Skip to main content

Employing Novel Techniques (Microwave and Sonochemistry) in the Synthesis of Biodiesel and Bioethanol

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Ultrasound

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 4))

Abstract

Energy crisis and environmental deterioration are the twin problems facing the mankind. Alternate energy sources, especially, biofuels (biodiesel and bioethanol) produced from renewable sources like biomass would alleviate the problem to some extent. Fast and demand based production of biofuels is the need of the hour. Transesterification is the crucial chemical reaction for biodeisel production. Likewise, biomass pretreatment, hydrolysis of carbohydrates and fermentation of sugars are vital in bioethanol production. Interestingly, both the unconventional techniques, sonication and microwave irradiation were found to be extremely useful in accelerating the afore mentioned reactions holding a promise for making sustainable biorefinery possible. The present chapter fully covered the work on carrying out the biodiesel synthesis employing Sonochemistry , however, the use of MW radiation for the synthesis of biodiesel was limited to solid base catalysts. The second part of the chapter was devoted to the use of MW and sonochemistry for the synthesis of bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koberg M, Gedanken A (2012) Optimization of bio-diesel production from oils, cooking oils, microalgae, and castor and jatropha seeds: probing various heating sources and catalysts. Energy Environ Sci 5:7460–7469

    Article  Google Scholar 

  2. Koberg M, Gedanken A (2012) Direct transesterification of castor and jatropha seeds for FAME production by microwave and ultrasound radiation using a SrO catalyst. Bioenergy Res 5:958–968

    Article  Google Scholar 

  3. Koberg M, Abu-Much R, Gedanken A (2011) Optimization of bio-diesel production from soybean and wastes of cooked oil: combining dielectric microwave irradiation and a SrO catalyst. Bioresour Technol 102:1073–1078

    Article  Google Scholar 

  4. Pulidindi IN, Kimchi BB, Gedanken A (2014) Can cellulose be a feedstock for bioethanol production? Renew Energy 71:77–80

    Article  Google Scholar 

  5. Pulidindi IN, Kimchi BB, Gedanken A (2014) Selective chemical reduction of carbon dioxide to formate using microwave irradiation. J CO2 Utilization 7:19–22

    Google Scholar 

  6. Kumar VB, Gedanken A, Pradip P (2013) Triangular core-shell ZnO@SiO2 nanoparticles. ChemPhysChem 14:3215–3220

    Article  Google Scholar 

  7. Eshed M, Lellouche J, Banin E, Gedanken A (2013) MgF2 nanoparticle coated teeth inhibit streptococcus mutans biofilm formation on the tooth model. J Mater Chem B 1:3985–3991

    Article  Google Scholar 

  8. Grinberg O, Shimanovich U, Gedanken A (2013) Encapsulating bioactive materials in sonochemically produced micro- and nano-spheres. J Mater Chem B 1:595–605

    Article  Google Scholar 

  9. Richter F, Fricke T, Wachendorf M (2011) Influence of sward maturity and pre-conditioning temperature on the energy production from grass silage through the integrated generation of solid fuel and biogas from biomass (IFBB): 1. The fate of mineral compounds. Bioresour Technol 102:4855–4865

    Article  Google Scholar 

  10. Penner SS (2006) Steps toward the hydrogen economy. Energy 31:33–43

    Article  Google Scholar 

  11. Kruse O, Rupprecht J, Mussgnug JR, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–969

    Article  Google Scholar 

  12. Blackler T, Iqbal MT (2006) Pre-feasibility study of wind power generation in holyrood, newfoundland. Renew Energy 31:489–502

    Article  Google Scholar 

  13. Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466

    Article  Google Scholar 

  14. Smith AL, Wood S, Hewitt N, Henriques I, Yan N, Bazely DR (2013) Second generation biofuels and bioinvasions: an evaluation of invasive risks and policy responses in the United States and Canada. Renew Sustain Energy Rev 27:30–42

    Article  Google Scholar 

  15. McCormick N, Howard G (2013) Beating back biofuel crop invasions: guidelines on managing the invasive risk of biofuel developments. Renew Energy 49:263–269

    Article  Google Scholar 

  16. Eisen B, Green KP (2010) Environmental policy and the law of unintended consequences: eight case studies from around the world. Frontier Centre for Public Policy, Winnipeg

    Google Scholar 

  17. Gupta RB, Demirbas A (2010) Gasoline, diesel and ethanol biofuels from grasses and plants. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Walburger AM, LeRoy D, Kaushik KK, Klein KK (2006) Policies to stimulate biofuel production in Canada: lessons from Europe and the United States. A BIOCAP research integration program, BIOCAP Canada, Kingston

    Google Scholar 

  19. Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW (1991) Sonochemical synthesis of amorphous iron. Nature 353:414–416

    Article  Google Scholar 

  20. Hiller R, Putterman SJ, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescene. Phys Rev Lett 69:1182–1184

    Article  Google Scholar 

  21. Barber BP, Putterman SJ (1991) Observation of synchronous picosecond sonoluminesence. Nature 352:318–320

    Article  Google Scholar 

  22. Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55

    Article  Google Scholar 

  23. Gedanken A (2008) Preparation and properties of proteinaceous microspheres made sonochemically. Chem Eur J 14:3840–3853

    Article  Google Scholar 

  24. Mingos DMP, Baghurst DR (1991) Applications of microwave dielectric heating effects to synthetic problems in Chemistry. Chem Soc Rev 20:1–47

    Article  Google Scholar 

  25. Strauss CR, Trainor RW (1995) Developments in microwave-assisted organic chemistry. Aust J Chem 48:1665–1692

    Article  Google Scholar 

  26. Galema SA (1997) Microwave chemistry. Chem Soc Rev 26:233–238

    Article  Google Scholar 

  27. Corsaro A, Chiacchio U, Pistara V, Romeo G (2004) Microwave-assisted chemistry of carbohydrates. Current Organ Chem 8:511–538

    Article  Google Scholar 

  28. Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Proc 49:885–900

    Article  Google Scholar 

  29. Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chem Mater 11:882–895

    Article  Google Scholar 

  30. Stavarache C, Vinatoru M, Nishimura R, Maeda Y (2003) Conversion of vegetable oil to biodiesel using ultrasonic irradiation. Chem Lett 32:716–717

    Article  Google Scholar 

  31. Stavarache C, Vinatoru M, Nishimura R, Maeda Y (2005) Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrason Sonochem 12:367–372

    Article  Google Scholar 

  32. Stavarache C, Vinatoru M, Maeda Y (2007) Aspects of ultrosonically assisted transesterification of various vegetable oils with methanol. Ultrason Sonochem 14:380–386

    Article  Google Scholar 

  33. Stavarache C, Vinotoru M, Maeda Y, Bandow H (2007) Ultrasonically driven continuous process for vegetable oil transesterification. Ultrason Sonochem 14:413–417

    Article  Google Scholar 

  34. Hanh HD, Nguyen TD, Okitsu K, Nishimura R, Maeda Y (2009) Biodiesel production through transesterification of triolein with various alcohols in an ultrasonic field. Renew Energy 34:766–768

    Article  Google Scholar 

  35. Hanh HD, Nguyen TD, Okitsu K, Nishimura R, Maeda Y (2009) Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition. Renew Energy 34:780–783

    Article  Google Scholar 

  36. Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27:298–306

    Article  Google Scholar 

  37. Koc AB, Vatandas M (2006) Ultrasonic velocity measurements on some liquids under thermal cycle: ultrasonic velocity hysteresis. Food Res Int 39:1076–1083

    Article  Google Scholar 

  38. Kelkar MA, Gogate PR, Pandit AB (2008) Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation. Ultrason Sonochem 15:188–194

    Article  Google Scholar 

  39. Kalva A, Sivasankar T, Moholkar VS (2009) Physical mechanism of ultrasound-assisted synthesis of biodiesel. Ind Eng Chem Res 48:534–544

    Article  Google Scholar 

  40. Mahamuni NN, Adewuyi YG (2009) Optimization of the synthesis of biodiesel via ultrasound-enhanced base-catalyzed transesterification of soybean oil using a multifrequency ultrasonic reactor. Energy Fuel 23:2757–2766

    Article  Google Scholar 

  41. Mahamuni NN, Adewuyi YG (2010) Application of Taguchi method to investigate the effects of process parameters on the transesterification of soybean oil using high frequency ultrasound. Energy Fuel 24:2120–2126

    Article  Google Scholar 

  42. Deshmane VG, Adewuyi YG (2013) Synthesis and kinetics of biodiesel formation via calcium methoxide base catalyzed transesterification reaction in the absence and presence of ultrasound. Fuel 107:474–482

    Article  Google Scholar 

  43. Koberg M, Cohen M, Ben-Amotz A, Gedanken A (2011) Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresour Technol 102:4265–4269

    Article  Google Scholar 

  44. Ranjan A, Patil C, Moholkar VS (2010) Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res 49:2979–2985

    Article  Google Scholar 

  45. Parkar PA, Choudhary HA, Moholkar VS (2012) Mechanistic and kinetic investigations in ultrasound assisted acid catalyzed biodiesel synthesis. Chem Eng J 187:248–260

    Article  Google Scholar 

  46. Choudhury HA, Malani RS, Moholkar VS (2013) Acid catalyzed biodiesel synthesis from jatropha oil: mechanistic aspects of ultrasonic intensification. Chem Eng J 231:262–272

    Article  Google Scholar 

  47. Hobuss CB, Venzke D, Pacheco BS, Souza AO, Santos MAZ, Moura S, Quina FH, Fiametti KG, Oliveira JV, Pereira CMP (2012) Ultrasound-assisted synthesis of aliphatic acid esters at room temperature. Ultrason Sonochem 19:387–389

    Article  Google Scholar 

  48. Verma A, Kumar S, Jain PK (2011) Key pretreatment technologies on cellulosic ethanol production. Ind J Sci Res 55:57–63

    Google Scholar 

  49. Shewale SD, Pandit AB (2009) Enzymatic production of glucose from different qualities of grain sorghum and application of ultrasound to enhance the yield. Carbohyd Res 344:52–60

    Article  Google Scholar 

  50. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  Google Scholar 

  51. Subhedar PB, Gogate PR (2013) Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: a review. Ind Eng Chem Res 52:11816–11828

    Article  Google Scholar 

  52. Nikolic S, Mojovic L, Rakin M, Pejin D, Pejin J (2010) Ultrasound-assisted production of bioethanol by simultaneous saccharification and fermentation of corn meal. Food Chem 122:216–222

    Article  Google Scholar 

  53. Goshadrou A, Karimi K, Taherzadeh MJ (2011) Bioethanol production from sweet sorghum bagasse by Mucor hiemalis. Ind Crop Prod 34:1219–1225

    Article  Google Scholar 

  54. Bussemaker MJ, Xu F, Zhang DK (2013) Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring. Bioresour Technol 148:15–23

    Article  Google Scholar 

  55. Sindhu R, Kuttiraja M, Preeti VE, Vani S, Sukumaran RK, Binod PA (2013) Novel surfactant-assisted ultrasound pretreatment of sugarcane tops for improved enzymatic release of sugars. Bioresour Technol 135:67–72

    Article  Google Scholar 

  56. Sasmal S, Goud VV, Mohanty K (2012) Ultrasound assisted lime pretreatment of lignocellulosic biomass toward bioethanol production. Energy Fuel 26:3777–3784

    Article  Google Scholar 

  57. Ramadoss G, Muthukumar K (2014) Ultrasound assisted ammonia pretreatment of sugarcane bagasse for fermentable sugar production. Biochem Eng J 83:33–41

    Article  Google Scholar 

  58. Luo J, Fang Z, Smith RL Jr (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci 41:56–93

    Article  Google Scholar 

  59. Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3:415–431

    Article  Google Scholar 

  60. Pang F, Xue S, Yu S, Zhang C, Li B, Kang Y (2013) Effects of combination of steam explosion and microwave irradiation (SE–MI) pretreatment on enzymatic hydrolysis, sugar yields and structural properties of corn stover. Ind Crop Prod 42:402–408

    Article  Google Scholar 

  61. Verma P, Watanabe T, Honda Y, Watanabe T (2011) Microwave-assisted pretreatment of woody biomass with ammonium molybdate activated by H2O2. Bioresour Technol 102:3941–3945

    Article  Google Scholar 

  62. Klein M, Pulidindi IN, Perkas N, Meltzer-Mats E, Gruzman AL, Gedanken A (2012) Direct production of glucose from glycogen under microwave irradiation. RSC Adv 2:7262–7267

    Article  Google Scholar 

  63. Tzhayi O, Pulidindi IN, Gedanken A (2014) forming nanospherical cellulose containers. Ind Eng Chem Res 53(36):13871–13880

    Article  Google Scholar 

  64. Pulidindi IN, Gedanken A (2014) Carbon nanoparticles based non-enzymatic glucose sensor. Int J Environ Anal Chem 94:28–35

    Article  Google Scholar 

  65. Victor A, Pulidindi IN, Gedanken A (2014) Levulinic acid production from Cicer arietinum, cotton, Pinus radiata and sugarcane bagasse. RSC Adv 4:44706–44711

    Google Scholar 

  66. Li MF, Fan YM, Xu F, Sun RC, Zhang XL (2010) Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: characterization of the cellulose rich fraction. Ind Crop Prod 32:551–559

    Article  Google Scholar 

  67. Sulaiman AZ, Yunus RM, Chisti Y (2011) Ultrasound-assisted fermentation enhances bioethanol productivity. Biochem Eng J 54:141–150

    Article  Google Scholar 

  68. Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102:7119–7123

    Article  Google Scholar 

  69. Kisielewska M (2012) Ultrasonic stimulation of co-immobilized Saccharomyces cerevisiae cells and beta-galactosidase enzyme for enhanced ethanol production from whey ultrafiltration permeate. Pol J Environ Stud 21:387–393

    Google Scholar 

  70. Pejin DJ, Mojovic LV, Pejin JD, Grujic OS, Markov SL, Nikolic SB, Markovic MN (2012) Increase in bioethanol production yield from triticale by simultaneous saccharification and fermentation with application of ultrasound. J Chem Technol Biotechnol 87:170–176

    Article  Google Scholar 

  71. Rezic T, Oros D, Markovic I, Kracher D, Ludwig R, Santek B (2013) Integrated hydrolyzate and fermentation of sugar beet pulp to bioethanol. J Microbiol Biotechnol 23:1244–1252

    Article  Google Scholar 

  72. Belal ED (2013) Bioethanol production from rice straw residue. Braz J Microbiol 44:225–234

    Article  Google Scholar 

  73. Eshtiaghi MN, Kuldiloke J, Yoswathana N, Ebadi AG (2012) Application of ultrasound and technical enzymes during bioethanol production from fresh cassava root. J Food Agric Environ 10:905–909

    Google Scholar 

  74. Velmurugan R, Muthukumar K (2012) Sono-assisted enzymatic saccharification of sugar cane bagasse for bioethanol production. Biochem Eng J 63:1–9

    Article  Google Scholar 

  75. Pulidindi IN, Gedanken A, Schwarz R, Sendersky E (2012) Mild sonication accelerates ethanol production by yeast fermentation. Energy Fuel 26:2352–2356

    Article  Google Scholar 

  76. Shaheen M, Choi M, Ang W, Zhao YP, Xing J, Yang R, Xing JD, Zhang J, Chen J (2013) Application of low-intensity pulsed ultrasound to increase bioethanol production. Renew Energy 57:462–468

    Article  Google Scholar 

Download references

Acknowledgement

Gedanken thanks the Ministry of Science and Technology (MOST) for the research grant 3-9802 and the Israel Science Foundation (ISF) for supporting the research via a grant 12/586.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Gedanken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pulidindi, I.N., Gedanken, A. (2015). Employing Novel Techniques (Microwave and Sonochemistry) in the Synthesis of Biodiesel and Bioethanol. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ultrasound. Biofuels and Biorefineries, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9624-8_6

Download citation

Publish with us

Policies and ethics