Skip to main content

Production of Glucose from Starch-Based Waste Employing Ultrasound and/or Microwave Irradiation

  • Chapter
  • First Online:
  • 1683 Accesses

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 4))

Abstract

Industrial bio-waste valorization is an alternative approach to reduce residues, waste disposals or landfills, essential to a sustainable development. This chapter deals with the valorization of a starch-based industrial waste into sugars employing ultrasound and microwave technologies. Potato peel is a product-specific waste with high starch content, a macromolecule that can be hydrolyzed into building blocks such as sugars. The combination of ultrasound and microwave technologies for starch degradation to explore synergetic interactions is developed in the second part of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Serrano-Ruiz JC, Perez JMC, Francavilla M, Menendez C, Garcia AB, Reyes AAR, Luque R, Garcia-Suarez EJ (2012) Efficient microwave-assisted production of furfural from C5 sugars in aqueous media catalysed by Brönsted acidic ionic liquids. Catal Sci Technol 2:1828–1832

    Article  Google Scholar 

  2. Hernoux-Villière A (2013) Catalytic depolymerisation of starch-based industrial waste: use of non-conventional activation methods and novel reaction media. Thesis, University of Oulu, Université de Savoie

    Google Scholar 

  3. Hernoux A, Lévêque J-M, Lassi U, Molina-Boisseau S, Marais M-F (2013) Conversion of a non-water soluble potato starch waste into reducing sugars under non-conventional technologies. Carbohydr Polym 92:2065–2074

    Article  Google Scholar 

  4. Hernoux-Villière A, Lassi U, Hu T, Paquet A, Rinaldi L, Cravotto G, Molina-Boisseau S, Marais M-F, Lévêque J-M (2013) Simultaneous microwave/ultrasound-assisted hydrolysis of starch-based industrial waste into reducing sugars. ACS Sustain Chem Eng 1:995–1002

    Article  Google Scholar 

  5. Torres MDÁ, Parreño WC (2009) Thermal processing and quality optimization. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic Press, San Diego, pp 163–219

    Chapter  Google Scholar 

  6. BeMiller JN, Whistler RL (2009) Starch—chemistry and technology, 3rd edn. Academic Press, San Diego

    Google Scholar 

  7. Jane J (2009) Structural features of starch granules II. In: BeMiller J, Whistler R (eds) Starch, 3rd edn. Academic Press, San Diego, pp 193–236

    Chapter  Google Scholar 

  8. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    Article  Google Scholar 

  9. Liu Q, Donner E, Tarn R, Singh J, Chung H-J (2009) Advanced analytical techniques to evaluate the quality of potato and potato starch. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic Press, San Diego, pp 221–248

    Chapter  Google Scholar 

  10. Biliaderis CG (2009) Structural transitions and related physical properties of starch. In: BeMiller J, Whistler R (eds) Starch, 3rd edn. Academic Press, San Diego, pp 293–372

    Chapter  Google Scholar 

  11. Jenkins PJ, Donald AM (1998) Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohydr Res 308:133–147

    Article  Google Scholar 

  12. Grommers HE, van der Krogt DA (2009) Potato starch: production, modifications and uses. In: BeMiller J, Whistler R (eds) Starch, 3rd edn. Academic Press, San Diego, pp 511–539

    Chapter  Google Scholar 

  13. Singh J, Kaur L, McCarthy OJ (2009) Potato starch and its modification. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic Press, San Diego, pp 273–318

    Chapter  Google Scholar 

  14. Morehouse AL, Malzahn RC, Day JT (1972) Hydrolysis of starch. US patent 3663369 A

    Google Scholar 

  15. Fontana JD, Mitchell DA, Molina OE, Gaitan A, Bonfim TMB, Adelmann J, Grzybowski A, Passos M (2008) Starch depolymerization with diluted phosphoric acid and application of the hydrolysate in Astaxanthin fermentation. Food Technol Biotechnol 46:305–310

    Google Scholar 

  16. Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403

    Article  Google Scholar 

  17. Patil DR, Fanta GF (1993) Graft copolymerization of starch with methyl acrylate: an examination of reaction variables. J Appl Polym Sci 47:1765–1772

    Article  Google Scholar 

  18. Singh V, Ali SZ (2000) Acid degradation of starch. The effect of acid and starch type. Carbohydr Polym 41:191–195

    Google Scholar 

  19. Tasić MB, Konstantinović BV, Lazić ML, Veljković VB (2009) The acid hydrolysis of potato tuber mash in bioethanol production. Biochem Eng J 43:208–211

    Article  Google Scholar 

  20. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  Google Scholar 

  21. Sigma-Aldrich (2011) Glucose (GO) assay kit product code GAGO-20

    Google Scholar 

  22. Szalay A (1933) The destruction of highly polymerized molecules by ultrasonic waves. Z Phys Chem A164:234–240

    Google Scholar 

  23. Choi JH, Kim SB (1994) Effect of ultrasound on sulfuric acid-catalysed hydrolysis of starch. Korean J Chem Eng 11:178–184

    Article  Google Scholar 

  24. Lorimer JP, Mason TJ, Cuthbert TC, Brookfield EA (1995) Effect of ultrasound on the degradation of aqueous native dextran. Ultrason Sonochem 2:S55–S57

    Article  Google Scholar 

  25. Portenlänger G, Heusinger H (1997) The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes. Ultrason Sonochem 4:127–130

    Article  Google Scholar 

  26. Czechowska-Biskup R, Rokita B, Lotfy S, Ulanski P, Rosiak JM (2005) Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydr Polym 60:175–184

    Article  Google Scholar 

  27. Koda S, Taguchi K, Futamura K (2011) Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers. Ultrason Sonochem 18:276–281

    Article  Google Scholar 

  28. Wang Y-J, Truong V-D, Wang L (2003) Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr Polym 52:327–333

    Article  Google Scholar 

  29. Mason TJ, Cintas P (2002) Sonochemistry. In: Clark JH, Macquarrie D (eds) Handbook of green chemistry and technology. Blackwell Science Ltd, Oxford, pp 372–396

    Google Scholar 

  30. Kimura T, Sakamoto T, Leveque J-M, Sohmiya H, Fujita M, Ikeda S, Ando T (1996) Standardization of ultrasonic power for sonochemical reaction. Ultrason Sonochem 3:S157–S161

    Article  Google Scholar 

  31. Huang Q, Li L, Fu X (2007) Ultrasound effects on the structure and chemical reactivity of cornstarch granules. Starch–Stärke 59:371–378

    Article  Google Scholar 

  32. Jambrak AR, Herceg Z, Subaric D, Babic J, Brncic M, Brncic SR, Bosiljkov T, Cvek D, Tripalo B, Gelo J (2010) Ultrasound effect on physical properties of corn starch. Carbohydr Polym 79:91–100

    Article  Google Scholar 

  33. Metaxas AC, Meredith RJ (1983) Industrial microwave heating. IET

    Google Scholar 

  34. Stuerga D (2006) Microwave‐material interactions and dielectric properties, key ingredients for mastery of chemical microwave processes. In: Loupy A (ed) Microwaves in organic synthesis. Wiley‐VCH Verlag GmbH, London, pp 1–61

    Google Scholar 

  35. Loupy (2006) Microwaves in organic synthesis—second, completely revised and enlarged edition. Wiley-CH, London

    Google Scholar 

  36. Kappe CO, Dallinger D, Murphree SS (2008) Practical microwave synthesis for organic chemists. Wiley, London

    Google Scholar 

  37. Perreux L, Loupy A (2006) Nonthermal effects of microwaves in organic synthesis. In: Loupy A (ed) Microwaves in organic synthesis. Wiley‐VCH Verlag GmbH, London, pp 134–218

    Google Scholar 

  38. Khan AR, Johnson JA, Robinson RJ (1979) Degradation of starch polymers by microwave energy. Cereal Chem 56:303–304

    Google Scholar 

  39. Khan AR, Robinson RJ, Johnson JA (1980) Starch hydrolysis by acid and microwave energy. J Food Sci 45:1449

    Google Scholar 

  40. Yu H-M, Chen S-T, Suree P, Nuansri R, Wang K-T (1996) Effect of microwave irradiation on acid-catalyzed hydrolysis of starch. J Org Chem 61:9608–9609

    Article  Google Scholar 

  41. Warrand J, Janssen H-G (2007) Controlled production of oligosaccharides from amylose by acid-hydrolysis under microwave treatment: comparison with conventional heating. Carbohydr Polym 69:353–362

    Article  Google Scholar 

  42. Palav T, Seetharaman K (2007) Impact of microwave heating on the physico-chemical properties of a starch–water model system. Carbohydr Polym 67:596–604

    Article  Google Scholar 

  43. Shen X-F (2009) Combining microwave and ultrasound irradiation for rapid synthesis of nanowires: a case study on Pb(OH)Br. J Chem Technol Biotechnol 84:1811–1817

    Article  Google Scholar 

  44. Peng Y, Song G (2002) Combined microwave and ultrasound assisted Williamson ether synthesis in the absence of phase-transfer catalysts. Green Chem 4:349–351

    Article  Google Scholar 

  45. Cravotto G, Beggiato M, Penoni A, Palmisano G, Tollari S, Lévêque J-M, Bonrath W (2005) High-intensity ultrasound and microwave, alone or combined, promote Pd/C-catalyzed aryl–aryl couplings. Tetrahedron Lett 46:2267–2271

    Article  Google Scholar 

  46. Cravotto G, Boffa L, Lévêque J, Estager J, Draye M, Bonrath W (2007) A speedy one-pot synthesis of second-generation ionic liquids under ultrasound and/or microwave irradiation. Aust J Chem 60:946–950

    Article  Google Scholar 

  47. Čížová A, Sroková I, Sasinková V, Malovíková A, Ebringerová A (2008) Carboxymethyl starch octenylsuccinate: microwave- and ultrasound-assisted synthesis and properties. Starch–Stärke 60:389–397

    Article  Google Scholar 

  48. Lianfu Z, Zelong L (2008) Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason Sonochem 15:731–737

    Article  Google Scholar 

  49. Hu Y, Wang T, Mingxiao Wang, Han S, Wan P, Fan M (2008) Extraction of isoflavonoids from Pueraria by combining ultrasound with microwave vacuum. Chem Eng Process Process Intensif 47:2256–2261

    Article  Google Scholar 

  50. Yeneneh AM, Chong S, Sen TK, Ang HM, Kayaalp A (2013) Effect of ultrasonic, microwave and combined microwave-ultrasonic pretreatment of municipal sludge on anaerobic digester performance. Water Air Soil Pollut 224:1–9

    Article  Google Scholar 

  51. Gole VL, Gogate PR (2013) Intensification of synthesis of biodiesel from non-edible oil using sequential combination of microwave and ultrasound. Fuel Process Technol 106:62–69

    Article  Google Scholar 

  52. Maeda M, Amemiya H (1995) Chemical effects under simultaneous irradiation by microwaves and ultrasound. New J Chem 19:1023–1028

    Google Scholar 

  53. Chemat F, Poux M, Di Martino JL, Berlan J (1996) An original microwave-ultrasound combined reactor suitable for organic synthesis: application to pyrolysis and esterification. J Microw Power Electromagn Energy 31:19–22

    Google Scholar 

  54. Lagha A, Chemat S, Bartels PV, Chemat F (1999) Microwave-ultrasound combined reactor suitable for atmospheric sample preparation procedure of biological and chemical products. Analusis 27:452–457

    Article  Google Scholar 

  55. Chemat S, Lagha A, Amar H Ait, Chemat F (2004) Ultrasound assisted microwave digestion. Ultrason Sonochem 11:5–8

    Article  Google Scholar 

  56. Cravotto G, Cintas P (2007) The combined use of microwaves and ultrasound: improved tools in process chemistry and organic synthesis. Chem Eur J 13:1902–1909

    Article  Google Scholar 

  57. Ragaini V, Pirola C, Borrelli S, Ferrari C, Longo I (2012) Simultaneous ultrasound and microwave new reactor: detailed description and energetic considerations. Ultrason Sonochem 19:872–876

    Article  Google Scholar 

  58. Domini C, Vidal L, Cravotto G, Canals A (2009) A simultaneous, direct microwave/ultrasound-assisted digestion procedure for the determination of total Kjeldahl nitrogen. Ultrason Sonochem 16:564–569

    Article  Google Scholar 

  59. Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15:898–902

    Article  Google Scholar 

  60. Wu Z-L, Ondruschka B, Cravotto G (2008) Degradation of phenol under combined irradiation of microwaves and ultrasound. Environ Sci Technol 42:8083–8087

    Article  Google Scholar 

  61. Luo Z, Fu X, He X, Luo F, Gao Q, Yu S (2008) Effect of ultrasonic treatment on the physicochemical properties of maize starches differing in amylose content. Starch–Stärke 60:646–653

    Article  Google Scholar 

  62. Kapusniak J, Siemion P (2007) Thermal reactions of starch with long-chain unsaturated fatty acids. Part 2. Linoleic acid. J Food Eng 78:323–332

    Article  Google Scholar 

  63. Sivakumar M, Tatake PA, Pandit AB (2002) Kinetics of p-nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system. Chem Eng J 85:327–338

    Article  Google Scholar 

  64. Wang S, Huang B, Wang Y, Liao L (2006) Comparison of enhancement of pentachlorophenol sonolysis at 20 kHz by dual-frequency sonication. Ultrason Sonochem 13:506–510

    Article  Google Scholar 

  65. Brotchie A, Ashokkumar M, Grieser F (2007) Effect of water-soluble solutes on sonoluminescence under dual-frequency sonication. J Phys Chem C 111:3066–3070

    Article  Google Scholar 

  66. Lee M, Oh J (2011) Synergistic effect of hydrogen peroxide production and sonochemiluminescence under dual frequency ultrasound irradiation. Ultrason Sonochem 18:781–788

    Article  Google Scholar 

  67. Zhao L, Ma J, Zhai X (2010) Enhanced mechanism of catalytic ozonation by ultrasound with orthogonal dual frequencies for the degradation of nitrobenzene in aqueous solution. Ultrason Sonochem 17:84–91

    Article  Google Scholar 

  68. Tatake PA, Pandit AB (2002) Modelling and experimental investigation into cavity dynamics and cavitational yield: influence of dual frequency ultrasound sources. Chem Eng Sci 57:4987–4995

    Article  Google Scholar 

  69. Iernetti G, Ciuti P, Dezhkunov NV, Reali M, Francescutto A, Johri GK (1997) Enhancement of high-frequency acoustic cavitation effects by a low-frequency stimulation. Ultrason Sonochem 4:263–268

    Article  Google Scholar 

  70. Feng R, Zhao Y, Zhu C, Mason T (2002) Enhancement of ultrasonic cavitation yield by multi-frequency sonication. Ultrason Sonochem 9:231–236

    Article  Google Scholar 

  71. Moholkar VS (2009) Mechanistic optimization of a dual frequency sonochemical reactor. Chem Eng Sci 64:5255–5267

    Article  Google Scholar 

  72. Gogate PR, Tatake PA, Kanthale PM, Pandit AB (2002) Mapping of sonochemical reactors: review, analysis, and experimental verification. AIChE J 48:1542–1560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Audrey Villière or Jean-Marc Lévêque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Villière, A., Cravotto, G., Vibert, R., Perrier, A., Lassi, U., Lévêque, JM. (2015). Production of Glucose from Starch-Based Waste Employing Ultrasound and/or Microwave Irradiation. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ultrasound. Biofuels and Biorefineries, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9624-8_11

Download citation

Publish with us

Policies and ethics