Skip to main content

Batch and Continuous Ultrasonic Reactors for the Production of Methyl Esters from Vegetable Oils

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Ultrasound

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 4))

Abstract

Mass transfer is a rate limiting step in biodiesel production. Ultrasound can accelerate tremendously the mass transfer in both triglycerides transesterification and free fatty acid esterification by finely emulsifying reagents that are poorly miscible. We describe reactor configurations for both transesterification and esterification, with emphasis on the work published by the authors. Ultrasound in the esterification increases the mass transfer in raw oils at temperatures below 40 °C. The Eley–Rideal kinetic model of the esterification including the mass transfer resistance between the phases is in excellent agreement with the experimental data. The Rosett cell reactor combines acoustic cavitation and turbulence and transesterifies 90 % of the feedstock in 5 min, whereas it takes 90 min in a conventional batch reactor. Continuous and semi-continuous tubular reactors irradiated at a power density of 40 kW/cm3 converts 90 % of the oil in 10 min. A Sonitube® (Synetude) converts 90 % of the oil after a single passage in a continuous reactor. This corresponds to 18 s and a rate 300 times faster than the conventional process. Sonitube ® improves mass transfer substantially and is worthy of scaling up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boffito DC, Neagoe C, Edake M et al (2014) Biofuel synthesis in a capillary fluidized bed. Cat Today 237:13–17

    Google Scholar 

  2. Luo J, Fang Z, Smith RL (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Comb Sci 41:56–93

    Article  Google Scholar 

  3. Salvi BL, Panwar NL (2012) Biodiesel resources and production technologies—A review. Renew Sustain Energy Rev 16:3680–3689

    Google Scholar 

  4. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalysed transesterification. Appl Energy 87:1083–1095

    Article  Google Scholar 

  5. Perego C, Ricci M (2012) Diesel fuel from biomass. Catal Sci Technol 2:1776–1786

    Article  Google Scholar 

  6. Thanh LT, Okitsu K, Sadanga Y et al (2010) Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Biores Technol 101:639–645

    Article  Google Scholar 

  7. Thanh LT, Okitsu K, Sadanga Y et al (2010) A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Biores Technol 101:5394–5401

    Article  Google Scholar 

  8. Radich A (2004) Biodiesel performance, costs, and use. Energy Information Administration

    Google Scholar 

  9. Boffito DC, Pirola C, Galli F et al (2012) Free fatty acids esterification of waste cooking oil and its mixtures with rapeseed oil and diesel. Fuel 108:612–619

    Article  Google Scholar 

  10. Boffito DC, Crocellà V, Pirola C et al (2012) Ultrasonic enhancement of the acidity, surface area and free fatty acids esterification catalytic activity of sulphated ZrO2–TiO2 systems. J Catal 297:17–26

    Article  Google Scholar 

  11. Bianchi CL, Boffito DC, Pirola C et al (2010) Low temperature de-acidification process of animal fat as a pre-step to biodiesel production. Catal Lett 134:179–183

    Article  Google Scholar 

  12. Borges ME, Diaz L (2012) Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renew Sustain Energy Rev 16:2839–2849

    Article  Google Scholar 

  13. Bianchi CL, Pirola C, Boffito DC et al (2011) Non edible oils: raw materials for sustainable biodiesel. In: Stoytcheva M, Montero G (eds) Biodiesel feedstocks and processing technologies. Intech, pp 3–22

    Google Scholar 

  14. Pirola C, Bianchi CL, Boffito DC et al (2010) Vegetable oil deacidification by Amberlyst: study of catalyst lifetime and a suitable reactor configuration. Ind Eng Chem Res 49:4601–4606

    Article  Google Scholar 

  15. Veljković VB, Avramovi JM, Stamenkovi OS (2012) Biodiesel production by ultrasound assisted transesterification: state of art and the perspectives. Renew Sustain Energy Rev 16:1193–1209

    Article  Google Scholar 

  16. Gole VL, Gogate PR (2013) Intensification of synthesis of biodiesel from non-edible oil using sequential combination of microwave and ultrasound. Fuel Proc Technol 10:62–69

    Article  Google Scholar 

  17. Gole VL, Gogate PR (2014) Intensification of glycerolysis reaction of higher free fatty acid containing sustainable feedstock using microwave irradiation. Fuel Proc Technol 118:110–116

    Article  Google Scholar 

  18. Eze VC, Phan AN, Pyrez C et al (2013) Heterogeneous catalysis in an oscillatory baffled flow reactor. Catal Sci Technol 3:273–2379

    Article  Google Scholar 

  19. Santacesraia E, Turco R, Tortorelli M (2012) Biodiesel process intensification by using static mixers tubular reactors. Ind Eng Chem Res 51:8777–8787

    Google Scholar 

  20. Ghayal D, Pandit AB, Rathod VK (2013) Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrason Sonochem 20:322–328

    Article  Google Scholar 

  21. Santacesaria E, Di Serio M, Tesser R (2012) Biodiesel process intensification in a very simple microchannel device. Chem Eng Proc 52:47–54

    Article  Google Scholar 

  22. Wen Z, Yu X, Tu S et al (2009) Intensification of biodiesel synthesis using zigzag micro-channels reactors. Biores Technol 100:3054–3060

    Article  Google Scholar 

  23. Dimian AC, Bildea CS, Omota F et al (2009) Innovative process for fatty acid esters by dual reactive distillation. Comput Chem Eng 33:743–750

    Article  Google Scholar 

  24. Demirbas A (2008) Biodiesel from vegetable oils with MgO catalytic transesterification in supercritical methanol. Energy Sources Part A 30:1645–1651

    Article  Google Scholar 

  25. Lim S, Lee KT (2013) Process intensification for biodiesel production from Jatropha curcas L. seeds: supercritical reactive extraction process parameters study. Appl Energy 103:712–720

    Article  Google Scholar 

  26. Kiss AA (2013) Novel applications of dividing-wall column technology to biofuel production processes. J Chem Technol Biotechnol 88:1387–1404

    Article  Google Scholar 

  27. Gole VL, Gogate PR (2012) Intensification of synthesis of biodiesel from nonedible oils using sonochemical reactors. Ind Eng Chem Res 51:11866–11874

    Article  Google Scholar 

  28. Santos FFP, Malveira JQ, Cruz MGA et al (2010) Production of biodiesel by ultrasound assisted esterification of Oreochromis niloticus oil. Fuel 89:275–279

    Article  Google Scholar 

  29. Gole VL, Gogate PR (2012) A review on intensification of synthesis of biodiesel from sustainable feedstock. Ind Eng Chem Res 53:1–9

    Google Scholar 

  30. Chakraborty R, Gupta AK, Chowdhury R (2014) Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: parametric sensitivity and fuel quality assessment. Renew Sustain Energy Rev 29:120–134

    Article  Google Scholar 

  31. Maddikeri GL, Pandit AB, Gogate PR (2012) Intensification approaches for biodiesel synthesis from waste cooking oil: a review. Ind Eng Chem Res 51:14610–14628

    Article  Google Scholar 

  32. Mazubert A, Poux M, Aubin J (2013) Intensified process for FAMR production from waste cooking oil: a technological review. Chem Eng J 223:201–223

    Article  Google Scholar 

  33. Oh PP, Lau HLN, Chen J et al (2012) A review on conventional technologies and emerging process intensification (PI) methods for biodiesel production. Renew Sustain Energy Rev 16:5131–5145

    Article  Google Scholar 

  34. Qiu Z, Zhao L, Weatherley L (2010) Process intensification technologies in continuous biodiesel production. Chem Eng Proc 49:323–330

    Article  Google Scholar 

  35. Badday AS, Abdullah AZ, Lee KT, Khayoon MS (2012) Intensification of biodiesel production via ultrasonic-assisted process: a critical review on fundamentals and recent development. Renew Sustain Energy Rev 16:4574–4587

    Article  Google Scholar 

  36. Kardos N, Luche JL (2001) Sonochemistry of carbohydrate compounds. Carbohydr Res 332:115–131

    Article  Google Scholar 

  37. Thomson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249

    Article  Google Scholar 

  38. Abramovic JM, Stamenković OS, ZB Todorović et al (2010) The optimization of the ultrasound-assisted base-catalyzed sunflower oil methanolysis by a full factorial design. Fuel Proc Technol 91:1551–1557

    Article  Google Scholar 

  39. Behzadi S, Farid MN (2009) Production of biodiesel using a continuous gas–liquid reactor. Biores Technol 100:683–689

    Article  Google Scholar 

  40. Chen Y, Wang L, Tsai H et al (2010) Continuous-flow esterification of free fatty acids in a rotating packed bed. Ind Eng Chem Res 49:4117–4122

    Article  Google Scholar 

  41. Pirola C, Galli F, Bianchi CL, Boffito DC, Manenti F (2014) Vegetable oils de-acidification by methanol heterogeneously catalyzed esterification in (monophasic liquid)/solid batch and continuous reactors. Energy Fuels 28:5236–5240

    Google Scholar 

  42. Boffito DC, Mansi S, Leveque JM et al (2013) Ultrafast biodiesel production suing ultrasound in batch and continuous reactors. Sustain Chem Eng 1:1432–1439

    Article  Google Scholar 

  43. Mahamuni NN, Adewuyi YG (2009) Optimization of the synthesis of biodiesel via ultrasound-enhanced base-catalyzed transesterification of soybean oil using a multifrequency ultrasonic reactor. Energy Fuels 23:2757–2766

    Article  Google Scholar 

  44. Boffito DC, Galli F, Pirola C, Bianchi CL, Patience G (2014) Ultrasonic free fatty acids esterification in Tobacco and Canola oil. Ultrason Sonochem. http://dx.doi.org/10.1016/j.ultsonch.2014.01.026

  45. Jadhav SH, Gogate PR (2014) Ultrasound assisted enzymatic conversion of non edible oil to methyl esters. Ultrason Sonochem 4:1374–1381

    Article  Google Scholar 

  46. Somnuk K, Smithmaitrie P, Prrateepchaikul G (2013) Two-stage continuous process of methyl ester from high free fatty acid mixed crude palm oil using static mixer coupled with high-intensity of ultrasound. Energy Conv Manage 75:302–310

    Article  Google Scholar 

  47. Toukoniitty B, Mikkola JP, Murzin et al (2005) Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions. Appl Catal A 279:1–22

    Google Scholar 

  48. Ragaini V, Pirola C, Borrelli S et al (2012) Simultaneous ultrasound and microwave new reactor: detailed description and energetic considerations. Ultrason Sonochem 19:872–876

    Article  Google Scholar 

  49. Mason TJ, Lorimer JP (1988) Sonochemistry, theory, applications and uses of ultrasound in chemistry. Wiley, New York

    Google Scholar 

  50. Margulis MA (1992) Fundamentals in sonochemistry. Elsevier, Amsterdam

    Google Scholar 

  51. Liu Y, Lu H, Liu C et al (2009) Solubility measurements for the reaction systems in pre-esterification of high acid value Jatropha curcas L. Oil J Chem Eng Data 54:1421–1425

    Article  Google Scholar 

  52. Tesser R, Casale L, Verde D et al (2010) Kinetics and modelling of fatty acids esterification on acid exchange resins. Chem Eng J 157:539–550

    Article  Google Scholar 

  53. Tesser R, Casale L, Verde D et al (2009) Kinetics of free fatty acids esterification: batch and loop reactor modelling. Chem Eng J 154:25–33

    Article  Google Scholar 

  54. Deshmane VG, Gogate PR, Pandit AB (2009) Ultrasound-assisted synthesis of biodiesel from palm fatty acid distillate. Ind Eng Chem Res 48:7923–7927

    Article  Google Scholar 

  55. Deshmane VG, Gogate PR, Pandit AB (2009) Ultrasound assisted synthesis of isopropyl esters from palm fatty acid distillate. Ultrason Sonochem 16:345–350

    Article  Google Scholar 

  56. Boffito DC, Pirola C, Bianchi CL (2012) Heterogeneous catalysis for free fatty acids esterification reaction as a first step towards biodiesel production. Chem Today 30:14–18

    Google Scholar 

  57. Tupufia SC, Jeon YJ, Marquis C et al (2010) Enzymatic conversion of coconut oil for biodiesel production. Fuel Proc Technol 106:721–726

    Article  Google Scholar 

  58. Stavarache C, Vinatoru M, Maeda Y et al (2007) Ultrasonically driven continuous process for vegetable oil transesterification. Ultrason Sonochem 14:413–417

    Article  Google Scholar 

  59. Choudhary HA, Goswami PP, Malani RS et al (2013) Ultrasonic biodiesel synthesis from crude Jatropha curcas oil with heterogeneous base catalyst: mechanistic insight and statistical optimization. Ultrasonic Sonochem 21:1050–1064

    Article  Google Scholar 

  60. Cintas P, Mantegna S, Calcio Gaudino E, Cravotto G (2010) A new pilot flow reactor for high-intensity ultrasound irradiation, application to the synthesis of biodiesel. Ultrason Sonochem 17:985–989

    Google Scholar 

  61. Chand P, Chintareddy VR, Verkade JG et al (2010) Enhancing biodiesel production from soybean oil using ultrasonics. Energy Fuels 24:2010–2015

    Article  Google Scholar 

  62. Kumar D, Kumar G, Singh CP et al (2010) Ultrasonic-assisted transesterification of Jatropha curcas oil using solid catalyst, Na/SiO2. Ultrason Sonochem 17:839–844

    Google Scholar 

  63. Kumar D, Kumar G, Singh CP (2010) Fast easy ethanolysis of coconut oil for biodiesel production assisted by ultrasonication. Ultrason Sonochem 17:555–559

    Google Scholar 

  64. Sivakumar M, Pandi AB (2001) Ultrasound enhanced degradation of Rhodamine B: optimization with power density. Ultrason Sonochem 8:233–240

    Article  Google Scholar 

  65. Singh AK, Fernando SD, Hernandez R (2007) Base-catalyzed fast transesterification of soybean oil using ultrasonication. Energy Fuels 21:1161–1164

    Article  Google Scholar 

  66. Colucci JA, Borrero EE, Alape F (2005) Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. J Am Oil Chem Soc 82(7):525–530

    Article  Google Scholar 

  67. Georgogianni KG, Kontominas MG, Pomonis PJ et al (2008) Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Process Technol 89:503–509

    Article  Google Scholar 

  68. Kalva A, Sivasankar T, Moholkar VS (2009) Physical mechanism of ultrasound-assisted synthesis of biodiesel. Ind Eng Chem Res 48:534–544

    Article  Google Scholar 

  69. Gogate PR, Pandit AB (2001) Hydrodynamic cavitation: a state of the art review. Rev Chem Eng 17:1–85

    Article  Google Scholar 

  70. Gogate PR (2008) Cavitational reactors for process intensification of chemical processing applications: a critical review. Chem Eng Proc 47:515–527

    Article  Google Scholar 

  71. Kelkar MA, Gogate PR, Pandit AB (2008) Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation. Ultrason Sonochem 15:188–194

    Article  Google Scholar 

  72. Ji J, Wang J, Li Y, Yu Y, Xu Z (2006) Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics 44:411–414

    Article  Google Scholar 

  73. Ramachandran K, Suganya T, Nagendra Gandhi N et al (2013) Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: a review. Renew Sustain Energy Rev 22:410–418

    Google Scholar 

  74. Deng X, Fang Z, Hu Y, Zeng H et al (2009) Preparation of biodiesel on nano Ca–Mg–Al solid base catalyst under ultrasonic radiation in microaqueous media. Petrochem Technol 38:1071–1075

    Google Scholar 

  75. Knothe G, Van Gerpen JH, Krahl J (2005) The biodiesel handbook. AOCS Press, Champaign

    Book  Google Scholar 

  76. Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustain Energy Rev 4:111–133

    Article  Google Scholar 

  77. Van Gerpen J (2005) Biodiesel processing and production. Fuel Proc Technol 86:1097–1107

    Article  Google Scholar 

  78. Chilton CH (1950) Six-tenths factor applies to complete plant costs. Chem Eng 57:112–114

    Google Scholar 

  79. Garnett DI, Patience GS (1993) Why do scale-up power laws work. Chem Eng Progr 89(8):76–78

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge */SYNETUDE/* Company (Parc d’activités de Côte Rousse, 180 rue du Genevois, 73,000 Chambery, France), for providing the ultrasound horns and Sonitube® devices.

The authors would like to thank Fonds de recherche du Québec—Nature et technologies (FRQNT) for the Programmes de bourses d’excellence pour étudiants étrangers (PBEEE) granted to Daria C. Boffito.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Boffito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boffito, D.C. et al. (2015). Batch and Continuous Ultrasonic Reactors for the Production of Methyl Esters from Vegetable Oils. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ultrasound. Biofuels and Biorefineries, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9624-8_3

Download citation

Publish with us

Policies and ethics