Skip to main content

Ammonoid Locomotion

  • Chapter
  • First Online:
Ammonoid Paleobiology: From anatomy to ecology

Part of the book series: Topics in Geobiology ((TGBI,volume 43))

Abstract

Because ammonoids have never been observed swimming, there is no alternative to seeking indirect indications of the locomotory abilities of ammonoids. This approach is based on actualistic comparisons with the closest relatives of ammonoids, the Coleoidea and the Nautilida, and on the geometrical and physical properties of the shell. Anatomical comparison yields information on the locomotor muscular systems and organs as well as possible modes of propulsion while the shape and physics of ammonoid shells provide information on buoyancy, shell orientation, drag, added mass, cost of transportation and thus on limits of acceleration and swimming speed. On these grounds, we conclude that ammonoid swimming is comparable to that of Recent nautilids and sepiids in terms of speed and energy consumption, although some ammonoids might have been slower swimmers than nautilids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bambach RK (1999) Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131–144

    Google Scholar 

  • Batt RJ (1989) Ammonite shell morphospace distribution in the Western Interior Greenhorn Sea and some paleoecological implications. Palaios 4:32–43

    Google Scholar 

  • Batt RJ (1993) Ammonite shell morphotypes as indicators of oxygenation in a Cretaceous epicontinental sea. Lethaia 26:49–63

    Google Scholar 

  • Batt RJ (2007) Sutural amplitude of ammonite shells as a paleoenvironmental indicator. Lethaia 24:219–225

    Google Scholar 

  • Bayer U, McGhee GR Jr (1984) Iterative evolution of Middle Jurassic ammonite faunas. Lethaia 17:1–16

    Google Scholar 

  • Bone Q, Pulsford A, Chubb AD (1981) Squid mantle muscle. J Mar Biol Assoc UK 61:327–342

    Google Scholar 

  • Boyle P, Rodhouse P (2005) Cephalopods: ecology and fisheries. Wiley, Oxford

    Google Scholar 

  • Chamberlain JA Jr (1969) Technique for scale modeling of cephalopod shells. Palaeontology 12:48–55

    Google Scholar 

  • Chamberlain JA Jr (1976) Flow patterns and drag coefficients of cephalopod shells. Palaeontology 19:539–563

    Google Scholar 

  • Chamberlain JA Jr (1980) The role of body extension in cephalopod locomotion. Palaeontology 23:445–461

    Google Scholar 

  • Chamberlain JA Jr (1981) Hydromechanical design of fossil cephalopods. In: House MR, Senior JR (eds) The Ammonoidea. Syst Assoc Spec, vol 18. Academic, London

    Google Scholar 

  • Chamberlain JA Jr (1987) Locomotion of Nautilus. In: Saunders WB, Landman NH (eds) Nautilus-The biology and paleobiology of a living fossil. Plenum, New York

    Google Scholar 

  • Chamberlain JA Jr (1990) Jet propulsion of Nautilus: a surviving example of early Paleozoic locomotor design. Can J Zool 68:806–814

    Google Scholar 

  • Chamberlain JA Jr (1992) Cephalopod locomotor design and evolution: the constraints of jet propulsion. In: Rayner MV, Wootton RJ (eds) Biomechanics and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Chamberlain JA Jr (1993) Locomotion in ancient seas: constraint and opportunity in cephalopod adaptive design. Geobios Spec Mem 15:49–61

    Google Scholar 

  • Chamberlain JA Jr, Moore WA (1982) Rupture strength and flow rate of Nautilus siphuncular tube. Paleobiology 8:408–425

    Google Scholar 

  • Chamberlain JA Jr, Westermann GEG (1976) Hydrodynamic properties of cephalopod shell ornament. Paleobiology 2:316–331

    Google Scholar 

  • Chamberlain JA Jr, Ward PD, Weaver JS (1981) Post-mortem ascent of Nautilus shells: implications for cephalopod paleobiogeography. Paleobiology 7:494–509

    Google Scholar 

  • Chirat R (2000) The so-called ‘cosmopolitan palaeobiogeographic distribution’ of tertiary Nautilida of the genus Aturia Bronn 1838: the result of post-mortem transport by oceanic palaeocurrents. Palaeogeogr Palaeoclim Palaeoecol 157:59–77

    Google Scholar 

  • Courville P, Thierry J (1993) Nouvelles données biostratigraphiques sur les dépôts cénomanoturoniens du Nord-Est du fossé de ia Bénoué (Nigeria). Cretaceous Research 14(4–5):385–396

    Google Scholar 

  • Crick GS (1898) On the muscular attachment of the animal to the shell in some fossil Cephalopoda (Ammonoidea). Trans Linn Soc NY 7:71–113

    Google Scholar 

  • Daniel TL (1984) The unsteady aspects of locomotion. Am Zool 24:121–134

    Google Scholar 

  • Daniel TL (1985) Cost of locomotion: unsteady medusan swimming. J Exp Biol 119:149–164

    Google Scholar 

  • Daniel TL, Helmuth BS, Saunders WB, Ward PD (1997) Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. Paleobiology 23:470–481

    Google Scholar 

  • Davis RA, Mapes RH, Klofak SM (1999) Epizoa on externally shelled cephalopods. In: Rozanov AY, Shevyrev AA (eds) Fossil cephalopods: recent advances in their study. Russian Academy of Sciences, Palaeontological Institute. Moskva

    Google Scholar 

  • De Baets K, Klug C, Korn D, Landman NH (2012) Evolutionary trends in ammonoid embryonal development. Evolution 66:1788–1806

    Google Scholar 

  • De Baets K, Bert D, Hofmann R, Monnet C, Yacobucci MM, Klug C (2015a) Ammonoid intraspecific variation. This volume

    Google Scholar 

  • De Baets K, Keupp H, Klug C (2015b) Parasitism in ammonoids. This volume

    Google Scholar 

  • De Baets K, Landman NH, Tanabe K (2015c) Ammonoid embryonic development. This volume

    Google Scholar 

  • Doguzhaeva LA, Mapes RH (2015) Muscle scars in ammonoid shells. This volume

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (1991) Organization of the soft body in Aconeceras(Ammonitina), interpreted on the basis of shell morphology and muscle scars. Palaeontogr A 218:17–33

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (1993) Structural features in Cretaceous ammonoids indicative of semi-internal or internal shells. In: House MR (ed) The Ammonoidea: environment, ecology, and evolutionary change. Syst Assoc Spec, vol 47. Clarendon Press, Oxford

    Google Scholar 

  • Ebel K (1983) Berechnungen zur Schwebefähigkeit von Ammoniten. N Jb Geol Paläont Mh 1983:614–640

    Google Scholar 

  • Elmi S (1991) Données expérimentales sur l’architecture fonctionelle de la coquille des ammonodes Jurassiques. Géobios, Mémoire Spécial 13:155–160

    Google Scholar 

  • Elmi S (1993) Loi des aires, couche-limite et morphologie fonctionnelle de la coquille des Céphalopodes (Ammonoides). Geobios 26(Suppl 1):121–138

    Google Scholar 

  • Finn JK, Norman MD (2010) The argonaut shell: gas-mediated buoyancy control in a pelagic octopus. Proc Ro Soc B 277(1696):2967–2971. doi:10.1098/rspb.2010.0155

    Google Scholar 

  • Gaillard C (1977) Cannelures d’érosion et figures d’impact dues à des coquilles d’ammonites à épines (Oxfordien supérieur du Jura français). Eclogae Geol. Helvetiae 70:701–715

    Google Scholar 

  • Hamada T (1964) Notes on drifted Nautilus in Thailand. Sci Pap Coll Gen Educ Univ Tokyo 14:255–277

    Google Scholar 

  • Hauschke N, Schöllmann L, Keupp H (2011) Oriented attachment of a stalked cirripede on an orthoconic heteromorph ammonite—implications for the swimming position of the latter. N Jahrb Geol Paläont Abh 202:199–212

    Google Scholar 

  • Hewitt RA (1996) Architecture and strength of the ammonite shell. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Hewitt RA, Westermann GEG (2003) Recurrences of hypotheses about ammonites and Argonauta. J Paleontol 77:792–795

    Google Scholar 

  • Hoffmann R, Zachow S 2011 Non-invasive approach to shed new light on the buoyancy business of chambered cephalopods (Mollusca). Extended Abstract IAMG Salzburg 2011:1–9

    Google Scholar 

  • Hoffmann R, Schultz JA, Schellhorn R, Rybacki E, Keupp H, Gerden SR, Lemanis R, Zachow S (2013) Non-invasive imaging methods applied to neo- and paleontological cephalopod research. Biogeosciences Discuss 10:18803–18851:2013. doi:10.5194/bgd-10-18803-2013

    Google Scholar 

  • Hoffmann R, Lemanis R, Naglik C, Klug C (2015) Ammonoid buoyancy. This volume

    Google Scholar 

  • House MR (1973) An analysis of Devonian goniatite distributions. In: Hughes NF (ed) Organisms and continents through time. Spec Pap Palaeont 12:305–317

    Google Scholar 

  • House MR (1981) On the origin, classification and evolution of the early Ammonoidea. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life and geological usefulness of a major fossil group. Academic, London

    Google Scholar 

  • House MR (1987) Geographic distribution of Nautilus shells. In: Saunders WB, Landman NH (eds) Nautilus. The biology and paleobiology of a living fossil. Plenum, New York

    Google Scholar 

  • Iredale T (1944) Australian pearly Nautilus. Austr. Zool 10:294–298

    Google Scholar 

  • Jacobs DK (1992a) The support of hydrostatic load in cephalopod shells-adaptive and ontogenetic explanations of shell form and evolution from Hooke 1695 to the present. In: Hecht MK, Wallace B, Macintyre RJ (eds) Evolutionary biology, vol 26. Plenum, New York

    Google Scholar 

  • Jacobs DK (1992b) Shape, drag, and power in ammonoid swimming. Paleobiology 18:203–220

    Google Scholar 

  • Jacobs DK, Chamberlain JA (1996) Buoyancy and hydrodynamics in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in geobiology13. Plenum, New York

    Google Scholar 

  • Jacobs DK, Landman NH (1993) Is Nautilus a good model for the function and behavior of ammonoids? Lethaia 26:101–110

    Google Scholar 

  • Jacobs DK, Landman NH, Chamberlain JA Jr (1994) Ammonite shell shape covaries with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology 22:905–908

    Google Scholar 

  • Johansen W, Soden PD, Trueman ER (1972) A study in jet propulsion: an analysis of the motion of the squid, Loligo vulgaris. J Exp Biol 56:155–156

    Google Scholar 

  • Kakabadzé MV, Sharikadzé MZ (1993) On the mode of life of heteromorph ammonites (heterocone, ancylocone, ptychocone). Geobios 26(Suppl 1):209–215

    Google Scholar 

  • Kaplan P (2002) Biomechanics as a test of functional plausibility: testing the adaptive value of terminal-countdown heteromorphy in Cretaceous ammonoids. Abh Geol B-A 57:181–197

    Google Scholar 

  • Kawabe F (2003) Relationship between mid-Cretaceous (upper Albian–Cenomanian) ammonoid facies and lithofacies in the Yezo forearc basin, Hokkaido, Japan. Cret Res 24:751–763

    Google Scholar 

  • Kennedy WJ, Cobban WA (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. Spec Pap Palaeontol 17:1–94

    Google Scholar 

  • Keupp H (1984) Pathologische Ammoniten—Kuriositäten oder paläobiologische Dokumente? (Teil 1). Fossilien 1(6):258–262, 267–275

    Google Scholar 

  • Keupp H (1985) Pathologische Ammoniten—Kuriositäten oder paläobiologische Dokumente? (Teil 2). Fossilien 2(1):23–35

    Google Scholar 

  • Keupp H (1992) Rippenscheitel bei Ammoniten-Gehäusen. Fossilien 5:283–290

    Google Scholar 

  • Keupp H (1996) Paläopathologische Analyse einer Ammoniten-Vergesellschaftung aus der Mittleren Volga-Stufe des subpolaren Urals. Fossilien 1:45–54

    Google Scholar 

  • Keupp H (1997) Paläopathologische Analyse einer “Population” von Dactylioceras athleticum (Simpson) aus dem Unter-Toarcium von Schlaifhausen/Oberfranken. Berliner geowiss Abh E 25:243–267

    Google Scholar 

  • Keupp H (2000) Ammoniten—paläobiologische Erfolgsspiralen. Thorbecke, Stuttgart

    Google Scholar 

  • Keupp H (2006) Sublethal punctures in body chambers of Mesozoic ammonites (forma aegra fenestra n.f.), a tool to interpret synecological relationships, particularly predator-prey interactions. Paläontol Z 80:112–123

    Google Scholar 

  • Keupp H (2008) Wer hat hier zugebissen? Ammoniten-Prädation. Fossilien 2008(2):109–112

    Google Scholar 

  • Keupp H (2012) Atlas zur Paläopathologie der Cephalopoden. Berliner geowiss Abh E 12:1–390

    Google Scholar 

  • Keupp H, Hoffmann R (2015) Ammonoid paleopathology. This volume

    Google Scholar 

  • Keupp H, Röper M, Seilacher A (1999) Paläobiologische Aspekte von syn vivo- besiedelten Ammonoideen im Plattenkalk des Ober-Kimmeridgiums von Brunn in Ostbayern. Berliner geowiss Abh E 30:121–145

    Google Scholar 

  • Klinger HC (1981) Speculation on buoyancy control and ecology in some heteromorph ammonites. In: House MR, Senior JR (eds) The Ammonoidea. Syst Assoc, Spec, vol 18. Academic, London

    Google Scholar 

  • Klug C (2001) Life-cycles of Emsian and Eifelian ammonoids (Devonian). Lethaia 34:215–233

    Google Scholar 

  • Klug C (2002) Quantitative stratigraphy and taxonomy of late Emsian and Eifelian ammonoids of the eastern Anti-Atlas (Morocco). Cour Forschungsinst Senck 238:1–109

    Google Scholar 

  • Klug C, Korn D (2002) Occluded umbilicus in the Pinacitinae (Devonian) and its palaeoecological implications. Palaeontology 45:917–931

    Google Scholar 

  • Klug C, Korn D (2004) The origin of ammonoid locomotion. Acta Palaeont Pol 49:235–242

    Google Scholar 

  • Klug C, Lehmann J (2015) Soft-part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons. This volume

    Google Scholar 

  • Klug C, Meyer E, Richter U, Korn D (2008) Soft-tissue imprints in fossil and Recent cephalopod septa and septum formation. Lethaia 41:477–492

    Google Scholar 

  • Klug C, Kröger B, Kiessling W, Mullins GL, Servais T, Frýda J, Korn D, Turner S (2010) The Devonian nekton revolution. Lethaia 43:465–477

    Google Scholar 

  • Korn D (2012) Quantification of ontogenetic allometry in ammonoids. Evol Dev 14:501–514. doi:10.1111/ede.12003

    Google Scholar 

  • Korn D, Klug C (2003) Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology 29:329–348

    Google Scholar 

  • Kröger B (2001) Comments on Ebel’s benthic-crawler hypothesis for ammonoids and extinct nautiloids. Paläontol Z 75:123–125

    Google Scholar 

  • Kröger B (2005) Adaptive evolution in Paleozoic coiled cephalopods. Paleobiology 31:253–268

    Google Scholar 

  • Kröger B, Vinther J, Fuchs D (2011) Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. Bioessays 12. doi:10.1002/bies.201100001

    Google Scholar 

  • Kummel B, Lloyd RM (1955) Experiments on the relative streamlining of coiled cephalopod shells. J Paleontol 29:159–170

    Google Scholar 

  • Landman NH (1988) Early ontogeny of Mesozoic ammonites and nautilids. In: Wiedmann J, Kullmann J (eds) Cephalopods-present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Landman NH, Cobban WA (2007) Ammonite touch marks in Upper Cretaceous (Cenomanian-Santonian) deposits of the Western Interior Sea. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods present and past: new insights and fresh perspectives. Springer, Dordrecht

    Google Scholar 

  • Landman NH, Waage KM (1993) Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) fox hills formation in South Dakota and Wyoming. Bull Am Mus Nat Hist 215:1–257

    Google Scholar 

  • Landman NH, Rye DM, Shelton KL (1983) Early ontogeny of Eutrephoceras compared to recent Nautilusand Mesozoic ammonites: evidence from shell morphology and light stable isotopes. Paleobiology 9:269–279

    Google Scholar 

  • Landman NH, Tanabe K, Shigeta Y (1996) Ammonoid Embryonic Development. In: (Eds) Landman, N.H., Tanabe, K., Davis, R.A. Ammonoid Paleobiology. Vol. 13, Topics in Geobiology. 343–405. Plenum Press, New York

    Google Scholar 

  • Longridge LM, Smith PL, Rawlings G, Klaptocz V (2009) The impact of asymmetries in the elements of the phragmocone of early Jurassic ammonites. Palaeontol Electron 12(1A):1–15

    Google Scholar 

  • Lukeneder A (2015) Ammonoid habitats and life history. This volume

    Google Scholar 

  • Lukeneder A, Harzhauser M, Müllegger S, Piller WE (2010) Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (delta18O, delta13C). Earth and Planetary Science Letters 296:103–111. doi:10.1016/j.epsl.2010.04.053

    Google Scholar 

  • Maeda H, Seilacher A (1996) Ammonoid taphonomy. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Mapes RH, Nützel A (2008) Late Palaeozoic mollusc reproduction: cephalopod egg-laying behavior and gastropod larval palaeobiology. Lethaia 42:341–356

    Google Scholar 

  • Marchand D (1984) Ammonites et paléoenvironnements; une nouvelle approche. Geobios Mém. spécial 8:101–107

    Google Scholar 

  • Marchand D (1992) Ammonites et paléoprofondeur: les faits, les interprétations. Paleovox 1:49–68

    Google Scholar 

  • McGhee GC, Bayer U, Seilacher A (1991) Biological and evolutionary responses to transgressive-regressive cycles. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin

    Google Scholar 

  • Monks N, Young JR (1998) Body position and the functional morphology of Cretaceous heteromorph ammonites. Palaeontol Electron 1:15

    Google Scholar 

  • Monnet C, Bucher H (2007) European ammonoid diversity questions the spreading of anoxia as primary cause for the Cenomanian/Turonian (Late Cretaceous) mass extinction. Swiss J Geosci 100:137–144

    Google Scholar 

  • Monnet C, Klug C, De Baets K (2011) Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evol Bio 11(115):1–21

    Google Scholar 

  • Monnet C, De Baets K, Yacobucci MM (2015) Buckman’s rules of covariation. In Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds): Ammonoid Paleobiology, Vol.2: From macroevolution to biogeography. Springer, Dordrecht

    Google Scholar 

  • Moriya K (2015) Isotope signature of ammonoid shells. This volume

    Google Scholar 

  • Moriya K, Nishi H, Kawahata H, Tanabe K, Takayanagi Y (2003) Demersal habitat of Late Cretaceous ammonoids: evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31:167–170

    Google Scholar 

  • Mutvei H (1975) The mode of life in ammonoids. Paläontol Z 49:196–206

    Google Scholar 

  • Mutvei H, Reyment RA (1973) Buoyancy control and siphuncle function in ammonoids. Palaeontology 16:623–636

    Google Scholar 

  • Naglik C, Monnet C, Götz S, Kolb C, De Baets K, Klug C (2015) Growth trajectories in chamber and septum volumes in major subclades of Paleozoic ammonoids. Lethaia 48(1):29–46

    Google Scholar 

  • Naglik C, Rikhtegar F, Klug C (in press) Buoyancy of some Palaeozoic ammonoids and their hydrostatic properties based on empirical 3D-models. Lethaia 10pp. DOI 10.1111/let.12125

    Google Scholar 

  • O’Dor RK (1982) Respiratory metabolism and swimming performance of the squid, Loligo opalescens. Can J Fish Aquat Sci 39:580–587

    Google Scholar 

  • O’Dor RK (1988a) The energetic limits on squid distributions. Malacologia 29:113–119

    Google Scholar 

  • O’Dor RK (1988b) The forces acting on swimming squid. J Exp Biol 137:421–442

    Google Scholar 

  • O’Dor RK, Webber DM (1991) Invertebrate athletes: trade-offs between transport efficiency and power density in cephalopod evolution. J Exp Biol 160:93–112

    Google Scholar 

  • O’Dor RK, Wells MJ (1990) Performance limits of “antique” and “state-of-the-art” cephalopods, Nautilus and squid. Am Malacol Union Prog Abstr. 56th Ann Meeting, 52

    Google Scholar 

  • O’Dor RK, Wells MJ, Wells J (1990) Speed jet pressure and oxygen consumption relationships in free-swimming Nautilus. J Exp Biol 154:383–396

    Google Scholar 

  • O’Dor RK, Forsythe J, Webber DM, Wells J, Wells MJ (1993) Activity levels of Nautilus in the wild. Nature 362:626–627

    Google Scholar 

  • Oeffner J, Lauder GV (2012) The hydrodynamic function of shark skin and two biomimetic applications. J Exp Biol 215:785–795

    Google Scholar 

  • Okamoto T (1988) Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31:35–52

    Google Scholar 

  • Okamoto T (1996) Theoretical modeling of ammonoid morphology. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in geobiology 13. Plenum, New York

    Google Scholar 

  • Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307

    Google Scholar 

  • Packard A, Bone Q, Hignette M (1980) Breathing and swimming movements in a captive Nautilus. J Mar Biol Assoc UK 60:313–327

    Google Scholar 

  • Parent H, Westermann GEG, Chamberlain JA Jr (2014) Ammonite aptychi: functions and role in propulsion. Geobios 47:45–55

    Google Scholar 

  • Raup DM (1966) Geometric analysis of shell coiling: general problems. J Paleont 40:1178–1190

    Google Scholar 

  • Raup DM (1967) Geometric analysis of shell coiling: coiling in ammonoids. J Paleontol 41:43–65

    Google Scholar 

  • Raup DM, Chamberlain JA Jr (1967) Equations for volume and center of gravity in ammonoid shells. J Paleontol 41:566–574

    Google Scholar 

  • Reif WE (1982) Morphogenesis and function of the squamation in sharks. 1. Comparative functional morphology of shark scales, and ecology of scales. N Jahrb Geol Paläont Abh 164:172–183

    Google Scholar 

  • Reyment RA (1973) Factors in the distribution of fossil cephalopods. Part 3: experiments with exact models of certain shell types. Bull Geol lnst Univ Uppsala N S 4:7–41

    Google Scholar 

  • Ritterbush K, Bottjer DJ (2012) Westermann Morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38:424–446. doi:10.1666/10027.1

    Google Scholar 

  • Ritterbush K, De Baets K, Hoffmann R, Lukeneder A (2014) Pelagic Palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. J Zool. doi:10.1111/jzo.12118

    Google Scholar 

  • Rosa R, Seibel BA (2010) Voyage of the argonauts in the pelagic realm: physiological and behavioural ecology of the rare paper nautilus, Argonauta nouryi. ICES J Mar Sci J du Conseil 67:1494–1500

    Google Scholar 

  • Rothpletz A (1909) Über die Einbettung der Ammoniten in die Solnhofener Schichten. Abh math-phys Kl der königl Bayr Akad der Wiss München 24(2):313–337

    Google Scholar 

  • Saunders WB (1995) The ammonoid suture problem: relationship between shell and septal thickness and sutural complexity in Paleozoic ammonoids. Paleobiology 21:343–355

    Google Scholar 

  • Saunders WB, Shapiro EA (1986) Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:64–79

    Google Scholar 

  • Saunders WB, Wehman DA (1977) Shell strength of Nautilus as a depth limiting factor. Paleobiology 3:83–89

    Google Scholar 

  • Saunders WB, Work DM (1996) Shell morphology and suture complexity in Upper Carboniferous ammonoids. Paleobiology 22:189–218

    Google Scholar 

  • Saunders WB, Work DM (1997) Evolution of shell morphology and suture complexity in Paleozoic prolecanitids, the rootstock of Mesozoic ammonoids. Paleobiology 23:301–325

    Google Scholar 

  • Saunders WB, Work DM, Nikolaeva SV (1999) Evolution of complexity in Paleozoic ammonoids. Science 286:760–763

    Google Scholar 

  • Schmidt H (1930) Ueber die Bewegungsweise der Schalencephalopoden. Paläontol Z 12:194–208

    Google Scholar 

  • Schmidt-Nielsen K (1972) Locomotion: energy cost of swimming, flying and running. Science 177:222–228

    Google Scholar 

  • Seibel BA (2007) On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the class Cephalopoda (Mollusca). J Exp Biol 210:1–11

    Google Scholar 

  • Seibel BA, Thuesen EV, Childress JJ, Gorodezky LA (1997) Decline in pelagic Cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biol Bull 192:262–278

    Google Scholar 

  • Seilacher A (1960) Epizoans as a key to ammonoid ecology. J Paleont 34:189–193

    Google Scholar 

  • Seilacher A (1963) Umlagerung und Rolltransport von Cephalopodengehäusen. N Jahrb Geol Paläont Mh 11:593–615

    Google Scholar 

  • Seilacher A (1982a) Ammonite shells as habitats in the Posidonia shales of Holzmaden—floats or benthic islands? N Jahrb Geol Paläont Mh 1982:98–114

    Google Scholar 

  • Seilacher A (1982b) Ammonite shells as habitats—floats or benthic islands? In Einsele G, Seilacher A (eds) Cyclic and event in stratification. Springer, Berlin. doi:10.1007/978–3-642-75829-4_38

    Google Scholar 

  • Seilacher A, Keupp H (2000) Wie sind Ammoniten geschwommen? Fossilien 5:310–313

    Google Scholar 

  • Seki K, Tanabe K, Landman NH, Jacobs DK (2000) Hydrodynamic analysis of Late Cretaceous desmoceratine ammonites. Rev Paléobiol Vol spéc 8:141–155

    Google Scholar 

  • Shapiro EA, Saunders WB (1987) Nautilus shell hydrostatics. In: Saunders WB, Landman NH (eds) Nautilus—The biology and paleobiology of a living fossil. Plenum, New York

    Google Scholar 

  • Signor PW III, Brett CE (1984) The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229–245

    Google Scholar 

  • Stenzel HB (1964) Living Nautilus. In: Moore RC (ed) Treatise on invertebrate paleontology part K (Mollusca 3). Geological Society of America and University of Kansas Press, Lawrence, pp. K59–K93

    Google Scholar 

  • Summesberger H, Jurkivsek B, Kolar-Jurkovsek T (1999) Rollmarks of soft parts and a possible crop content of Late Cretaceous ammonites from the Slovenian karst. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing research on living and fossil Cephalopods. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Swan RTH, Saunders, WB (1987) Function and shape in late Paleozoic (mid-carboniferous) ammonoids. Paleobiology 13:297–311

    Google Scholar 

  • Tajika A, Naglik C, Morimoto N, Pascual-Cebrian E, Hennhöfer DK, Klug C (2015) Empirical 3D-model of the conch of the Middle Jurassic ammonite microconch Normannites, its buoyancy, the physical effects of its mature modifications and speculations on their function. Historical Biology: An International Journal of Paleobiology, 27(2):181–191. DOI: 10.1080/08912963.2013.872097

    Google Scholar 

  • Tanabe K (1979) Palaeoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Japan. Palaeontology 22:609–630

    Google Scholar 

  • Toriyama R, Sato T, Hamada T, Komalarjun P (1965) Nautilus pompilius drifts on the west coast of Thailand. Jpn J Geol Geog. 36:149–161

    Google Scholar 

  • Trammer J, Niechwedowicz M (2007) Hydrodynamically controlled anagenetic evolution of Famennian goniatites from Poland. Acta Palaeont Pol 52:63–75

    Google Scholar 

  • Trueman AE (1941) The ammonite body chamber, with special reference to the buoyancy and mode of life of the living ammonite. Q J Geol So. 96:339–383

    Google Scholar 

  • Trueman ER, Packard A (1968) Motor performances of some cephalopods. J Exp Biol 49:495–507

    Google Scholar 

  • Tsujita CJ, Westermann GEG (1998) Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeogr Palaeoclim Palaeoecol 144:135–160

    Google Scholar 

  • Urdy S, Goudemand N, Bucher H, Chirat R (2010a) Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. J Exp Biol B 314:280–302

    Google Scholar 

  • Urdy S, Goudemand N, Bucher H, Chirat R (2010b) Growth-dependent phenotypic variation of molluscan shells: implications for allometric data interpretation. J Exp Biol B 314:303–26

    Google Scholar 

  • Vogel S (1981) Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton

    Google Scholar 

  • Walton S, Korn D, Klug C (2010) Size distribution of the Late Devonian ammonoid Prolobites: indication for possible mass spawning events. Swiss J of Geosci 103:475–494

    Google Scholar 

  • Wang Y, Westermann GEG (1993) Paleoecology of triassic ammonoids. Geobios Mem Spec 15:373–392

    Google Scholar 

  • Ward PD (1976) Stratigraphy, paleoecology and functional morphology of heteromorph ammonites of the Upper Cretaceous Nanaimo Group, British Columbia and Washington. PhD thesis McMaster University Library, Thesis QE788134 (39005047235555), Hamilton, Canada

    Google Scholar 

  • Ward P (1979) Functional morphology of Cretaceous helically-coiled ammonite shells. Paleobiology 5:415–422

    Google Scholar 

  • Ward PD (1981) Shell sculpture as a defensive adaptation in ammonoids. Paleobiology 7:96–100

    Google Scholar 

  • Ward PD (1982) The relationship of siphuncle size to emptying rates in chambered cephalopods: implications for cephalopod paleobiology. Paleobiology 8:426–433

    Google Scholar 

  • Ward PD (1987) The natural history of Nautilus. Allen and Unwin, Winchester

    Google Scholar 

  • Ward PD, Wicksten MK (1980) Food sources and feeding behavior of Nautilus macromphalus. Veliger 23:119–124

    Google Scholar 

  • Ward PD, Stone R, Westermann GEG, Martin A (1977) Notes on animal weight, cameral fluids, swimming speed, and colour polymorphism of the cephalopod, Nautilus pompilius, in the Fiji Islands. Paleobiology 3:377–388

    Google Scholar 

  • Webber DM, O’Dor RK (1986) Monitoring the metabolic rate and activity of free-swimming squid with telemetered jet pressure. J Exp Biol 126:205–224

    Google Scholar 

  • Wells MJ (1987) Ventilation and oxygen extraction by Nautilus. In: Saunders WB, Landman NH (eds) Nautilus-The biology and paleobiology of a living fossil. Plenum, New York

    Google Scholar 

  • Wells MJ (1995) The evolution of a racing snail. Mar Freshw Behav Physiol 25:1–12

    Google Scholar 

  • Wells MJ, O’Dor RK (1991) Jet propulsion and the evolution of Cephalopods. Bull Mar Sci 49:419–432

    Google Scholar 

  • Wells MJ, Wells J (1985) Ventilation and oxygen uptake by Nautilus. J Exp Biol 118:297–312

    Google Scholar 

  • Westermann GEG (1966) Covariation and taxonomy of the Jurassic ammonite Sonninia adicra Waagen. N Jb Geol Paläont Abh 124:289–312

    Google Scholar 

  • Westermann GEG (1971) Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Sci Contrib R Ont Mus 78:1–39

    Google Scholar 

  • Westermann GEG (1973) Strength of concave septa and depth limits of fossil cephalopods. Lethaia 6:383–403

    Google Scholar 

  • Westermann GEG (1977) Form and Function of orthocone cephalopod shells with concave septa. Paleobiology 3:300–321

    Google Scholar 

  • Westermann GEG (1990) New developments in ecology of Jurassic-Cretaceous ammonoids. In: Pallini G, Cecca F, Cresta S, Santantonio M (eds) Fossili, evoluzione, ambiente. Atti II Conv Int Pergola 1987. Tecnostampa, Ostra Vetere

    Google Scholar 

  • Westermann GEG (1993) On alleged negative buoyancy of ammonoids. Lethaia 26:246. doi:10.1111/j.1502–3931.1993.tb01526.x

    Google Scholar 

  • Westermann GEG (1996) Ammonoid life and habitat. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Westermann GEG (2013) Hydrostatics, propulsion and life-habits of the Cretaceous ammonoid Baculites. Rev Paléobiol 32:249–265

    Google Scholar 

  • Westermann GEG, Tsujita CJ (1999) Life habits of ammonoids. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. Wiley, Hoboken

    Google Scholar 

  • Wilmsen M, Mosavinia A (2011) Phenotypic plasticity and taxonomy of Schloenbachia varians (J. Sowerby, 1817) (Cretaceous Ammonoidea). Paläontol Z 85:169–184

    Google Scholar 

  • Young JZ (1960) Observations on Argonauta and especially its method of feeding. Proc Zool Soc London 133:471–479

    Google Scholar 

  • Ziegler B (1967) Ammonitenökologie am Beispiel des Oberjura. Geol Rundsch 56:439–446

    Google Scholar 

Download references

Acknowledgements

We greatly appreciate the financial support by the Swiss National Science foundation (project numbers 200021-113956/1, 200020-25029, -132870, and -149120). We greatly appreciate the effort the reviewers Kenneth De Baets (Erlangen) and Benjamin J. Linzmeier (University of Wisconsin-Madison) have put into their reviews, thereby helping us to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Naglik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Naglik, C., Tajika, A., Chamberlain, J., Klug, C. (2015). Ammonoid Locomotion. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From anatomy to ecology. Topics in Geobiology, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9630-9_17

Download citation

Publish with us

Policies and ethics