data and graphics GEOSECS Executive Committee IDOE National Science Foundation 7

    Google Scholar 

  • Geraghty M, Westermann GEG (1994) Composition and origin of Jurassic ammonite concretions from Alfeld, Germany: a biogenic alternative. Paläontol Z 68:473–490

    Google Scholar 

  • Ginsburg RN, Schroeder JH (1973) Growth and submarine fossilization of algal cup reefs, Bermuda. Sedimentology 20:575–614

    Google Scholar 

  • Gischler E, Ginsburg RN (1996) Cavity dwellers (coelobites) under coral rubble in southern Belize barrier and atoll reefs. Bull Mar Sci 58:570–589

    Google Scholar 

  • Glaessner M (1931) Eine Crustaceenfauna aus den Lunzer Schichten Niederösterreichs. Jb Geol BA 81:467–486

    Google Scholar 

  • Goodwin DH, Schöne BR, Dettman DL (2003) Resolution and fidelity of oxygen isotopes as palaeotemperature proxies in bivalve mollusk shells: models and observations. Palaios 18:110–125

    Google Scholar 

  • Greenwald L, Ward PD, Greenwald OE (1980) Cameral liquid transport and buoyancy control in chambered Nautilus (Nautilus macromphalus). Nature 286:55–56.

    Google Scholar 

  • Greenwald KP, Cook CB, Ward P (1982) The structure of the chambered Nautilus siphuncle: the siphuncular epithelium. J Morphol 172:5–22

    Google Scholar 

  • Grossman EL, Ku T (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol 59:59–74

    Google Scholar 

  • Grunert P, Harzhauser M, Rögl F, Sachsenhofer R, Gratzer R, Soliman A, Piller WE (2010) Oceanographic conditions triggering the formation of an Early Miocene (Aquitanian) Konservat-Lagerstätte in the Central Paratethys Sea. Palaeogeogr Palaeoclimatol Palaeoecol 292:425–442

    Google Scholar 

  • Guex J (2001) Environmental stress and atavism in ammonoid evolution. Eclogae Geol Helv 94:321–328

    Google Scholar 

  • Gygi RA (1986) Eustatic sea level changes of the Oxfordian (Late Jurassic) and their effect documented in sediments and fossil assemblages of an epicontinental sea. Eclogae Geol Helv 79:455–491

    Google Scholar 

  • Haimovici M, Brunetti NE, Rodhouse PG, Csirke J, Leta RH (1998) Illex argentinus. In: Rodhouse PG, Dawe EG, O’Dor RK (eds) Squid recruitment dynamics. The genus Illex as a model. The commercial Illex species. Infiuences on variability. FAO Fish Tech Pap 376:27–58

    Google Scholar 

  • Hamada T (1964) Notes on the drifted Nautilus in Thailand. Contr Geol Palaeont Southeast Asia, 21, Sci Pap Coll Geb Educ 14:255

    Google Scholar 

  • Hamada T (1984) Further notes on Nautilus drifts. Contr Geol Palaeont SE Asia 25:263

    Google Scholar 

  • Hantzpergue P (1995) Faunal trends and sea-level changes: biogeographic patterns of Kimmeridgian ammonites on the Western European Shelf. Geol Rundsch 84:245–54

    Google Scholar 

  • Hassan MA, Westermann GEG, Hewitt RA, Dokainish MA (2002) Finite-element analysis of simulated ammonoid septa (extinct Cephalopoda): septal and sutural complexities do not reduce strength. Paleobiology 28:113–126

    Google Scholar 

  • Hay WW (2008) Evolving ideas about the cretaceous climate and ocean circulation. Cretac Res 29:725–753

    Google Scholar 

  • Hayasaka S, Oki K, Tanabe K, Saisho T, Shinomiya A (1987) On the habitat of Nautilus pompilius in taon strait (Philippines) and the Fiji Islands. In: Saunders W B, Landman N H (eds) Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York

    Google Scholar 

  • He S, Kyser TK, Caldwell GE (2005) Paleoenvironment of the Western Interior Seaway inferred from δ18O and δ13C values of molluscs from Cretaceous Bearpaw marine cyclothem. Palaeogeogr Palaeoclimatol Palaeoecol 217:67–85

    Google Scholar 

  • Henderson RA, Price GD (2012) Paleoenvironment and paleoecology inferred from oxygen and carbon isotopes of subtropical mollusks from the late Cretaceous (Cenomanian) of Bathurst Island, Australia. Palaios 27(9):617–626

    Google Scholar 

  • Hengsbach R (1978) Bemerkungen über das Schwimmvermögen der Ammoniten und die Funktion der Septen. Sitzungsberichte Ges Naturforschungs Freunde Berl Neue Folge 18:105–117

    Google Scholar 

  • Heptonstall WB (1970) Buoyancy control in ammonoids. Lethaia 3:317–328

    Google Scholar 

  • Hewitt RA (1988) Significance of early septal ontogeny in ammonoids and other ectocochliates. In: Wiedmann J, Kullmann J (eds) Cephalopods Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Hewitt RA (1993) Relation of shell strength to evolution. In: House MR (ed) The Ammonoidea: Environment, Ecology, and Evolutionary Change. Systematics Association, special vol. 47. Clarendon Press, Oxford

    Google Scholar 

  • Hewitt RA (1996) Architecture and strength of the ammonoid shell. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Hewitt RA, Stait B (1988) Seasonal variations in septal spacing of Sepia officinalis and some Ordovician actinocerid nautiloids. Lethaia 21:283–394

    Google Scholar 

  • Hewitt RA, Westermann GEG (1987) Functions of complexly fluted septa in ammonoid shells. II. Septal evolution and conclusions. Neues Jahrb Geol Paläontol Abh 174:135–169

    Google Scholar 

  • Hewitt RA, Westermann GEG (1988) Stress and strain in Nautilus shells: some limitations on the buoyancy control and vertical migration of ectocochliates. In: Wiedmann J, Kullmann J (eds) Cephalopods Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Hewitt RA, Westermann GEG (1990a) Nautilus shell strength variance as an indicator of habitat depth limits. Neues Jahrb Geol Paläontol Abh 179:73–97

    Google Scholar 

  • Hewitt RA, Westermann GEG (1990b) Mosasaur tooth marks on the ammonite Placenticeras from the Upper Cretaceous Bearpaw Formation of Alberta. Can J Earth Sci 27:469–472

    Google Scholar 

  • Hewitt RA, Westermann GEG (1997) Mechanical signifcance of ammonoid septa with complex sutures. Lethaia 30:205–212

    Google Scholar 

  • Hewitt RA, Westermann GEG (2003) Recurrences of hypotheses about ammonites and Argonauta. J Paleontol 77:792–795

    Google Scholar 

  • Hewitt RA, Westermann GEG, Checa A, Zaborski PM (1994) Growth rates of ammonoids estimated from aptychi. Geobios Mém Spéc 15:203–208

    Google Scholar 

  • Hirano H (1986) Cenomanian and Turonian biostratigraphy of the off-shore facies of the Northern Pacific-an example of the Oyubari area, central Hokkaido, Japan. Bull Sci Eng Res Lab Waseda Univ 113:6–20

    Google Scholar 

  • Hirano H (1988) Evolutionary mode of some late cretaceous ammonites in offshore waters. In: Wiedmann J, Kullmann J (eds) Cephalopods Present and Past, Schweizerbart, Stuttgart

    Google Scholar 

  • Hirano H (1993) Phyletic evolution of desmoceratine ammonoids through the Cenomanian–Turonian oceanic anoxic event. In: House MR (ed) The Ammonoidea: Environment, Ecology, and Evolutionary Change, Systematics association, special vol 47. Clarendon Press, Oxford

    Google Scholar 

  • Hirano H, Okamoto T, Hattori K (1990) Evolution of some Late Cretaceous desmoceratine ammonoids. Trans Proc Palaeontol Soc Jpn NS 157:382–411

    Google Scholar 

  • Hobson KA, Cherel Y (2006) Isotopic reconstruction of marine food webs using cephalopod beaks: new insight from captively raised Sepia officinalis. Can J Zool 84:766–770

    Google Scholar 

  • Hoedemaeker PJ (1990) The Neocomian boundaries of the Tethyan Realm based on the distribution of ammonites. Cretac Res 11:331–342

    Google Scholar 

  • Hoefs J (2004) Stable isotope geochemistry. (Fifth revised and updated edition). Springer Verlag, New York, p. 244

    Google Scholar 

  • Hoffmann R, Lemanis R, Naglik C, Klug C (2015) Ammonoid buoyancy. This volume

    Google Scholar 

  • House MR (1985) A new approach to an absolute time scale from measurements of orbital cycles and sedimentary microrhythms. Nature 316:721–725

    Google Scholar 

  • House MR (ed) (1993a) The Ammonoidea: Environment, Ecology, and Evolutionary Change. Systematics Association, special vol 47. Clarendon Press, Oxford, p 354

    Google Scholar 

  • House MR (1993b) Fluctuations in ammonoid evolution and possible environmental causes. In: House MR (ed) The Ammonoidea: Environment, Ecology, and Evolutionary Change. Systematics Association, special vol 47. Clarendon Press, Oxford

    Google Scholar 

  • House MR, Price JD (1985) New Late Devonian genera and species of tornoceratid goniatites. Palaeontology 28:159–188

    Google Scholar 

  • House MR, Senior JR (eds) (1981) The Ammonoidea: the evolution, classification, mode of life and geological usefulness of a major fossil group. Systematics Association, special vol 18. Academic Press, London

    Google Scholar 

  • Howarth MK (1992) The ammonite family Hildoceratidae in the Lower Jurassic of Britain. Palaeontogr Soc Monogr 590(146):1–200

    Google Scholar 

  • Hudson JD, Martill DM (1991) The lower Oxford Clay: Production and preservation of organic matter in the Callovian (Jurassic) of central England. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geol Soc Spec Pap 58:363–379

    Google Scholar 

  • Hyatt A (1894) Phylogeny of an acquired characteristic. Am Philos Soc 32 143:349–647

    Google Scholar 

  • Ifrim C, Stinnesbeck W (2010) Migration pathways of the late Campanian and Maastrichtian shallow facies ammonite Sphenodiscus in North America. Palaeogeogr Palaeoclimatol Palaeoecol 292(1):96–102

    Google Scholar 

  • Ishii T (1981) Shells of Nautilus drifted ashore after an interval of 11 years. J Malac Soc Jpn 12:37–39

    Google Scholar 

  • Jackson JBC, Winston JE (1982) Ecology of cryptic coral reef communities. I. Distribution and abundance of major groups of encrusting organisms. J Exper Mar Biol Ecol 57:135–147

    Google Scholar 

  • Jacobs DK (1992a) Shape, drag, and power in ammonoid swimming. Paleobiology 18:203–220

    Google Scholar 

  • Jacobs DK (1992b) The support of hydrostatic load in cephalopod shells. Adaptive and ontogenetic explanations of shell form and evolution from Hooke 1695 to the present. In: Hecht MK, Wallace B, MacIntyre RJ (eds) Evolutionary biology, vol 26. Plenum, New York

    Google Scholar 

  • Jacobs DK, Chamberlain JA (1996) Buoyancy and hydrodynamics in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • Jacobs DK, Landman NH (1993) Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26:101–112

    Google Scholar 

  • Jacobs DK, Landman NH, Chamberlain JA (1994) Ammonite shell shape covaries with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology 22:905–908

    Google Scholar 

  • Jäger M, Fraaye R (1997) The diet of the Early Toarcian ammonite Harpoceras falciferum. Palaeontology 40:557–574

    Google Scholar 

  • Jagt JWM, Bakel BWM van, Fraaije RHB, Neumann C (2006) In situ fossil hermit crabs (Paguroidea) from northwest Europe and Russia. Preliminary data on new records. Rev Mex Cienc Geol 23:364–369

    Google Scholar 

  • Jansa LF, Emos P, Tcholke BE, Gradstein E, Sheridan RE (1979) Mesozoic-Cenozoic sedimentary formations of the North American Basin, western North Atlantic. In: Talman M, Hay W, Ryan WBE (eds) Deep drilling results in the Atlantic Ocean Continental Margins and Paleoenvironment, Maurice Ewing Series 3, American Geophysical Union, Washington, DC

    Google Scholar 

  • Jeletzky JA, Zapfe H (1976) Coleoid and Orthocerid Cephalopods of the Rhaetian Zlambach Marl from the Fischerwiese near Aussee, Styria (Austria). Ann Naturhist Mus Wien 71:69–106

    Google Scholar 

  • Jenkyns H (1988) The early Toarcian (Jurassic) anoxic event. Stratigraphic, sedimentary, and geochemical evidence. Am J Sci 288:101–151

    Google Scholar 

  • Jones DS, Williams DF, Romanek CS (1986) Life history of symbiont-bearing giant clams from stable isotope profiles. Science 231:46–48

    Google Scholar 

  • Jordan R, Stahl W (1970) Isotopische Paläotemperatur-Bestimmungen an jurassischen Ammoniten und grundsätzliche Voraussetzungen für diese Methode. Geol Jahrb 89:33–62

    Google Scholar 

  • Kahn P, Kant R (1975) Biometrische Untersuchungen zur Lobenentwicklung. Paläontol Z 49:287–297

    Google Scholar 

  • Kaltenegger W (1967) Paläotemperaturbestimmungen an aragonitischen Dibranchiatenrostren der Trias. Naturwissenschaften 54:515

    Google Scholar 

  • Kaltenegger W, Preisinger A, Rögl F (1971) Palaeotemperature determinations of aragonitic mollusks from the Alpine Mesozoic. Palaeogeogr Palaeoclimatol Palaeoecol 10:273–285

    Google Scholar 

  • Kammer TW, Brett, CE, Boardman DR IS, Mapes RH (1986) Ecologic stability of the dysaerobic biofacies during the Late Paleozoic. Lethaia 19:109–121

    Google Scholar 

  • Kanie Y, Fukuda Y, Nakayama H, Seki K, Hattori M (1980) Implosion of living Nautilus under increased pressure: Paleobiology 6(1):44–47

    Google Scholar 

  • Kant R (1975) Biometric analysis of ammonoid shells. Paläontol Z 49:203–220

    Google Scholar 

  • Kant R, Kullmann J (1988) Changes in conch form in the Paleozoic ammonoids. In: Wiedmann J, Kullmann J (eds) Cephalopods Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Kase T, Shigeta F, Futakami M (1994) Limpet home depressions in Cretaceous ammonites. Lethaia 25:49–58

    Google Scholar 

  • Kase T, Johnson PA, Seilacher A, Boyce JP (1998) Alleged mosasaur bite marks on late Cretaceous ammonites are limpet (patellogastropod) home scars. Geology 26:947–950

    Google Scholar 

  • Kashiyama Y, Ogawa NO, Chikaraishi Y, Kashiyama N, Sakai S, Tanabe K, Ohkouchi N (2010) Reconstructing the life history of modern and fossil nautiloids based on the nitrogen isotopic composition of shell organic matter and amino acids. In Tanabe K, Shigeta Y, Sasaki T, Hirano H, (eds.) Cephalopods Present and Past. Tokai Unive Press, Tokyo

    Google Scholar 

  • Kauffman EG (1977) Geological and Biological Overview: Western Interior Cretaceous Basin, U.S.A. In: Kauffman EG (ed) Field Guide: North American Paleontological Convention II; Cretaceous facies, faunas, and paleoenvironments across the Western Interior Basin: The Mountain geologist 14:75–79

    Google Scholar 

  • Kauffman EG (1978) Benthic environments and paleoecology of the Posidonienschiefer (Toarcian). Neues Jahrb Geol Paläontol Abh 157:18–36

    Google Scholar 

  • Kauffman EG (1990) Mosasaur predation on ammonites during the Cretaceous–an evolutionary history. In: Boucot AJ (ed) Evolutionary paleobiology of behaviour and coevolution. Elsevier, New York

    Google Scholar 

  • Kauffman EG, Kiesling RV (1960) An Upper Cretaceous ammonite bitten by a mosasur. Contr Michigan Univ Mus Paleontol 15:193–248

    Google Scholar 

  • Kauffman EG, Sawdo JK (2013) Mosasaur predation on a nautiloid from the Maastrichtian Pierre Shale, Central Colorado, Western Interior Basin, United States. Lethaia 46:180–187

    Google Scholar 

  • Kauffman EG, Villamil T, Harries PJ, Meyer C (1992) The flat clam controversy: where did they come from? Where did they go? Paleontol Soc Spec Publ 6:159

    Google Scholar 

  • Kawabe F (2003) Relationship between mid-Cretaceous (upper Albian-Cenomanian) ammonoid facies and lithofacies in the Yezo forearc basin, Hokkaido, Japan. Cretac Res 24:751–763

    Google Scholar 

  • Kennedy WJ (1971) Cenomanian ammonites from southern England. Spec Pap Palaeont 8:1–133

    Google Scholar 

  • Kennedy WJ, Cobban WA (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. Spec Pap Palaeont 17:1–94

    Google Scholar 

  • Kennedy WJ, Landman NH, Christensen WK, Cobban WA, Hancock JM (1998) Marine connections in North America during the Late Maastrichtian: palaeogeographic and palaeobiogeographic significance of Jeletzkytes nebrascensis Zone cephalopod fauna from the Elk Butte Member of the Pierre Shale, SE South Dakota and NE Nebraska. Cretac Res 19:745–775

    Google Scholar 

  • Kennedy WJ, Landman NH, Cobban WA, Larson NL (2002) Jaws and radulae in Rhaeboceras, a late Cretaceous ammonite. In: Summesberger H, Histon K, Daurer A (eds) Cephalopods Present and Past B-A 57:113–132

    Google Scholar 

  • Keupp H (1991) Bissmarken oder postmortale Implosionsstrukturen? Fossilien 1992:141–146

    Google Scholar 

  • Keupp H (1992) Paläopathologie der Ammonitenfauna aus dem Obercallovium der Normandie und ihre palökologische Interpretation. Berl Geowiss Abh 3:171–189

    Google Scholar 

  • Keupp H (1997) Paläopahologische Analyse einer „Population“ von Dactylioceras athleticum (Simpson) aus dem Unter-Toarcium von Schlaifhausen/Oberfranken. Berl Geowiss Abh E 25:243–267

    Google Scholar 

  • Keupp H (2000) Ammoniten. Paläobiologische Erfolgsspiralen. Thorbecke, Stuttgart

    Google Scholar 

  • Keupp H (2006) Sublethal punctures in body chambers of Mesozoic ammonites (forma aegrafenestra n. f.), a tool to interpret synecological relationships, particularly predator–prey interactions. Paläontol Z 80:112–123

    Google Scholar 

  • Keupp H (2007) Complete ammonoid jaw apparatuses from the Solnhofen plattenkalks: implications for aptychi function and microphagous feeding of ammonoids. N Jahrb Geol Paläontol Abh 245:93–101

    Google Scholar 

  • Keupp H, Hoffmann R (2015) Ammonoid paleopathology. This volume

    Google Scholar 

  • Keupp H, Schobert J (2011) Gehäuseanomalien bei Klein-Ammoniten von Buttheim/Oberfranken. Fossilien 3:164–174

    Google Scholar 

  • Kim S-T, O’Neil JR, Hillaire-Marcel C, Mucci A (2007) Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim Cosmochim Acta 71:4704–4715

    Google Scholar 

  • Klinger HC (1980) Speculations on buoyancy control and ecology in some heteromorph ammonites. In: House MR, Senior JR (eds) The Ammonoidea: The evolution, classification, mode of life and geological usefulness of a major fossil group. Systematics Association, special vol 18. Academic Press, London

    Google Scholar 

  • Klofak SM, Landman NH, Mapes RH (1999) Embryonic development of primitive ammonoids and the morphology of the Ammonoidea. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing Research on Living and Fossil Cephalopods. Plenum, New York

    Google Scholar 

  • Klofak SM, Landman NH, Mapes RH (2007) Patterns of embryonic development in early to middle Devonian ammonoids. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods Present and Past: new insights and fresh perspectives. Springer, Dortrecht

    Google Scholar 

  • Klompmaker AA, Waljaard, Fraaije RHB (2009) Ventral bite marks in Mesozoic ammonoids. Palaeogeogr Palaeoclimatol Palaeoecol 280:245–257

    Google Scholar 

  • Klug C (2001) Life-cycle of some Devonian ammonoids. Lethaia 34:215–233

    Google Scholar 

  • Klug C (2002) Conch parameters and habitats of Emsian and Eifelian ammonoids from the Tafilalt (Morocco) and their relation to global events. Abh Geol B-A 57:523–538

    Google Scholar 

  • Klug C (2007) Sublethal injuries in Early Devonian cephalopod shells from Morocco. Acta Palaeont Polonica 52:749–759

    Google Scholar 

  • Klug C, Hoffmann R (2015) Ammonoid septa and sutures. This volume

    Google Scholar 

  • Klug C, Korn D (2004) The origin of ammonoid locomotion. Acta Palaeont Pol 49:235–242

    Google Scholar 

  • Klug C, Lehmann J (2015) Soft-part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons. This volume

    Google Scholar 

  • Klug C, Schatz W, Korn D, Reisdorf A (2005) Morphological fluctuations of ammonoid assemblages from the Muschelkalk (Middle Triassic) of the Germanic Basin—indicators of their ecology, extinctions, and immigrations. Palaeogeogr, Palaeoclim Palaeoeco 221:7–34

    Google Scholar 

  • Klug C, Kröger B, Kiessling W, Mullins GL, Servais T, Frýda J, Korn D, Turner S (2010) The Devonian nekton revolution. Lethaia 43:465–477

    Google Scholar 

  • Klug C, Korn D, Landman NH, Tanabe K, De Baets K, Naglik C (2015a) Describing ammonoid conchs. This volume

    Google Scholar 

  • Klug C, Zatoń M, Parent H, Hostettler, Tajika A (2015b) Mature modifications and sexual dimorphism. This volume

    Google Scholar 

  • Kobashi T, Grossman EL (2003) The oxygen isotopic record of seasonality in Conus shells and its application to understanding late middle Eocene (38 Ma) climate. Paleontol Res 7:343–355

    Google Scholar 

  • Kobayashi T (1954) A contribution toward Palaeo-Flumenology, Science of the Oceanic Current in the Past, with a description of a new Miocene Aturia from Central Japan. Jap J Geol Geogr Transact 25:35–59

    Google Scholar 

  • Korn D (1986) Ammonoid evolution in late Famennian and early Tournaisian. Ann Soc Géol Belg 109:49–54

    Google Scholar 

  • Korn D (1988) Oberdevonishe Goniatiten mit dreieckigen Innenwindungen. N Jahrb Geol Palaont Mh 1988:605–610

    Google Scholar 

  • Korn D (1992) Relationship between shell form, septal construction and suture line in clymeniid cephalopods (Ammonoidea: Upper Devonian). N Jahrb Geol Paläontol Abh 185:115–130

    Google Scholar 

  • Korn D (2010) A key for the description of Palaeozoic ammonoids. Fossil Rec 13:5–12

    Google Scholar 

  • Korn D, Klug C (2001) Biometric analyses of some Palaeozoic ammonoid conchs. Berl Geowiss Abh E 36:173–187

    Google Scholar 

  • Korn D, Klug C (2002) Ammoneae Devonicae. In Riegraf (ed). Fossilium Catalogus I: Animalia. Backhuys Publishers, Leiden, 138:375

    Google Scholar 

  • Korn D, Klug C (2007) Conch form analysis, variability, morphological disparity, and mode of life of the Frasnian (Late Devonian) ammonite Manticoceras from Coumiac (Montagne nOire, France). In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods Present and Past: new insights and fresh perspectives. Springer, Dortrecht

    Google Scholar 

  • Korn D, Klug C (2012) Ammoneae Devonicae. In: Riegraf W (ed) Fossilium Catalugus I: Animalia. Blackhuys Publishers, Leiden

    Google Scholar 

  • Korn, D, Klug, C, Mapes RH (2004) Cuboid Carboniferous ammonoids. Mitt Geol Palaöont Inst Univ Hambg 88:79–98

    Google Scholar 

  • Kowalewski M (2002) The fossil record of predation: an overview of analytical methods. In: Kowalewski M, Kelley PH (eds) The fossil record of predation. Paleontol Soc Pap 8:1–42

    Google Scholar 

  • Kröger B (2000) Schalenverletzungen an jurassischen Ammoniten—ihre paläobiologische und paläoökologische Aussagefähigkeit. Berl Geowiss Abh E 33:1–97

    Google Scholar 

  • Kröger B (2001) Comments on Ebel’s benthic–crawler hypothesis for ammonoids and exticnt nautiloids. Paläontol Z 75:123–125

    Google Scholar 

  • Kröger B (2002a) On the effciency of the buoyancy apparatus in ammonoids: evidences from sublethal shell injuries. Lethaia 35:61–70

    Google Scholar 

  • Kröger B (2002b) On the ability of withdrawing of some Jurassic ammonoids. In: Summesberger H, Histon K, Daurer K (eds) Cephalopods Present and Past. Abh Geol B-A 67:199–244

    Google Scholar 

  • Kröger B (2002c) Antipredatory traits of the ammonoid shell—Indications from Jurassic ammonoids with sublethal injuries. Paläontol Z 76:223–234

    Google Scholar 

  • Kröger B (2005) Adaptive evolution in Paleozoic coiled cephalopods. Paleobiology 31:253–268

    Google Scholar 

  • Kroh A, Harzhauser M (1999) An echinoderm fauna from the Lower Miocene of Austria: paleoecology and implications for Central Paratethys Paleobiogeography. Ann Nat Mus Wien 101A:145–191

    Google Scholar 

  • Kruta I, Landman N, Rouget I, Cecca F, Tafforeau P (2011) The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 2011:70–72

    Google Scholar 

  • Kruta I, Landman N, Cochran JK (2014) A new approach for the determination of ammonite and nautilid habitats. PLos ONE 9(1):e87479. doi:10.1371/journal.pone.0087479

    Google Scholar 

  • Krystyn L (1991) Die Fossillagerstätten der alpinen Trias. In: Nagel D, Rabeder G (eds) Exkursionen im Jungpaläozoikum und Mesozoikum Österreichs. Österr Paläontol Ges, Wien

    Google Scholar 

  • Kulicki C (1974) Remarks on the embryogeny and postembryonal development of ammonites. Acta Palaeontol Pol 19:201–224

    Google Scholar 

  • Kulicki C (1979) The ammonite shell: Its structure, development and biological significance. Palaeontol Pol 39:97–142

    Google Scholar 

  • Kulicki C (1996) Ammonoid shell microstructures. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • Kulicki C, Doguzhaeva L (1994) Development and calcification of the ammonitella shell. Acta Palaeont Pol 39:17–44

    Google Scholar 

  • Kulicki C, Landman NH, Heaney MJ, Mapes RH, Tanabe K (2002) Morphology of the early whorls of goniatites from the Carboniferous Buckhorn Asphalt (Oklahoma) with aragonitic preservation. In: Summesberger H, Histon K, Daurer A (eds) Cephalopods—present and past. Abh Geol B-A 57:225–255

    Google Scholar 

  • Kullmann J (1981) Carboniferous goniatites. In: House MR, Senior JR (eds) The Ammonoidea. Systematics Association, special vol 18. Academic Press, London

    Google Scholar 

  • Kullmann J, Scheuch J (1970) Wachstums-Änderungen in der Ontogenese paläozoischer Ammonoideen. Lethaia 3:397–412

    Google Scholar 

  • Kullmann J, Scheuch J (1972) Absolutes und relatives Wachstum bei Ammonoideen. Lethaia 5:129–146

    Google Scholar 

  • Kvantaliani IV, Sakharov AS (1986) Valanginian ammonites of the Northern Caucasus (Russ.). Geol Balc 163:55–68

    Google Scholar 

  • Landman NH (1982) Embryonic shells of Baculites. J Paleontol 56:1235–1241

    Google Scholar 

  • Landman NH (1985) Preserved ammonitellas of Scaphites (Ammonoidea, Ancyloceratina). Am Mus Novit 2815:1–10

    Google Scholar 

  • Landman NH (1986) Shell abnormalities in scaphitid ammonites. Lethaia 19:211–224

    Google Scholar 

  • Landman NH (1987) Ontogeny of Upper Cretaceous (Turonian-Santonian) scaphitid ammonites from the Western Interior of North America: systematics, developmental patterns, and life history. Bull Am Mus Nat Hist 185:117–241

    Google Scholar 

  • Landman NH (1988) Early ontogeny of Mesozoic ammonites and nautilids. In: Wiedmann, J, Kullmann J (eds) Cephalopods Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Landman NH, Cobban WA (2007) Ammonite touch marks in Upper Cretaceous (Cenomanian-Santonian) deposits of the Western Interior Seaway. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods Present and Past: new insights and fresh perspectives. Springer, Dortrecht

    Google Scholar 

  • Landman NH, Cochran JK (1987) Growth and longevity of Nautilus. In: Saunders WB, Landman NH (eds) Nautilus: The Biology and Paleobiology of a Living Fossil. Topics in Geobiology, vol 6. Springer, New York

    Google Scholar 

  • Landman NH, Cochran, JK (2010) Growth and longevity of Nautilus. In: Saunders WB, Landman NH (eds) Nautilus: The Biology and Paleobiology of a Living Fossil. Topics in Geobiology, vol 6. Springer, New York

    Google Scholar 

  • Landman NH., Klofak, SM (2012). Anatomy of a concretion: life, death, and burial in the Western Interior Seaway. Palaios 27:672–693

    Google Scholar 

  • Landman NH, Waage KM (1986) Shell abnormalities in scaphitid ammonites. Lethaia 19:211–224

    Google Scholar 

  • Landman NH, Waage KM (1993) Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming. Bull Am Mus Nat Hist 215:l–257

    Google Scholar 

  • Landman NH, Rye DM, Shelton KL (1983) Early ontogeny of Eutrephoceras compared to Recent Nautilus and Mesozoic ammonites: evidence from shell morphology and light stable isotopes. Paleobiol 9:269–279

    Google Scholar 

  • Landman NH, Saunders WB, Winston JE, Harries PJ (1987) Incidence and kinds of epizoans on the shells of living Nautilus. In Saunders WB, Landman NH (eds) Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum, New York

    Google Scholar 

  • Landman NH, Cochran, JK, Rye DM, Tanabe K, Arnold JM (1994) Early life history of Nautilus: evidence from isotopic analysis of aquarium reared specimens. Paleobiology 20:40–51

    Google Scholar 

  • Landman NH, Tanabe K, Davis RA (eds) (1996a) Ammonoid Paleobiology. Plenum Press, New York, pp 857

    Google Scholar 

  • Landman NH, Tanabe K, Shigeta Y (1996b) Ammonoid embryonic development. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • Landman NH, Klofak SM, Sarg KB (2003) Variation in adult size of scaphitid ammonites from the Upper Cretaceous Pierre Shale and Fox Hill Formation. In: Harries PJ (ed) Approaches in high-resolution stratigraphic paleontology. Kluwer Academic, Dordrecht

    Google Scholar 

  • Landman NH, Davis RA, Mapes RH (eds) (2007a) Cephalopods Present and Past: new insights and fresh perspectives. Springer, Dortrecht

    Google Scholar 

  • Landman NH, Larson NL, Cobban WA (2007b) Jaws and radula of Baculites from the Upper Cretaceous (Campanian) of North America. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods Present and Past: new insights and fresh perspectives. Springer, Dortrecht

    Google Scholar 

  • Landman NH, Mapes RH, Cruz C (2010) Jaws and soft tissues in ammonoids from Lower Carboniferous (Upper Mississippian) Cear Gulch Beds Montan, USA. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods Present and Past. Tokai Univ Press, Tokyo

    Google Scholar 

  • Landman NH, Cobban WA, Larson NL (2012) Mode of life and habitat of scaphitid ammonites. Geobios 45:87–98

    Google Scholar 

  • Laptikhovsky VL, Rogov, MA, Nikolaeva SE, Arkhipkin AI (2013) Environmental impact on ectocochleate cephalopod reproductive strategies and the evolutionary significance of cephalopod egg size. Bull Geosci 88:83–93

    Google Scholar 

  • Larson NL (2003) Predation and pathologies in the Late Cretaceous ammonite family Scaphitidae. Mid-Am Paleontol Soc 26:1–30

    Google Scholar 

  • Larson NL (2007) Deformities in the Late Callovian (Late Middle Jurassic) ammonite fauna from Saratov, Russia. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods Present and Past: new insights and fresh perspectives. Springer, Dortrecht

    Google Scholar 

  • Lécuyer C, Bucher H (2006) Stable isotope composition of late Jurassic ammonite shell: a record of seasonal surface water temperatures in the southern hemisphere? eEarth Discuss 1:1–7

    Google Scholar 

  • Lécuyer C, Reynard B, Martineau F (2004) Stable isotope fractionation between mollusc shells and marine waters from Martinique Island. Chem Geol 213:293–305

    Google Scholar 

  • Lehmann U (1966) Dimorphismus bei Ammoniten der Ahrensburger Lias-Geschiebe. Paläontol Z 40:26–55

    Google Scholar 

  • Lehmann U (1975) Über Nahrung und Ernährungsweise der Ammoniten. Paläontol Z 49:187–195

    Google Scholar 

  • Lehmann U (1976) Ammoniten-Ihr Leben und Ihre Umwelt. Enke, Stuttgart

    Google Scholar 

  • Lehmann U (1980) Ammonite jaws and soft parts. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life and geological usefulness of a major fossil group. Systematics Association, special vol 18, Academic Press, London

    Google Scholar 

  • Lehmann U (1985) Zur Anatomie der Ammoniten: Tintenbeutel, Kiemen, Augen. Paläontol Z 59:99–108

    Google Scholar 

  • Lehmann U (1988) On the dietary habits and locomotion of fossil cephalopods. In: Wiedmann J, Kullmann J (eds) Cephalopods Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Lehmann J (2000) Upper Albian ammonites from ODP leg 171B off northern Florida. Palaeontology 43:41–61

    Google Scholar 

  • Lehmann U, Kulicki C (1990) Double function of aptychi (Ammonoidea) as jaw elements and opercula. Lethaia 23:325–331

    Google Scholar 

  • Lehmann U, Weitschat W (1973) Zur Anatomie und Okologie der Ammoniten. Funde von Kropf und Kiemen. Paläontol Z 47:69–76

    Google Scholar 

  • Lehmann U, Tanabe K, Kanie Y, Fukuda Y (1980) Über den Kieferapparat der Lytoceraten (Ammonoidea). Paläontol Z 54:319–329

    Google Scholar 

  • Levitus (1994) World Ocean Atlas, an atlas of objectively analyzed fields of major ocean parameters at the annual, seasonal, and monthly time scales. http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/. Accessed 18 June 2012

  • Lewy Z (2002) The function of ammonite fluted septal margins. J Paleontol 76:63–69

    Google Scholar 

  • Lewy Z (2003) Reply to Checa and to Hewitt and Westermann. J Paleontol 77:796–798

    Google Scholar 

  • Little R, Baker DR, Leythaeuser D, Rullkottner J (1991) Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hills Syncline, northern Germany. In: Tyson RV, Pearson TH (eds) Modern and ancient continental margin anoxia. Geol Soc Spec Publ 58:311–333

    Google Scholar 

  • Loh H, Maul B, Prauss M, Riegel W (1986) Primary production, marl formation and carbonate species in the Posidonia Shale of NW Germany. Mitt Geol Palaont Inst Univ Hambg 60:397–421

    Google Scholar 

  • Lominadze T, Sakharov AS (1988) Ecology of caucasian callovian ammonitida. In: Wiedmann J, Kullmann J (eds) Cephalopods—present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Longinelli A (1966) Ratios of oxygen-18: oxygen-16 in phosphate and carbonate from living and fossil marine organisms. Nature 211:923–927

    Google Scholar 

  • Longinelli A., Nuti S (1973) Revised phosphate-water isotopic temperature scale. Earth Planet Sci Lett 19:373–376

    Google Scholar 

  • Lowenstein HA, Epstein S (1954) Paleotemperatures of the post-Albian Cretaceous as determined by the oxygen isotope method. J Geol 62:207–248

    Google Scholar 

  • Lukeneder A (2003) The Karsteniceras level: dysoxic ammonoid beds within the Early Cretaceous (Barremian, Northern Calcareous Alps, Austria). Facies 49:87–100

    Google Scholar 

  • Lukeneder A (2004) The Olcostephanus level: an Upper Valanginian ammonoid mass-occurrence (Lower Cretaceous, Northern Calcareous Alps, Austria). Acta Geol Pol 54:23–33

    Google Scholar 

  • Lukeneder A (2005) The Early Cretaceous Karsteniceras level in the Vienna Woods (Northern Calcareous Alps, Lower Austria). Geol Carpathica 56:307–315

    Google Scholar 

  • Lukeneder A (2007) Cephalopod evolution: a new perspective—implications from two Early Cretaceous ammonoid suborders (Northern Calcareous Alps, Upper Austria). Denisia 20:395–404

    Google Scholar 

  • Lukeneder A (2008) The ecological significance of solitary coral and bivalve epibionts on lower Cretaceous (Valangianian–Aptian) ammonoids from the Italian dolomites. Acta Geol Pol 58:425–436

    Google Scholar 

  • Lukeneder A (2012) Computed 3D visualisation of an extinct cephalopod using computer tomographs. Comput Geosci 45:68–74

    Google Scholar 

  • Lukeneder A, Grunert P (2013) Palaeoenvironmental evolution of the Southern Alps across the Faraoni Level equivalent: new data from the Trento Plateau (Upper Hauterivian, Dolomites, N. Italy). Acta Geol Pol 63:89–104

    Google Scholar 

  • Lukeneder A, Harzhauser M (2002) Shell accumulations of the Nautilidae Aturia (Aturia) aturi (Bast.) in the Lower Micocene Paratethys (Lower Austria). In: Summesberger H, Histon K, Daurer A (eds) Cephalopods Present and Past. Abh Geol B-A 57:459–466

    Google Scholar 

  • Lukeneder A, Harzhauser M (2003) Olcostephanus guebhardi as cryptic habitat for an Early Cretaceous coelobite community (Valanginian, Northern Calcareous Alps, Austria). Cretac Res 24:477–485

    Google Scholar 

  • Lukeneder S, Lukeneder A (2014) A new ammonoid fauna from the Carnian (Upper Triassic) kasimlar formation of the Taurus Mountains (Anatolia, Turkey). Palaeontology 57:357–396

    Google Scholar 

  • Lukeneder A, Mayrhofer S (2014) Taphonomic implications from Upper Triassic mass flow deposits: 2-dimensional reconstructions of an ammonoid mass occurrence (Carnian, Taurus Mountains, Turkey). Geol Carpath 65/5:339–364

    Google Scholar 

  • Lukeneder A, Reháková D (2004) Lower Cretaceous section of the Ternberg Nappe (Northern Calcareous Alps, Upper Austria): facies-changes, biostratigraphy and paleoecology. Geol Carpathica 55:227–237

    Google Scholar 

  • Lukeneder A, Smrečková M (2006) An Early Cretaceous radiolarian assemblage: palaeoenvironmental and palaeoecological implications for the Northern Calcareous Alps (Barremian, Lunz Nappe, Lower Austria). Ann Naturhist Mus Wien 107A:23–57

    Google Scholar 

  • Lukeneder A, Tanabe K (2002) In situ finds of aptychi in the Barremian of the Alpine Lower Cretaceous (Barremian, Northern Calcareous Alps, Upper Austria). Cretac Res 23:15–24

    Google Scholar 

  • Lukeneder A, Harzhauser M, Müllegger S, Piller W (2008) Stable isotopes (δ18O and δ13C) in Spirula spirula shells from three major oceans indicate developmental changes paralleling depth distributions. Mar Biol 154:175–182

    Google Scholar 

  • Lukeneder A, Harzhauser M, Müllegger S, Piller WE (2010) Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (δ18O, δ13C). Earth Planet Sci Lett 296:103–114

    Google Scholar 

  • Lukeneder S, Lukeneder A, Harzhauser M., Islamoglu Y, Krystyn L, Lein R (2012) A delayed carbonate factory breakdown during the Tethyan-wide Carnian Pluvial Episode along the Cimmerian terranes (Taurus, Turkey). Facies 58:279–296

    Google Scholar 

  • Lukeneder A, Suttner TJ, Bertle RJ (2013) New ammonoid taxa from the Lower Cretaceous Giumal Formation of the Tethyan Himalaya (Northern India). Palaeontology 56:991–1028

    Google Scholar 

  • Lukeneder S, Lukeneder A, Weber GW (2014) Computed reconstruction of spatial ammonoid-shell orientation captured from digitized grinding and landmark data. Comput Geosci 64:104–114

    Google Scholar 

  • Maeda H (1993) Dimorphism of Late Cretaceous false-Puzosiinae ammonites, Yokoyamaoceras Wright and Matsumoto, 1954 and Neopuzosia Matsumoto, 1954. Trans Proc Palaeont Soc Japan N S 169:97–128

    Google Scholar 

  • Maeda H, Seilacher A (1996) Ammonoid taphonomy. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Maeda H, Mapes RH, Mapes G (2003) Taphonomic features of a Lower Permian beached cephalopod assemblage from Central Texas. Palaios 18:421–434

    Google Scholar 

  • Manfrin S, Mietto P, Preto N (2005) Ammonoid biostratigraphy of the Middle Triassic Latemar platform (Dolomites, Italy) and its correlation with Nevada and Canada. Geobios 38:477–504

    Google Scholar 

  • Mangold K (1989) Reproduction, croissance et durée de vie. In: Grassé PP (ed) Traité de Zoolgie, 5 (4). Anatomie, Systématique, Biologie. Céphalopodes. Masson, Paris

    Google Scholar 

  • Mapes RH (1979) Carboniferous and Permian Bactritoidea (Cephalopoda) in North America. Univ Kans Paleontol Contrib Artic 64:l–75

    Google Scholar 

  • Mapes RH (1987) Upper Paleozoic cephalopod mandibles: frequency of occurrence, modes of preservation, and paleoecological implications. J Paleontol 61:521–538

    Google Scholar 

  • Mapes RH, Chaffin DT (2003) Predation on cephalopods. a genaral overview with case study from the Upper Carboniferous of Texas. In: Kelley PH, Kowalewski M, Hansen TA (eds). Predator-Prey Interactions in the Fossil record. Kluwer Academic, New York

    Google Scholar 

  • Mapes RH, Dalton RB (2002) Scavening or Predation?—Mississippian ammonoid accumulations in carbonate concretion halos around Rayonnoceras (Actinoceratoidea—Nautiloidea) body chambers. In: Summesberger H, Histon K, Daurer A (eds) Cephalopods Present and Past. Abh der Geol B-A 57:407–422

    Google Scholar 

  • Mapes RH, Hansen MC (1984) Pennsylvanian shark–cephalopod predation: a case study. Lethaia 17:175–183

    Google Scholar 

  • Mapes RH, Nützel A (2009) Late Palaeozoic mollusc reproduction: cephalopod egg-laying behavior and gastropod larval palaeobiology. Lethaia 42:341–356

    Google Scholar 

  • Mapes RH, Tanabe K, Landman NH, Faulkner CJ (1992) Upper Carboniferous ammonoid shell clusters: transported accumulations or in situ nests? Paleontol Soc Spec Pub 6:196

    Google Scholar 

  • Mapes RH, Sims MS, Boardman DR II (1995) Predation on the Pennsylvanian ammonoid Gonioloboceras and ist implications for allochthonous vs. autochthonous accumulations of goniatites and other ammonoids. J Palaeontol 69:441–446

    Google Scholar 

  • Mapes RH, Hembree DI, Rasor BA, Stigall A, Goirand C, de Forges BR (2010a) Modern Nautilus (Cephalopoda) taphonomy in a subtidal to backshore environment, Lifou (Loyalty Islands). Palaios 25:656–670

    Google Scholar 

  • Mapes RH, Landman NH, Cochran K, Goiran C, Richer De Forges B, Renfro A (2010b) Early taphonomy and significance of naturally submerged Nautilus shells from the New Caledonia Region. Palaios 25:597–610

    Google Scholar 

  • Marchand T (1984) Ammonites et paleoenvironnements: une nouvelle approche. Geobios Mém Spéc 8:101–107

    Google Scholar 

  • Marchand D (1992) Ammonites et paléoprofondeur: les faits, les interprétations. Paleovox 1:49–68

    Google Scholar 

  • Marchand D, Thierry J (1986) Relations entre les évènements calloviens et l’évolution des peuplements d’ammonites en Europe occidentale. Bull Centr Rech Elf Aquitaine 10:383–92

    Google Scholar 

  • Marchand T, Thierry J (1997) Enregistrement des variations morphologiques et de la composition des peuplements d’ammonites durant le cycle régressif/transgressif de 2éme ordre Bathonien inférieur–Oxfordien inférieur en Europe occidentale. Bull Soc Géol Fr 168:121–132

    Google Scholar 

  • Marcinowski R, Wiedmann J (1985) The Albian ammonite fauna of Poland and its paleogeographical significance. Acta Geol Pol 35:199–218

    Google Scholar 

  • Marcinowski R, Wiedmann J (1988) Paleogeographic implications of the Albian ammonite faunas of Poland. In: Wiedmann J, Kullmann J (eds) Cephalopods Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Marchand D, Thierry J, Tintant H (1985) Influence des seuls et des hauts–fonds sur la morphology et l’évolution des ammonites. Inst Sci Terre Univ Dijon Bull Sect Sci 9:191–202

    Google Scholar 

  • Marshall JD (1981) Zoned calcites in Jurassic ammonite chambers: trace elements, isotopes and neomorphic origin. Sedimentology 28:867–887

    Google Scholar 

  • Martin AW, Catala-Stucki I, Ward DP (1978) The growth rate and reproductive behaviour of Nautilus macromphalus. N Jahrb Geol Paläontol Abh 156:207–225

    Google Scholar 

  • Massare JA (1987) Tooth morphology and prey preference of Mesozoic marine reptiles. J Vert Paleontol 7:121–137

    Google Scholar 

  • Matsumoto T, Futakami M, Tanabe K, Obata I (1981) Upper Turonian ammonite assemblages in the Pombets area, central Hokkaido. Bull Kitakyushu Mus Nat Hist 3:1–10

    Google Scholar 

  • Matsuoka A, Anso J, Nakada K, Terabe K, Sato T (2010) Biometrical analysis on primary rib number of the Middle Jurassic ammonoid Pseudoneuqueniceras yokoyamai (Kobayashi & Fukada) and its allied forms. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods Present and Past. Tokai University Press, Tokyo

    Google Scholar 

  • McArthur JM, Mutterlose J, Price GD, Rawson PF, Ruffell A., Thirlwall MF (2004) Belemnites of Valanginian, Hauterivian and Barremian age: Sr-isotope stratigraphy, composition (87Sr/86Sr, δ13C, δ18O, Na, Sr, Mg), and palaeo-oceanography. Palaeogeogr Palaeoclimatol Palaeoecol 202:253–272

    Google Scholar 

  • McConnaughey TA, Gillikin DP (2008) Carbon isotopes in mollusk shell carbonates. Geo-Mar Lett 28:287–299

    Google Scholar 

  • Meesters E, Knijn R, Pennarts R, Roebers G, van Soest RWM (1991) Sub-rubble communities of Curacao and Bonaire coral reefs. Coral Reefs 10:189–197

    Google Scholar 

  • Mehl J (1978a) Ein Koprolith mit Ammoniten-Aptychen aus dem Solnhofer Plattenkalk. Jahresb Wetterau Ges Naturkunde 129–130:85–89

    Google Scholar 

  • Mehl J (1978b) Anhäufungen scherbenartiger Fragmente von Arnmonitenschalen im süddeutschen Lias und Malm und ihre Deutung als Frassreste. Ber Naturforsch Ges Freib Breisgau 68:75–93

    Google Scholar 

  • Mehl J (1984) Radula and arms of Michelinoceras sp. from the Silurian of Bohemia. Paläontol Z 58:211–229

    Google Scholar 

  • Meischner D (1968) Perniciöse, Epökie von Placunopsis auf Ceratites. Lethaia 1:156–174

    Google Scholar 

  • Merkt J (1966) Über Austern und Serpeln als Epöken auf Ammonitengehäusen. N Jahrb Geol Palöont Abh 125:467–479

    Google Scholar 

  • Milson CV (1994) Saccocoma, a benthic crinoid from the Jurassic Solnhofen Limestone, Germany. Palaeontology 37:121–130

    Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between delta 15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Google Scholar 

  • Misaki A, Maeda H, Kumagae T, Ichida M (2013) Commensal anomiid bivalves on Late Cretaceous heteromorph ammonites from south-west Japan. Palaeontology 57:77–95

    Google Scholar 

  • Monnet C (2009) The Cenomanian–Turonian boundary mass extinction (Late Cretaceous): new insights from ammonoid biodiversity patterns of Europe, Tunesia and the Western Interior (North America). Palaeogeogr Palaeoclimatol Palaeoecol 282:88–104

    Google Scholar 

  • Moore EJ (1984) Molluscan paleontology and biostratigraphy of the lower Miocene upper part of the lincoln creek formation in southwestern Washington. Contr Sci Nat Hist Mus Los Angeles City 351:1–39

    Google Scholar 

  • Moriya K (2015) Isotope signature of ammonoid shells. This volume

    Google Scholar 

  • Moriya K, Nishi H, Kawahata H, Tanabe K, Takayanagi Y (2003) Demersal habitat of Late Cretaceous ammonoids: evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31:167–170

    Google Scholar 

  • Morris KA (1979) A classification of Jurassic marine shale sequences: an example from the Toarcian (Lower Jurassic) of Great Britain. Palaeogeogr Palaeoclimatol Palaeoecol 26:117–126

    Google Scholar 

  • Morris KA (1980) Comparison of major regions of organic–rich mud deposition in the British Jurassic. J Geol Soc Lond 137:157–170

    Google Scholar 

  • Morton N, Nixon M (1987) Size and function of ammonoid aptychi in comparison with buccal masses in modern cephalopods. Lethaia 20:231–238

    Google Scholar 

  • Mouterde R, Elmi S (1991) Caractères différentiels des faunes d’ammonites du Toarcien des bordures de la Téthys. Signification paléogéographique. Bull Soc Géol Fr 162:1185–1195

    Google Scholar 

  • Müller AH (1969) Ammoniten mit ‘Eierbeutel’ und die Frage nach dem Sexual-Dimorphismus der Ceratiten (Cephalopoda). Mber Dt Akad Wiss Berlin 11:411–420

    Google Scholar 

  • Mutvei H (1975) The mode of life in ammonoids. Paläontol Z 49:196–202

    Google Scholar 

  • Mutvei H, Dunca E (2007) Connecting ring ultrastructure in the Jurassic ammonoid Quenstedtoceras with discussion on mode of life of ammonoids. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods Present and Past: new insights and fresh perspectives. Springer, Dortrecht

    Google Scholar 

  • Naglik C, Tajika A, Chamberlain JA, Klug C (2015) Ammonoid locomotion. This volume

    Google Scholar 

  • Navarro N, Neige P, Marchand D (2005) Faunal invasion as a source of morphological constraints and innovations? The diversification of the early Cardioceratidae (Ammonoidea; Middle Jurassic). Palaeobiology 31:98–116

    Google Scholar 

  • Neige P, Marchand D, Bonnot A (1997) Ammonoid morphological signal versus sea-level changes. Geol Mag 134:261–264

    Google Scholar 

  • Nesis KN (1986) On the feeding and causes of extinction of certain heteromorph ammonites. Paleontol Zh 1986:8–15 (Engl transl, Paleontol J 20:5–11)

    Google Scholar 

  • Nesis KN (1987) Cephalopods of the world, squids, cuttlefishes, octopuses and allies. (transl from Russian). TFH Publications, Neptune City, p. 351

    Google Scholar 

  • Neumayr M (1883) Über Klimatische Zonen während der Jura und Kreidezeit: Denk K Akad Wiss Math-Nat Kl 48:57–142

    Google Scholar 

  • Niebuhr S, Jochiamski MM (2002) Stable isotope and trace element geochemistry of Upper Cretaceous carbonates and belemnite rostra (Middle Campanian, North Germany). Géobios 35:51–64

    Google Scholar 

  • Nikolaeva SV (1999) Morphological diversity of ammonoids from the Lower Namutian of Central Asia. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Plenum, New York

    Google Scholar 

  • Nixon M (1988) The feeding mechanism and diets of cephalopods-living and fossil. In: Wiedmann J, Kullmann J (eds) Cephalopods Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Nixon M (1996) Morphology of the jaws and radula in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • NOAA National Oceanic and Atmospheric Administration (2014) National oceanographic data center (NODC). United States department of commerce. http://www.nodc.noaa.gov. Accessed 12 April 2014

  • Nützel A, Frýda, J (2003) Paleozoic plankton revolution: Evidence from early gastropod ontogeny. Geology 31:829–831

    Google Scholar 

  • Oba T, Kai M, Tanabe K (1992) Early life history and habitat of Nautilus pompilius inferred from oxygen isotope examinations. Mar Bio 113:211–217

    Google Scholar 

  • Obata I, Futakami M (1977) The Cretaceous sequence of the Manji Dome. Palaeontol Soc Jpn Spec Pap 21:23–30

    Google Scholar 

  • O'Dor RK, Wells MJ (1990) Performance limits of ‘antique’ and ‘state-of-the-art’ cephalopods, Nautilus and squid. Am Mahcologicnl Union Program Abstr Annu Meet 56:52

    Google Scholar 

  • Okamoto T (1984) Theoretical morphology of Nipponites (a heteromorph ammonite). Fossils (Kaseki) Palaeont Soc Jpn 36:37–51

    Google Scholar 

  • Okamoto T (1988a) Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31:35–52

    Google Scholar 

  • Okamoto T (1988b) Changes in life orientation during the ontogeny of some heteromorph ammonoids. Palaeontology 31:281–294

    Google Scholar 

  • Okamoto T (1988c) Developmental regulation and morphological saltation in the heteromorph ammonite Nipponites. Paleobiology 14:273–286

    Google Scholar 

  • Okamoto T, Shibata M (1997) A cyclic mode of shell growth and its implications in a Late Cretaceous heteromorph ammonite Polyptychoceras pseudogaultinum (Yokoyama). Palaeontol Res 1:29–46

    Google Scholar 

  • Olivero EB, Zinsmeister WJ (1989) Large heteromorph ammonites from the Upper Cretaceous of Seymour Island, Antarctica. J Paleontol 63:626–635

    Google Scholar 

  • Olóriz E (1976) Kimmeridgiano-Tlithonico inferior en el sector central de las Cordilleras Béticas (Zona Subbética). Paleontologia, Bioestratigrafía [PhD thesis]. Universidad de Granada, Granada

    Google Scholar 

  • Olóriz F, Palmqvist P (1995) Sutural complexity and bathymetry in ammonites: fact or artefact? Lethaia 28:167–170

    Google Scholar 

  • Olóriz F, Rodríguez-Tovar FJ (eds) (1999) Advancing Research on Living and Fossil Cephalopods. Kluwer Academic, New York

    Google Scholar 

  • Olóriz E, Marques B, Rodriguez-Tovar FJ (1991) Eustatism and faunal associations. examples from the south Iberian margin during the Late Jurassic (Oxfordian-Kimmeridgian). Eclogae Geol Helv 84:83–106

    Google Scholar 

  • Olóriz, F, Caracuel, JE, Ruiz-Heras JJ, Rodríguez-Tovar FJ, Marques B (1996) Ecostratigraphic approaches, sequence stratigraphy proposals and block tectonics: examples from epioceanic swell areas in south and east Iberia. Palaeogeogr Palaeoclimat Palaeoecol 121:273–295

    Google Scholar 

  • Olóriz F, Palmqvist P, Pérez-Claros A (1999) Recent advances in morphometric approaches to covariation of shell features and the complexity of suture lines in Late Jurassic ammonites, with reference to the major environments colonized. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing Research on Living and Fossil Cephalopods. Kluwer Academic, New York,

    Google Scholar 

  • Oschmann W (1991) Distribution, dynamics and palaeontology of Kimmeridgian (Upper Jurassic) shelf anoxia in western Europe. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geol Soc Spec Pap 58:381–395

    Google Scholar 

  • Packard, A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307

    Google Scholar 

  • Palmer TJ (1982) Cambrian to Cretaceous changes in hardground communities. Lethaia 15:309–323

    Google Scholar 

  • Pamenter CB (1956) Imitoceras from the Exshaw Formation of Alberta. J Paleont 30:965–966

    Google Scholar 

  • Payne AIL, Lipiński MR, Clarke MR, Roeleveld MAC (1998) Cephalopod biodiversity, ecology and evolution. South American Journal of Marine Science 20. Sea Fisheries Department of Environmental Affairs and Tourism, Cape Town, p 469

    Google Scholar 

  • Podlaha OG, Mutterlose J, Veizer J (1998) Preservation of δ18O and δ13C in belemnite rostra from the Jurassic/Early Cretaceous successions. Am J Sci 298:324–347

    Google Scholar 

  • Price GD, Mutterlose J (2004) Isotopic signals from late Jurassic-early Cretaceous (Volgian-Valanginian) sub-Arctic belemnites, Yatra River, Western Siberia. J Geol Soc Lond 161:959–968.

    Google Scholar 

  • Price GD, Ruffel AH, Jones CE, Kalin RM, Mutterlose J (2000) Isotopic evidence for temperature variation during the Early Cretaceous (late Ryazanian-mid Hauterivian). J Geol Soc Lond 157:335–343

    Google Scholar 

  • Price GD, Twitchett RJ, Smale Ch, Marks V (2009) Isotopic analysis of the life history of the enigmatic squid Spirula spirula, with implications for studies of fossil cephalopods. Palaios 24:273–279

    Google Scholar 

  • Price GD, Fözy I, Janssen NMM, Pálfy (2011) Late Valanginian-Barremian (Early Cretaceous) palaeotemperatures inferred from belemnite stable isotope and Mg/Ca ratios from Bersek Quarry (Gerecse Mountains, Transdanubian Range, Hungary). Palaeogeogr Palaeoclimatol Palaeoecol 305:1–9

    Google Scholar 

  • Pucéat E, Lecuyer C, Sheppard SMF, Dromart G, Reboulet S, Grandjean P (2003) Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18:7–12

    Google Scholar 

  • Radwansky A (1996) The predation upon, and the extinction of, the latest Maastrichtian populations of the ammonite species Hoploscaophites constrictus (J. Sowerby, 1817) from the Middle Vistula Valley, Central Poland. Acta Geol Pol 46:117–135

    Google Scholar 

  • Railsback BL, Anderson TF, Ackerly SC, Cisne JL (1989) Paleoceanographic modeling of temperature-salinity profiles from stable isotopic data. Paleoceanography 4(5):585–591

    Google Scholar 

  • Rasmussen K, Brett C (1985) Taphonomy of Holocene cryptic biotas from St. Croix, Virgin Islands: information loss and preservational biases. Geology 13:551–553

    Google Scholar 

  • Rawson PF (1981) Early Cretaceous ammonite biostratigraphy and biogeography. In: House MR, Senior JR (eds) The Ammonoidea. Systematics Association, special vol 18, Academic Press, London

    Google Scholar 

  • Rawson PF (1993) The influence of sea level changes on the migration and evolution of early Cretaceous (pre-Aptian) ammonites. In: House MR (ed) The Ammonoidea: Environment, Ecology, and Evolutionary Change. Systematics Association, special vol 47. Oxford Science Publications, Oxford

    Google Scholar 

  • Reboulet S (1996) L’évolution des ammonites du Valanginien–Hauterivien inférieur du bassin vocontien et de la plate-forme provençale (Sud-Est de la France): relations avec la stratigraphie séquentielle et implications biostratigraphique. Doc Labor Géol Lyon 137:371

    Google Scholar 

  • Reboulet S (1998) Diversification des ammonites hétéromorphes. In: Gayet M, Otero O (eds) Paleodiversifications, Land and Sea Compared: International Symposium, Lyon, France (July 6–8, 1998), Abstr Vol, p. 54

    Google Scholar 

  • Reboulet S (2001) Limiting factors on shell growth, mode of life and segregation of Valanginian ammonoid populations: evidence from adult-size variations. Geobios 34:423–435

    Google Scholar 

  • Reboulet S, Atrops F (1995) Rôle du climat sur les migrations et la composition des peuplements d’ammonites du Valanginien supérieur du bassin vocontien (S-E de la France). Geobios Mém Spéc 18:357–365

    Google Scholar 

  • Reboulet S, Atrops F (1997) Quantitative variations of the Valanginian ammonite fauna of the Vocontian Basin (southeastern France) between limestone-marls and within parasequence sets. Palaeogeogr Palaeoclimat Palaeoecol 135:145–155

    Google Scholar 

  • Reboulet S, Rard A (2008) Double alignments of ammonoid aptychi from the Lower Cretaceous of Southeast France: Result of a post–mortem transport or bromalites? Acta Palaeontol Pol 53:261–274

    Google Scholar 

  • Reboulet, S, Atrops F, Ferry S, Schaaf A (1992) Renouvellement des ammonites en fosse vocontienne à la limite Valanginien-Hauterivien. Geobios 25:469–476

    Google Scholar 

  • Reboulet S, Proux O, Giraud F, Baudin F, Olivero D, Aucour AM (2000) Characterization and significance of ammonoid and nannoplankton assemblages during an ‘‘anoxic’’ event: the Breistroffer level (Upper Albian, SE France). In: Summesberger H, Kollmann H (eds) 6th International Cretaceous Symposium, Vienna, Austria (August 27–September 4), Abstr vol, p 111

    Google Scholar 

  • Reboulet S, Mattioli, E, Pittet B, Baudin F, Olivero D, Proux O (2003) Ammonoid and nannoplankton abundance in Valanginian (early Cretaceous) limestone-marl successions from the southeast France Basin: carbonate dilution or productivity? Palaeogeogr Palaeoclimat Palaeoecol 201:113–139

    Google Scholar 

  • Reboulet S, Giraud F, Proux O (2005) Ammonoid abundance variations related to changes in trophic conditions across the Oceanic Anoxic Event 1d (Latest Albian, SE France). Palaios 20:121–141

    Google Scholar 

  • Reeside JB, Cobban WA (1960) Studies of the Mowry Shale (Cretaceous) and contemporary formations in the United States and Canada. US Geol Surv Prof Pap 355:1–126

    Google Scholar 

  • Renz O (1972) Aptychi (Ammonoidea) from the Upper Jurassic and Lower Cretaceous of the western North Atlantic (site 105, leg 11, DSDP). In: Holister CD, Ewing JI et al (eds) Initial reports DSDP, No. 11, US Government Printing Office, Washington DC

    Google Scholar 

  • Renz O (1973) Two lamellaptychi (Ammonoidea) from the Magellan Rise in the central Pacific. In: Winterer EL, Hewing JL (eds) Initial reports DSDP, No 17, US Government Printing Office, Washington DC

    Google Scholar 

  • Renz O (1978) Aptychi (Ammonoidea) from the early cretaceous of the Blake–Bahama Basin, leg 44, hole 391c, DSDP. In: Benson WE, Sheridan RE (eds) Initial reports DSDP, No. 44, US Government Printing Office, Washington DC

    Google Scholar 

  • Renz O (1979) Aptychi (Ammonoidea) and ammonites from the Lower Cretaceous of the western Bermuda Rise, leg 43, site 387, DSDP. In: Tucholke BE, Vogt PR (eds) Initial reports DSDP, No. 43, US Government Printing Office, Washington DC

    Google Scholar 

  • Rexfort A, Mutterlose J (2006) Stable isotope records from Sepia officinalis—a key to understand the ecology of belemnites? Earth Planet Sci Lett 247:212–221

    Google Scholar 

  • Reyment RA (1958) Some factors in the distribution of fossil cephalopods. Stock Contr Geol 1:97–184

    Google Scholar 

  • Reyment RA (1973) Factors in the distribution of fossil cephalopods. Part 3: experiments wth exact models of certain shell types. Bull Geol Inst Univ Uppsala 4(2):7–41

    Google Scholar 

  • Reyment RA (1980) Floating orientations of cephalopod shell models. Palaeontology 23:931–936.

    Google Scholar 

  • Reyment RA (1988) A foraging model for shelled cephalopods. In: Wiedmann J, Kullmann J (eds) Cephalopods Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Reyment RA (2008) Reyment, Richard A. 2008. A review of the post-mortem dispersal of cephalopod shells. Palaeontol Electr 11:12A:13p. http://palaeo-electronica.org/2008_3/148/index.html

  • Riccardi AC, Westermann GEG (1991) Middle Jurassic ammonite fauna of the Argentine-Chilean Andes, III: Bajocian-Callovian Eurycephalitinae, Stephanocerataceae. Palaeontogr A 216:1–110

    Google Scholar 

  • Riccardi AC, Gulisano CA, Mojica J, Palacios O, Schubert C, Thomson MRA (1992) Western South America and Antarctica. In: Westermann GEG (ed) The Jurassic of the Circum-Pacific. Cambridge University Press, New York

    Google Scholar 

  • Richter AE (2009) Ammoniten-Gehäuse mit Bissspuren. Berl Paläontol Abh 10:297–305

    Google Scholar 

  • Richter C, Wunsch M (1999) Cavity-dwelling suspension feeders in coral reefs-a new link in reef trophodynamics. Mar Ecol Prog Ser 188:105–116

    Google Scholar 

  • Rieber H (1973) Ergebnisse paläontologisch-stratigraphischer Untersuchungen in der Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio. Eclogae Geol Helv 66:667–685

    Google Scholar 

  • Rieber H (1975) Der Posidonienschiefer (Oberer Lias) von Holzmaden und die Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio (Kanton Tessin, Schweiz). Jahrb Ges Naturkd Württemb 130:163–190

    Google Scholar 

  • Rieber H (1977) Eine Ammonitenfauna aus der oberen Maiolica der Breggia-Schlucht (Tessin/Schweiz). Eclogae Geol Helv 70:777–787

    Google Scholar 

  • Ritterbush KA, Bottjer DJ (2012) Westermann Morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38:424–446

    Google Scholar 

  • Ritterbush KA, Lukeneder A, Hoffmann R, De Baets K (2014) Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. J Zool 292:229–241

    Google Scholar 

  • Roetzel R, Mandic O, Steininger FF (1999) Lithostratigraphie und Chronostratigraphie der tertiären Sedimente im westlichen Weinviertel und angrenzenden Waldviertel. Arb Geol BA 1999:38–54

    Google Scholar 

  • Röhl H, Schmid-Röhl A, Oschmann W, Frimmel A, Schwark L (2001) The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr Palaeoclimat Palaeoeco 165:27–52

    Google Scholar 

  • Romanek CS, Jones DS, Williams DF, Krantz DE, Radtke R (1987) Stable isotopic investigation of physiological and enviromnental changes recorded in shell carbonate from the giant clam Tridacna maxima. Mar Biol 94:385–393

    Google Scholar 

  • Rooij D van, Mol L de, Guilloux E le, Wisshak M, Huvenne VAI, Moeremans R, Henriet JP (2010) Environmental setting of deep-water oysters in the Bay of Biscay. Deep Sea Res Part I: Oceanogr Res Pap 57:1561–1572

    Google Scholar 

  • Roux M (1990) Underwater observations of Nautilus macromphalus off New Caledonia. Chamb Nautil Newsl 60:1

    Google Scholar 

  • Roux M, Bouchet P, Bourseau J-P, Gaillard C, Grandperrin R, Guille A, Laurin B, Monniot C, Richer de Forges B, Rio M, Segonzac M, Vacelet J, Zibrowius H (1991) L’environnement bathyal au large de la Nouvelle-Calédonie: résultats préliminaires de la campagne CALSUB et conséquences paléoécologiques. Bull Soc Géol Fr 162:675–685

    Google Scholar 

  • Sandoval J (1983) Bioestratigrafia y paleontologia (Stephanocerataceae y Perisphinctaceae) del Bajocense y Bathoniense en las Cordilleras Beticas [PhD thesis]. Universidad de Granada, Granada, p. 613

    Google Scholar 

  • Sarti C (1986a) Faune e biostratigrafia del Rosso Ammonitico del Trentino centrale (Kimmeridgiano- Titoniano). Boll Soc Paleontol Ital 23:473–514

    Google Scholar 

  • Sarti C (1986b) Considerazioni sul Rosso Ammonitico Veronese del Col Santino (M. Pasubio) e raffronti con altre successioni del Trentino. In: Pallini G (ed) Atti I Conv Int Fossili Evoluzione Ambiente. Pergola, ottobre 1984

    Google Scholar 

  • Sarti C (1999) Whorl width in the body chamber of ammonites as a sign of dimorphism. In: Olóriz F, Rodríguez–Tovar FJ (eds) Advancing Research on Living and Fossil Cephalopods. Kluwer Academic, New York

    Google Scholar 

  • Sato T, Tanabe K (1998) Cretaceous plesiosaurs ate ammonites. Nature 394:629–630

    Google Scholar 

  • Saunders WB (1983) Natural rates of growth and longevity of Nautilus belauensis. Paleobiology 9:280–288

    Google Scholar 

  • Saunders WB (1984) Nautilus belauensis growth and longevity: evidence from marked and recaptured animals. Science 224:990–992

    Google Scholar 

  • Saunders WB (1995) The ammonoid suture problem: relationships between shell septum thickness and suture complexity in Paleozoic ammonoids. Paleobiology 21:343–355

    Google Scholar 

  • Saunders WB, Landman NH (eds) (1987) Nautilus. The Biology and Paleobiology of a Living Fossil. Topics in Geobiology 6, Springer Press, New York

    Google Scholar 

  • Saunders WB, Landman NH (eds) (2010) ditto (reprinted from 1987 with additions)

    Google Scholar 

  • Saunders WB, Shapiro EA (1986) Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:64–79

    Google Scholar 

  • Saunders WB, Spinosa, C (1979) Nautilus movement and distribution in Palau, Western Caroline Islands. Science 204:1199–1201

    Google Scholar 

  • Saunders WB, Swan RH (1984) Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiol 10:195–228

    Google Scholar 

  • Saunders WB, Spinosa C, Davies LE (1987) Predation on Nautilus. In: Saunders WB, Landman NH (eds) (2010) Nautilus. The Biology and Paleobiology of a Living Fossil. Topics in Geobiology 6, Springer Press, New York (reprinted from Saunders WB, Landman NH (eds) 1987 with additions), pp. 201–212

    Google Scholar 

  • Savrda CE, Bottjer DJ (1991) Oxygen-related biofacies in marine strata: an overview and update. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geol Soc Spec Pap 58:201–219

    Google Scholar 

  • Schindewolf OH (1934) Über Epöken auf Cephalopoden-Gehäusen. Paläontol Z 16:15–31

    Google Scholar 

  • Schindewolf OH (1958) Über Aptychen (Ammonoidea). Palaeontogr A 111:1–46

    Google Scholar 

  • Schindewolf OH (1959) Adolescent cephalopods from the Exshaw Formation of Alberta. J Paleontol 33:971–976

    Google Scholar 

  • Schlögl J, Chirat R, Balter V, Joachimski M, Hudáčková N, Quillévéré F (2011) Aturia from the Miocene Paratethys: an exceptional window on nautilid habitat and lifestyle. Palaegeogr Palaeoclimat Palaeoecol 308:330–338

    Google Scholar 

  • Schmid-Röhl A, Röhl H-J (2003) Overgrowth on ammonite conchs: environmental implications for the Lower Toarcian Posidonia Shale. Palaeontology 46:339–352

    Google Scholar 

  • Schmidt-Effing R (1972) Die Dactylioceratidae, eine Ammoniten-Familie des unteren Jura. Münst Forsch Geol Paläontol 25/26:l–254

    Google Scholar 

  • Scott G (1940) Paleoecological factors controlling the distribution and mode of life of Cretaceous ammonoids in the Texas area. J Paleontol 14:299–323

    Google Scholar 

  • Seilacher A (1960) Epizoans as a key to ammonoid ecology. J Paleontol 34:189–193

    Google Scholar 

  • Seilacher A (1963) Umlagerung und Rolltransport von Cephalopoden-Gehäusen. Neues Jahrb Geol Paläontol Monatshefte 1963:593–615

    Google Scholar 

  • Seilacher A (1982) Ammonites as habitats in the Posidonia Shale—floats or benthic islands? Neues Jahrb Geol Paläontol Monatshefte 1982:98–114

    Google Scholar 

  • Seilacher A (1993) Ammonite aptychi: how to transform a jaw into an operculum. Am J Sci 293A:20–32

    Google Scholar 

  • Seilacher A, Analib F, Dietl G, Gocht H (1976) Preservational history of compressed ammonites from southern Germany. Neues Jahrb Geol Paläontol Abh 152:307–356

    Google Scholar 

  • Seuss B, Titschack J, Seifert S, Neubauer J, Nützel A (2012) Oxygen and stable carbon isotopes from a nautiloid from the middle Pennsylvanian (Late Carboniferous) impregnation Lagerstätte ‘Buckhorn Asphalt Quarry’—Primary paleo-environmental signals versus diagenesis. Palaeogeogr Palaeoclimat Palaeoecol 319/320:1–15

    Google Scholar 

  • Shapiro EA, Saunders WB (1987) Nautilus shell hydrostatics. In: Saunders WB, Landman NH (eds) Nautilus. Plenum, New York

    Google Scholar 

  • Shigeta Y (1993) Post–hatching early life history of Cretaceous Ammonoidea. Lethaia 26:23–46

    Google Scholar 

  • Shimansky VN (1975) Cretaceous nautiloids. Acad Sci USSR Trans Palaeontol Inst 150:1–288 [In Russian]

    Google Scholar 

  • Sornay J (1955) Ammonites nouvelles du Crétacé de la région des Monts du Mellègue (Constantine). Bull Serv Carte Geol Algér 1 ser Paléontol 18:1–40

    Google Scholar 

  • Spaeth C, Hoefs J, Vetter U (1971) Some aspects of isotope composition of belemnites and related paleotemperature. Geol Soc Amer Bull 82:3139–3150

    Google Scholar 

  • Spinosa PL, Furnish WM, Glenister GE (1975) The Xenodiscidae, Permian ceratitoid ammonoids. J Paleontol 49:239–283

    Google Scholar 

  • Sprey AM (2002) Early ontogeny of three Callovian ammonite genera (Binatisphinctes, Kosmo­ceras (Spinikosmoceras) and Hecticoceras) from Ryazan (Russis). In: Summesberger H, Histon K, Daurer A (2002) Cephalopods Present and Past. Abh Geol B-A 57:225–255

    Google Scholar 

  • Stahl W, Jordan R (1969) General considerations on isotopic paleotemperature determinations and analysis on Jurassic ammonites. Earth Planet Sci Lett 6:173–178

    Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33

    Google Scholar 

  • Stephen DA, Stanton RJ (2002) Impact of reproductive strategy on cephalopod evolution. In: Summesberger H, Histon K, Daurer A (eds) Cephalopods Present and Past. Abh Geol B-A 57:151–155

    Google Scholar 

  • Stephen DA, Bylund KG, Garcia P, McShinsky RD, Carter HJ (2012) Taphonomy of dense concentrations of juvenile ammonoids in the Upper Cretaceous Mancos Shale, east-central Utah, USA. Geobios 45:121–128

    Google Scholar 

  • Stevens GR (1988) Giant ammonites: a review. In: Wiedmann J, Kullmann J (eds) Cephalopods Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Stevens GR (1997) The Late Jurassic ammonite fauna of New Zealand. Institute of Geological and Nuclear Sciences monograph 18. N Z Geol Surv Paleontol Bull 74:1–217

    Google Scholar 

  • Stevens K, Mutterlose J, Wiedenroth (2015) Stable isotope data (δ18O, δ13C) of the ammonite genus Simbirskites—implications for habitat reconstructions of extinct cephalopods. Palaeogeogr Palaeoclimatol Palaeoecol 417:164–175

    Google Scholar 

  • Stevens K, Mutterlose J, Wiedenroth (2015) Stable isotope data (δ18O, δ13C) of the ammonite genus Simbirskites—implications for habitat reconstructions of extinct cephalopods. Palaeogeogr Palaeoclimatol Palaeoecol 417:164–175

    Google Scholar 

  • Stewart JD, Carpenter K (1990) Examples of vertebrate predation on cephalopods in the Late Cretaceous of the Western Interior. In: Boucot AJ (ed) Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam

    Google Scholar 

  • Stewart JD, Carpenter K (1999) Examples of vertebrate predation on cephalopods in the Late Cretaceous of the Western Interior. Bull S Cal Paleontol Soc 31:66–73

    Google Scholar 

  • Stilwell JD, Henderson RA (2002) Description and paleobiogeographic significance of a rare Cenomanian molluscan faunule from Bathurst Island, northern Australia. J Paleontol 76:447–471

    Google Scholar 

  • Summesberger H (2000) Ammoniten als Kannibalen. Das Naturhistorische 1, p. 10

    Google Scholar 

  • Summesberger H, Jurkovsek B, Kolar-Jurkovsek T (1996) Aptychi associated with ammonites from the lipica-formation (Upper Cretaceous, Slovenia). Ann Naturhist Mus Wien 97A:1–19

    Google Scholar 

  • Summesberger H, Histon K, Daurer A (2002) Cephalopods Cephalopods Present and Past. Abh Geol B-A 57:1–569

    Google Scholar 

  • Swan RH, Saunders WB (1987) Function and shape in Late Paleozoic (mid-Carboniferous) ammonoids. Paleobiology 13:297–311

    Google Scholar 

  • Tajika A, Wani R (2011) Intraspecific variation of hatchling size in Late Cretaceous ammonoids from Hokkaido, Japan: implication for planktic duration at early ontogenetic stage. Lethaia 44: 287–298

    Google Scholar 

  • Tajika A, Naglik C, Morimoto N, Pascual-Cebrian E, Hennhöfer DK, Klug C (2015): Empirical 3D-model of the conch of the Middle Jurassic ammonite microconch Normannites, its buoyancy, the physical effects of its mature modifications and speculations on their function. Hist Biol, 11 pp. doi:10.1080/08912963.2013.872097

    Google Scholar 

  • Tanabe K (1977) Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites. Mem Fac Sci Kyushu Univ Ser D Geol 23:367–407

    Google Scholar 

  • Tanabe K (1979) Palaeoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Japan. Palaeontology 22:609–630

    Google Scholar 

  • Tanabe K (1983) The jaw apparatus of Cretaceous desmoceratid ammonites. Palaeontology 26:677–689

    Google Scholar 

  • Tanabe K, Fukuda Y (1987) The jaw apparatus of the Cretaceous ammonite Reesidites. Lethaia 20:41–48

    Google Scholar 

  • Tanabe K, Landman NH (1996) Septal neck-siphuncular complex of ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • Tanabe K, Ohtsuka Y (1985) Ammonoid early internal shell structure: Its bearing on early life history. Paleobiology 11:310–322

    Google Scholar 

  • Tanabe K, Shigeta Y (1987) Ontogenetic shell variation and streamlining of some Cretaceous ammonites, Trans Proc Palaeonr Soc Jpn N S 147:165–179

    Google Scholar 

  • Tanabe K, Obata I, Futakami M (1978) Analysis of ammonoid assemblages in the Upper Turonian of the Manji area, central Hokkaido. Bull Nat Sci Mus Tokyo C 4:37–62

    Google Scholar 

  • Tanabe K, Obata I, Futakami M (1981) Early shell morphology in some Upper Cretaceous heteromorph ammonites. Trans Proc Palaeontol Soc Jpn NS 124:215–234

    Google Scholar 

  • Tanabe K, Landman NH, Weitschat W (1993a) Septal necks in mesozoic ammonoidea: structure, ontogenetic development and evolution. In: House MR (ed) The Ammonoidea. Environment, Ecology, and Evolutionary Change. Systematic Association special vol 47, Clarendon Press, Oxford

    Google Scholar 

  • Tanabe K, Landman NH, Mapes, RH, Faulkner CJ (1993b) Analysis of a Carboniferous embryonic ammonoid assemblage-implications for ammonoid embryology. Lethaia 20:215–224

    Google Scholar 

  • Tanabe K, Landman NH, Mapes RH (1994a) Early shell features of some Late Paleozoic ammonoids and their systematic implications. Trans Proc Palaeontol Soc Jpn NS 173:383–400

    Google Scholar 

  • Tanabe K, Landman NH, Mapes RH, Faulkner CJ (1994b) Analysis of a Carboniferous embryonic ammonoid assemblage from Kansas. U.S.A.—implications for ammonoid embryology. Lethaia 26:215–224

    Google Scholar 

  • Tanabe K, Shigeta Y, Mapes, RH (1995) Early life history of Carboniferous ammonoids inferred from analysis of fossil assemblages and shell hydrostatics. Palaios 10:80–86

    Google Scholar 

  • Tanabe K, Landman NH, Yoshioka Y (2003) Intra- and interspecific variations in the early internal shell features of some Cretaceous ammonoids. J Paleontol 77:876–887

    Google Scholar 

  • Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) (2010a) Cephalopods Present and Past. Tokai University Press, Tokyo

    Google Scholar 

  • Tanabe K, Kulicki C, Landman NH, Kaim A (2010b) Tuberculate micro-ornamentation on embryonic shells of Mesozoic ammonoids: microstructure, taxonomic variation, and morphogenesis In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods Present and Past. Tokai University Press, Tokyo

    Google Scholar 

  • Tanaka N, Monaghan MC, Rye DM (1986) Contribution of metabolic carbon to mollusc and barnacle shell carbonate. Nature 320:520–523

    Google Scholar 

  • Tarutani T, Clayton RN, Mayeda TK (1969) The effects of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Acta 33:987–996

    Google Scholar 

  • Taylor BE, Ward PD (1983) Isotopic studies of Nautilus macromphalus Sowerby (New Caledonia) and Nautilus pompilius L. (Fiji). Palaeogeogr Palaeoclimatol Palaeoecol 41:1–16

    Google Scholar 

  • Teichert C, Matsumoto T (1987) The ancestry of the genus Nautilus. In: Saunders WB, Landmann NH (eds) Nautilus: The Biology and Paleobiology of a Living Fossil. Topics in Geobiology 6, Springer, New York

    Google Scholar 

  • Thieuloy JP (1966) Leptocères berriasiens du massif de la Grande-Chartreuse. Trav Lab Géol Fac Sci Univ Grenoble 42:281–295

    Google Scholar 

  • Tichy G, Urbanek E (2004) Biss-Spuren eines Sauriers an Pinacoceras parma Mojsisovics, ein Ammonit der Halleiner Obetrias. GeoAlp 1:87–90

    Google Scholar 

  • Tintant H, Marchand D, Mouterde R (1982) Relations entre les milieux marins et l’evolution des Ammonoides: Les radiations adaptives du Lias. Bull Soc Géol Fr 24:951–961

    Google Scholar 

  • Tittensor DP, Rex MA, Stuart CT, McClain CR, Smith CR (2011) Species-energy relationships in deep-sea molluscs. Biol Letters 23:718–722

    Google Scholar 

  • Toriyama R, Sato T, Hamada T, Komalarjun P (1964) Nautilus pompilius drifts on the west coast of Thailand. Jap J Geol Geogr 36: 149–161

    Google Scholar 

  • Tourtelot HA, Rye RO (1969) Distribution of oxygen and carbone isotopes in the fossil of Late Cretecaous age, Western Interior region of North America. Geol Soc Am Bull 80:1903–1922

    Google Scholar 

  • Trueman AE (1941) The ammonoid body chamber with special reference to the buoyancy and mode of life of the living ammonite. Quart J Geol Soc Lond 96: 339–383

    Google Scholar 

  • Tsujita CJ, Westermann GEG (1998) Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeogr Palaeoclimat Palaeoecol 144:135–160

    Google Scholar 

  • Tsujita CJ, Westermann GEG (2001) Were limpets or mosasaurs responsible for the perforations in the ammonite Placenticeras? Palaeogeogr Palaeoclimatol Palaeoecol 169:245–270

    Google Scholar 

  • Tyson RV, Pearson TH (1991) Modern and ancient continental shelf anoxia: an overview. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geol Soc Spec Pub 58:l–26

    Google Scholar 

  • Uchiyama K, Tanabe K (1999) Hatching of Nautilus macromphalus in the Toba aquarium, Japan. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing Research on Living and Fossil Cephalopods. Kluwer Academic, New York

    Google Scholar 

  • Uhlig V (1911) Über die sogen. borealen Typen des südandinen Reiches. Cent Mineral Geol Paläontol 15, 16, 17:483–490, 517–522, 536–548

    Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 1947:562–581

    Google Scholar 

  • Urey HC, Lowenstam HA, Epstein S, McKinney CR (1951) Measurements of paleotemperatures and temperatures of the Upper Cretaceous, Denmark, and southeastern United States. GSA Bull 62:399–416

    Google Scholar 

  • Urlichs M, Mundlos R (1985) Immigration of cephalopods into the German Muschelkalk basin and its influence on the suture lines. In: Bayer U, Seilacher A (eds) Sedimentary and Evolutionary Cycles. Lecture Notes in Earth Sciences. Springer, Berlin

    Google Scholar 

  • Urlichs M, Wild R, Ziegler B (1979) Fossilien aus Holzmaden. Stuttg Beitr Naturkunde Ser C 11:1–34

    Google Scholar 

  • Vašíček Z, Wiedmann J (1994) The Leptoceratoidinae: small heteromorph ammonites from the Barremian. Palaeontology 37:203–239

    Google Scholar 

  • Vermeij GJ (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245–258

    Google Scholar 

  • Wang Y, Westermann GEG (1993) Paleoecology of Triassic ammonoids. Geobios Mem Spec 15:373–392

    Google Scholar 

  • Wani R (2004) Experimental fragmentation pattersn of modern Nautilus shells and the implications for fossil cephalopod taphonomy. Lethaia 37:113–123

    Google Scholar 

  • Wani R (2007) How to recognize in situ fossil cephalopods: evidence from experiments with modern Nautilus. Lethaia 40:305–311

    Google Scholar 

  • Wani R, Gupta NS (2015). Ammonoid taphonomy. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Topics in Geobiology, vol 43. Ammonoid Paleobiology: From macroevolution to paleogeography. Vol 2, Part III - Ammonoids through time. Springer, Dordrecht

    Google Scholar 

  • Wani R, Kase T, Shigeta Y, De Ocampo R (2005) New look at ammonoid taphonomy, based on field experiments with modern chambered Nautilus. Geology 33:849–852

    Google Scholar 

  • Wani R, Kurihara K, Ayyasami K (2011) Large hatchling size in Cretaceous nautiloids persists across the end-Cretaceous mass extinction: new data of Hercoglossidae hatchlings. Cretac Res 32:618–622

    Google Scholar 

  • Ward PD (1976a) Stratigraphy, paleoecology and functional morphology of heteromorph ammonites in the Upper Cretaceous Nanaimo Group, British Columbia and Washington. Dissertation, McMaster University of Hamilton, Ontario.

    Google Scholar 

  • Ward PD (1980) Comparative shell shape distributions in Jurassic-Cretaceous ammonites and nautilids. Paleobiology 6:32–43

    Google Scholar 

  • Ward PD (1981) Shell sculpture as a defensive adaptation in ammonoids. Paleobiology 7:96–100.

    Google Scholar 

  • Ward PD (1986a) Rates and processes of compensatory buoyancy change in Nautilus macromphalus. Veliger 1986:356–368

    Google Scholar 

  • Ward PD (1986b) Cretaceous ammonite shell shapes. Malacologia 27:3–28

    Google Scholar 

  • Ward PD (1987) The natural history of Nautilus. Allen and Unwin, Boston

    Google Scholar 

  • Ward PD (1990a) A review of Maastrichtian ammonite ranges. GSA Spec Pap 247:519–530

    Google Scholar 

  • Ward PD (1990b) The Cretaceous/Tertiary extinctions in the marine realm: A 1990 perspective. GSA Spec Pap 247:425–432

    Google Scholar 

  • Ward PD, Bandel K. (1987) Life history strategies in fossil cephalopods. In: life cycles. Academic Press, London

    Google Scholar 

  • Ward DJ, Hollingworth NTJ (1990) The first record of a bitten ammonite from the Middle Oxford Clay (Callovian, Middle Jurassic) of Bletchley, Buckingshamshire. Mesozoic Res 2:153–161

    Google Scholar 

  • Ward PD, Signor PW III (1983) Evolutionary tempo in Jurassic and Cretaceous ammonites. Paleobiology 9:183–198

    Google Scholar 

  • Ward PD, Westermann GEG (1977) First occurrence, systematics and functional morphology of Nipponites from the Americas. J Paleontol 51:367–372

    Google Scholar 

  • Ward PD, Westermann GEG (1985) Cephalopod paleoecology. In: Bottjer DJ, Hickman CS, Ward PD (org), Broadhead TW (ed) Mollusks, Notes for a short course. Univ Tenn Geol Sci Stud 13:1–18

    Google Scholar 

  • Ward PD, Carlson B, Weekly M, Brumbaugh B (1984) Remote telemetry of daily vertical and horizontal movement of Nautilus in Palau. Nature 309:248–250

    Google Scholar 

  • Warnke K, Keupp H (2005) Spirula—A window to the embryonic developments of ammonoids? Morphological and molecular indications for a palaeontological hypothesis. Facies 51:60–65

    Google Scholar 

  • Warnke K, Plötner J, Santana JI, Rueda MJ, Llinas O (2003) Reflections on the phylogenetic position of Spirula (Cephalopoda): preliminary evidence from the 18S ribosomal RNA gene. Berl Paläobiol Abh 3:253–260

    Google Scholar 

  • Warnke K, Oppelt A, Hoffmann R (2010) Stable isotopes during ontogeny of Spirula and derived hatching temperatures. Ferrantia 59:191–201

    Google Scholar 

  • Watanabe T, Gagan MK, Correge T, Scott-Gagan H, Cowley J, Hantoro WS (2003) Oxygen isotope systematics in Diploastrea heliopora: new coral archive of tropical paleoclimate. Geochim Cosmochim Acta 67:1349–1358

    Google Scholar 

  • Wefer G (1985) Die Verteilung stabiler Isotope in Kalkschalen mariner Organismen. Geol Jahrb 82:3–111.

    Google Scholar 

  • Wefer G, Berger, WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248

    Google Scholar 

  • Wells MJ (1983) Cephalopods do it different. New Sci 100:332–338

    Google Scholar 

  • Wells MJ, Wells J, O’Dor RK (1992) Life at low oxygen tensions: the behaviour and physiology of Nautilus pompilius and the biology of extinct forms. J Mar Biol Assoc UK 72:313–328

    Google Scholar 

  • Wendt J (1963) Stratigraphisch-paläontologische Untersuchungen im Dogger Westsiziliens. Boll Soc Paleontol Ital 2:57–145

    Google Scholar 

  • Westermann GEG (1954) Monographie der Otoitidae (Ammonoidea). Geol Jahrb Beih 15:1–364.

    Google Scholar 

  • Westermann GEG (1958) The significance of septa and sutures in Jurassic ammonite systematics. Geol Mag 45:441–455

    Google Scholar 

  • Westermann GEG (1971) Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Sci Contrib R Ont Mus 78:1–39

    Google Scholar 

  • Westermann GEG (1973) Strength of concave septa and depth limits of fossil cephalopods. Lethaia 6:373–403

    Google Scholar 

  • Westermann GEG (1975a) Architecture and buoyancy of simple cephalopod phragmocones and remarks on ammonites. Paläontol Z 49:221–234

    Google Scholar 

  • Westermann GEG (1975b) A model for origin, function and fabrication of fluted cephalopod septa. Paläontol Z 49:235–253

    Google Scholar 

  • Westermann GEG (1977) Form and function of orthoconic cephalopod shells with concave septa. Paleobiology 3:300–321

    Google Scholar 

  • Westermann GEG (1982) The connecting rings of Nautilus and Mesozoic ammonoids: Implications for ammonoid bathymetry. Lethaia 15:374–384

    Google Scholar 

  • Westermann GEG (1989) New developments in ecology of Jurassic-Cretaceous ammonoids, in Pallini, G., Cecca, F., and Cresta, S., (eds), Fossili, evoluzione, ambiente, Att II Conventione Internationale Pergola 1987: Otra Vetere, Italy, Tecnostampa

    Google Scholar 

  • Westermann GEG (1990) New developments in ecology of Jurassic-Cretaceous ammonoids. In: Pallini G, Cecca E, Cresta S, Santantonio M (eds) Fossili, Evolutione, Ambiente. Atti II Conv Int F E A Pergola 1987. Com Cent Raff Piccinini, Ostra Vetere

    Google Scholar 

  • Westermann GEG (1993a) On alleged negative buoyancy in ammonoids. Lethaia 26:246

    Google Scholar 

  • Westermann GEG (1993b) Global bio-events in mid-Jurassic ammonites controlled by seaways. In: House MR (ed) The Ammonoidea. Environment, Ecology and Evolutionary Change. Systematics Association, special volume 47, Clarendon Press, Oxford

    Google Scholar 

  • Westermann GEG (1996) Ammonoid life and habitat. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • Westermann GEG, Callomon JH (1988) The Macrocephalitinae and associated Bathonian and early Callovian (Jurassic) ammonoids of the Sula lslands and New Guinea. Palaeontogr A 203:l–90

    Google Scholar 

  • Westermann GEG, Hewitt RA (1995) Do limpet pits indicate that desmoceratacean ammonites lived mainly in surface waters? Lethaia 28:24

    Google Scholar 

  • Westermann GEG, Ward P (1980) Septum morphology and bathymetry in cephalopods. Paleobiol 6:48–50

    Google Scholar 

  • Whittaker SG, Kyser TK, Caldwell GE (1987) Paleoenvironmental geochemistry of the Claggett marine Cyclothem in south-central Saskatchewan. Can J Earth Sci 24:967–984

    Google Scholar 

  • Wiedmann J (1973) Evolution or revolution of ammonoids at Mesozoic system boundaries. Biol Rev 48:159–194

    Google Scholar 

  • Wiedmann J (1988a) Plate tectonics, sea level changes, climate and the relationship to ammonite evolution, provincialism, and mode of life. In: Wiedmann J, Kullmann J (eds) Cephalopods Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Wiedmann J (1988b) Ammonite extinction and the Cretaceous Tertiary boundary event. In: Wiedmann J, Kullmann J (eds) Cephalopods Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Wiedmann J, Kullmann J (eds) (1988) Cephalopods Present and Past. Schweizerbart, Stuttgart

    Google Scholar 

  • Wignall PB (1987) A biofacies analysis of the Gastrioceras cumbriense Marine Band (Namurian) of the Central Pennines. Proc York Geol Soc 46:111–121

    Google Scholar 

  • Wignall PB (1990) Observations on the evolution and classification of dysaerobic communities. In: Miller W (ed) Paleocommunity Temporal Dynamics: The Long-term Development of Multispecies Assemblies. Paleontol Soc Spec Publ 5:99–111

    Google Scholar 

  • Wignall PB, Hallam A (1991) Biofacies, stratigraphic distribution and depositional models of British onshore Jurassic black shales. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geol Soc Spec Pap 58:291–309

    Google Scholar 

  • Wignall PB, Hallam A (1993) Griesbachian (earliest Triassic) palaeoenvironmental changes in the Salt Range, Pakistan and southeast China and their bearing on the Permo-Triassic mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 102:215–237

    Google Scholar 

  • Wignall PB, Simms MJ (1990) Pseudoplankton. Palaeontology 33:359–378

    Google Scholar 

  • Wilde P, Berry WBN (1984) Destabilization of the oceanic density structure and its significance to marine "extinction" events. Palaeogeogr Palaeoclimatol Palaeoecol 48:143–162

    Google Scholar 

  • Wilmsen M, Mosavinia A (2011) Phenotypic plasticity and taxonomy of Schloenbachia varians (J. Sowerby, 1817). Paläontol Z 85:169–184

    Google Scholar 

  • Wippich MGE, Lehmann J (2004) Allocrioceras from the Cenomanian (Mid-Cretaceous) of the Lebanon and its bearing on the palaeobiological interpretation of heteromorphic ammonites. Palaeontology 47:1093–1107

    Google Scholar 

  • Wright CW, Calloman JH, Howarth MK (1996) Treatise on Invertebrate Paleontology, Part L, Mollusca 4 revised (Cretaceous Ammonoidea), GSA, Boulder. University of Kansas Press, Lawrence

    Google Scholar 

  • Wright EK (1987) Stratification and paleocirculation of the Late Cretaceous Western Interior Seaway of North America. GSA Bull 99:480–490

    Google Scholar 

  • Wunsch M, Richter C (1998) The CaveCam–an endoscopic underwater videosystem for the exploration of cryptic habitats. Mar Ecol Prog Ser 169:277–282

    Google Scholar 

  • Yacobucci MM (1999) Plasticity of developmental timing as underlying cause of high speciation rates in ammonoids. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing Research on Living and Fossil Cephalopods. Kluwer Academic, Plenum, New York

    Google Scholar 

  • Yacobucci M (2004) Buckman’s Paradox: variability and constraints on ammonoid ornament and shell shape. Lethaia 37:57–69

    Google Scholar 

  • Yahada H., Wani R (2013) Limited migration of scaphitid ammonoids: evidence from the analyses of shell whorls. J Paleontol 87(3):406–412

    Google Scholar 

  • Yomogida S, Wani R (2013) Higher risk of fatality by predatory attacks in earlier ontogenetic stages of modern Nautilus pompilius in the Philippines: evidence from the ontogenetic analyses of shell repairs. Lethaia 46:317–330

    Google Scholar 

  • Young RE, Vecchione M, Donovan DT (1998) The evolution of coloid cephalopods and their present biodiversity and ecology. In: Payne AIL, Lipinski MR, Clarke MR, Roeleveld MAC (eds) Cephalopod diversity, Ecology and Evolution. Afr J Mar Sci 20:393–420

    Google Scholar 

  • Zaborski PMP (1982) Campanian and Maastrichtian sphenodiscid ammonites from southern Nigeria. Bull Br Mus Nat Hist (Geol) 36:303–332

    Google Scholar 

  • Zakharov YD, Boriskina, N.G., Ignatyev AV, Tanabe K, Shigeta Y, Popov AM, Afanasyeva TB, Maeda H (1999) Palaeotemperature curve for the Late Cretaceous of the northwestern circum-Pacific. Cretac Res 20:685–997

    Google Scholar 

  • Zakharov YD, Smyshlyaeva OP., Tanabe K, Shigeta Y, Maeda H, Ignatiev AV, Velivetskaya TA, Afanasyeva TB, Popov AM, Golozubov VV, Kolyadae AA, Cherbadzhi AK, Moriya K (2005) Seasonal temperature fluctuations in the high northern latitudes during the Cretaceous Period: isotopic evidence from Albian and Coniacian shallow-water invertebrates of the Talovka River Basin, Koryak Upland, Russian Far East. Cretac Res 26:113–132

    Google Scholar 

  • Zakharov YD, Shigeta Y, Smyshlyaeva OP, Popov AM, Ignatiev AV (2006) Relationship between δ13C and δ18O values of the Recent Nautilus and brachiopod shells in the wild and the problem of reconstruction of fossil cephalopod habitat. Geosci J 10:331–345

    Google Scholar 

  • Zakharov YD, Shigeta Y, Nagendra R, Safronov PP, Popov AM, Velivetskaya TA, Afanasyeva TB (2011) Cretaceous climate oscillations in the southern palaeolatitudes: new stable isotope evidence from India and Madagascar. Cretac Res 32:623–645

    Google Scholar 

  • Zakharov YD, Melnikov ME, Popov AM, Pletnev SP, Khudik VD, Punina TA (2012) Cephalopod and brachiopod fossils from the Pacific: Evidence from the Upper Cretaceous of the Magellan Seamounts. Geobios 45:145–156

    Google Scholar 

  • Zatoń M (2010) Sublethal injuries in Middle Jurassic ammonite shells from Poland. Geobios 43:365–375

    Google Scholar 

  • Ziegler B (1963) Ammoniten als Faziesfossilien. Paläontol Z 37:96–102

    Google Scholar 

  • Ziegler B (1967) Ammoniten-Ökologie am Beispiel des Oberjura. Geol Rundsch 56:439–464

    Google Scholar 

  • Ziegler B (1981) Ammonoid biostratigraphy and provincialism: Jurassic-Old World. In: House MR, Senior JR (eds) The Ammonoidea: Systematics Assocoation, speial volume 18. Academic Press, London

    Google Scholar 

  • Zinsmeister WJ (1987) Unusual nautilid occurrence in the upper Eocene La Meseta Formation, Seymour Island, Antarctica. J Paleontol 61:724–726

    Google Scholar 

Download references

Acknowledgements

Studies were enhanced by the data generated from projects (P22109–B17, P20018–N10) financially supported by the Austrian Science Fund (FWF). The author wishes to thank Kazuyoshi Moriya (University of Kanazawa) for his extensive review of the manuscript and Christian Klug (University of Zurich) for his constructive comments and review. The author is grateful to Susanne Mayrhofer and Mathias Harzhauser (both Natural History Museum, Vienna) for discussions on specific problems on cephalopods and the life and habitat of ammonoids. The author thanks Kathleen A. Ritterbush (University of Southern California) for the calculation of a morphospace diagram. For important information and comments, I am grateful to Neil H. Landman (American Museum of Natural History, New York), Benjamin J. Linzmeier (University of Wisconsin-Madison) and two anonymous reviewers. Special thanks for editorial work and fruitful discussions on ammonoid life and habitat go to Christian Klug (University of Zurich) and Dieter Korn (Natural History Museum, Berlin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Lukeneder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lukeneder, A. (2015). Ammonoid Habitats and Life History. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From anatomy to ecology. Topics in Geobiology, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9630-9_18

Download citation

Publish with us

Policies and ethics