Skip to main content

Mechanical and Combined Chemical and Mechanical Treatment of Biomass

  • Chapter
  • First Online:

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 4))

Abstract

Mechanical processing is a critical step in the utilization of biomass as a feedstock. It may be applied to reduce the size of the feedstock for ease of handling, to enhance hydrolysis, or to convert the feedstock into a useable product in a single step. Mechanical processing can be energy intensive and a balance needs to be struck between the need for reduced particle size, reduced crystallinity , and low operational costs. By combining mechanical and chemical treatments the operational costs can be greatly reduced and valuable products can be realized that can not be produced through mechanical, chemical, or enzymatic means alone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ASTM (2012) D1037-12: standard test methods for evaluating properties of wood-base fiber and particle panel materials. ASTM International, West Conshohocken, p 37

    Google Scholar 

  2. Zhu JY (2011) Physical pretreatment—woody biomass size reduction—for forest biorefinery. In: Sustainable production of fuels, chemicals, and fibers from forest biomass. American Chemical Society, pp 89–107

    Google Scholar 

  3. Bitra VSP, Womac AR, Chevanan N, Miu PI, Igathinathane C, Sokhansanj S, Smith DR (2009) Direct mechanical energy measures of hammer mill comminution of switchgrass, wheat straw, and corn stover and analysis of their particle size distributions. Powder Technol 193:32–45

    Article  Google Scholar 

  4. Bitra VSP, Womac AR, Igathinathane C, Miu PI, Yang YT, Smith DR, Chevanan N, Sokhansanj S (2009) Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover. Bioresour Technol 100:6578–6585

    Article  Google Scholar 

  5. Schell D, Harwood C (1994) Milling of lignocellulosic biomass. Appl Biochem Biotechnol 45–46:159–168

    Article  Google Scholar 

  6. Himmel M, Tucker M, Baker J, Rivard C, Oh K, Grohmann K (1985) Comminution of biomass: hammer and knife mills. Biotechnol Bioeng Symp 15:39–58

    Google Scholar 

  7. Bitra VSP, Womac AR, Chevanan N, Sokhansanj S (2008) Comminution properties of biomass in hammer mill and its particle size characterization. In: ASABE annual international meeting, 2008, Providence, Rhode Island, p 22

    Google Scholar 

  8. Esteban LS, Carrasco JE (2006) Evaluation of different strategies for pulverization of forest biomasses. Powder Technol 166:139–151

    Article  Google Scholar 

  9. Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro MJ, Castro E (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87:692–700

    Article  Google Scholar 

  10. Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  Google Scholar 

  11. Kitani O, Hall CW (1989) Hydrolysis. In: Biomass handbook. Gordon and Breach Science, New York, pp 434–451

    Google Scholar 

  12. Yu Y, Wu H (2011) Effect of ball milling on the hydrolysis of microcrystalline cellulose in hot-compressed water. AIChE J 57:793–800

    Article  Google Scholar 

  13. Stubičar N, Šmit v, Stubičar M, Tonejc A, Jánosi A, Jánosi A, Schurz J, Zipper P (2009) An X-ray diffraction study of the crystalline to amorphous phase change in cellulose during high-energy dry ball milling. Holzforschung—Int J Biol Chem Phys Technol Wood 52:455–458

    Google Scholar 

  14. Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985

    Article  Google Scholar 

  15. Zhao H, Holladay JE, Brown H, Zhangn ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600

    Article  Google Scholar 

  16. Chidambaram M, Bell AT (2010) A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chem 12:1253–1262

    Article  Google Scholar 

  17. Kudo S, Zhou Z, Norinaga K, Hayashi Ji (2011) Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid. Green Chem 13:3306–3311

    Article  Google Scholar 

  18. Kobayashi H, Yabushita M, Komanoya T, Hara K, Fujita I, Fukuoka A (2013) High-yielding one-pot synthesis of glucose from cellulose using simple activated carbons and trace hydrochloric acid. ACS Catal 3:581–587

    Article  Google Scholar 

  19. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  Google Scholar 

  20. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  Google Scholar 

  21. Boldyrev VV, Tkacova K (2000) Mechanochemistry of solids: past, present, and prospects. J Mater Synth Process 8:121–132

    Article  Google Scholar 

  22. Takacs L (1997) Solid state reactions induced by ball milling. Hyperfine Interact 111:245–250

    Article  Google Scholar 

  23. Balaz P, Achimovicova M, Balaz M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutkova E, Gaffet E, Gotor FJ, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637

    Article  Google Scholar 

  24. Barraud E, Begin-Colin S, Le Caer G, Barres O, Villieras F (2008) Mechanically activated solid-state synthesis of hafnium carbide and hafnium nitride nanoparticles. J Alloys Compd 456:224–233

    Article  Google Scholar 

  25. Rosen BM, Percec V (2007) Mechanochemistry: a reaction to stress. Nature 446:381–382 (London, UK)

    Article  Google Scholar 

  26. SPEXCertiprep (2008) Products for pulverizing and blending. http://www.spexcsp.com/sampleprep/catalog/aid4tid8.html

  27. Fritsch (2009) Planetary mills. http://www.fritsch.de

  28. Process U (2008) Dry grinding attritors: laboratory mills. http://www.unionprocess.com/dry_lab.html

  29. Industries P (2008) Ball and pebble mills. http://www.pattersonindustries.com/7a_pics.html

  30. Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5:1322–1329

    Article  Google Scholar 

  31. Carrasquillo-Flores R, Käldström M, Schüth F, Dumesic JA, Rinaldi R (2013) Mechanocatalytic depolymerization of dry (ligno)cellulose as an entry process for high-yield production of furfurals. ACS Catal 3:993–997

    Article  Google Scholar 

  32. Hilgert J, Meine N, Rinaldi R, Schuth F (2013) Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ Sci 6:92–96

    Article  Google Scholar 

  33. Shrotri A, Lambert LK, Tanksale A, Beltramini J (2013) Mechanical depolymerisation of acidulated cellulose: understanding the solubility of high molecular weight oligomers. Green Chem 15:2761–2768

    Article  Google Scholar 

  34. Zhang Q, Jérôme F (2013) Mechanocatalytic deconstruction of cellulose: an emerging entry into biorefinery. ChemSusChem 6:2042–2044

    Article  Google Scholar 

  35. Barakat A, Chuetor S, Monlau F, Solhy A, Rouau X (2014) Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: impact on energy and yield of the enzymatic hydrolysis. Appl Energy 113:97–105

    Article  Google Scholar 

  36. Kaldstrom M, Meine N, Fares C, Rinaldi R, Schuth F (2014) Fractionation of ‘water-soluble lignocellulose’ into C5/C6 sugars and sulfur-free lignins. Green Chem 16:2454–2462

    Article  Google Scholar 

  37. Kaldstrom M, Meine N, Fares C, Schuth F, Rinaldi R (2014) Deciphering ‘water-soluble lignocellulose’ obtained by mechanocatalysis: new insights into the chemical processes leading to deep depolymerization. Green Chem 16:3528–3538

    Google Scholar 

  38. Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG (2010) Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem 12:468–474

    Article  Google Scholar 

  39. Kim TH, Lee YY (2007) Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Appl Biochem Biotechnol 136–140:81–92

    Google Scholar 

  40. Lin Z, Liu L, Li R, Shi J (2012) Screw extrusion pretreatments to enhance the hydrolysis of lignocellulosic biomass. Microb Biochem Technol S12

    Google Scholar 

  41. McKissic KS, Caruso JT, Blair RG, Mack J (2014) Comparison of shaking versus baking: further understanding the energetics of a mechanochemical reaction. Green Chem 16:1628–1632

    Article  Google Scholar 

  42. Blair RG (2011) Oxidative cleavage of unsaturated carboxylic acids. Application, WO (University of Central Florida Research Foundation, Inc., USA), pp 21

    Google Scholar 

  43. Watanabe R, Hashimoto H, Lee GG (1995) Computer simulation of milling ball motion in mechanical alloying (overview). Mater Trans JIM 36:102–109

    Article  Google Scholar 

  44. Cleary PW (1998) Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Miner Eng 11:1061–1080

    Article  Google Scholar 

  45. Rajamani RK, Mishra BK, Venugopal R, Datta A (2000) Discrete element analysis of tumbling mills. Powder Technol 109:105–112

    Article  Google Scholar 

  46. Mio H (2005) Estimation of mechanochemical reaction rate and optimum design of planetary ball mill by discrete element method. Funtai Kogaku Kaishi 42:134–139

    Article  Google Scholar 

  47. Sinnott M, Cleary PW, Morrison R (2006) Analysis of stirred mill performance using DEM simulation: part 1—media motion, energy consumption and collisional environment. Min Eng 19:1537–1550

    Article  Google Scholar 

  48. Friščić T, Halasz I, Beldon PJ, Belenguer AM, Adams F, Kimber SAJ, Honkimäki V, Dinnebier RE (2013) Real-time and in situ monitoring of mechanochemical milling reactions. Nat Chem 5:66–73

    Google Scholar 

  49. Gugan D (2000) Inelastic collision and the Hertz theory of impact. Am F Phys 68:920–924

    Article  Google Scholar 

  50. van Dijk P (2000) Contact spots. In: 20th conference on electrical contacts

    Google Scholar 

  51. DEMSolutions (2007) EDEM. http://www.dem-solutions.com/

  52. Yamanaka T, Tanabe K (1976) A representative parameter, H0, max, of acid-base strength on solid metal-oxygen compounds. J Phys Chem 80:1723–1727

    Article  Google Scholar 

  53. Rinaldi R (2012) Media wear. In: Blair RG (ed) Private communication, 3 August 2012

    Google Scholar 

  54. Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M (2009) Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. J Phys Chem C 113:3181–3188

    Article  Google Scholar 

  55. Blair RG, Chagoya K, Jackson S, Biltek S, Taraboletti A, Sinclair A, Restrepo DT (2014) Scalability in the mechanochemical syntheses of edge functionalized graphene materials and biomass-derived chemicals. Faraday Discuss (Advance Article)

    Google Scholar 

  56. James SL, Adams CJ, Bolm C, Braga D, Collier P, Friscic T, Grepioni F, Harris KDM, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447

    Article  Google Scholar 

  57. Cincic D, Brekalo I, Kaitner B (2012) Effect of atmosphere on solid-state amine-aldehyde condensations: gas-phase catalysts for solid-state transformations. Chem Commun 48:11683–11685

    Article  Google Scholar 

  58. Mitsudome T, Mikami Y, Funai H, Mizugaki T, Jitsukawa K, Kaneda K (2008) Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst. Angew Chem 120:144–147

    Article  Google Scholar 

  59. Schnuerch M, Holzweber M, Mihovilovic MD, Stanetty P (2007) A facile and green synthetic route to boronic acid esters utilizing mechanochemistry. Green Chem 9:139–145

    Article  Google Scholar 

  60. Rodriguez B, Bruckmann A, Rantanen T, Bolm C (2007) Solvent-free carbon–carbon bond formations in ball mills. Adv Synth Catal 349:2213–2233

    Article  Google Scholar 

  61. Dushkin AV (2004) Potential of mechanochemical technology in organic synthesis and synthesis of new materials. Chem. Sust. Dev. 12:251–273

    Google Scholar 

  62. Schaffer GB, McCormick PG (1992) On the kinetics of mechanical alloying. Metall Trans A 23A:1285–1290

    Article  Google Scholar 

  63. Takacs L (2002) Self-sustaining reactions induced by ball milling. Prog Mater Sci 47:355–414

    Article  Google Scholar 

  64. Urakaev FK, Boldyrev VV (2000) Mechanism and kinetics of mechanochemical processes in comminuting devices 2. Applications of the theory. Experiment. Powder Technol 107:197–206

    Article  Google Scholar 

  65. Urakaev FK, Boldyrev VV (2000) Mechanism and kinetics of mechanochemical processes in comminuting devices 1. Theory. Powder Technol 107:93–107

    Article  Google Scholar 

  66. Maglia F, Milanese C, Anselmi-Tamburini U, Doppiu S, Cocco G, Munir ZA (2004) Combustion synthesis of mechanically activated powders in the Ta-Si system. J Alloy Compd 385:269–275

    Article  Google Scholar 

  67. Delogu F, Mulas G, Schiffini L, Cocco G (2004) Mechanical work and conversion degree in mechanically induced processes. Mater Sci Eng A A382:280–287

    Article  Google Scholar 

  68. Manai G, Delogu F, Schiffini L, Cocco G (2004) Mechanically induced self-propagating combustions: experimental findings and numerical simulation results. J Mater Sci 39:5319–5324

    Article  Google Scholar 

  69. Schüth F, Rinaldi R, Meine N, Käldström M, Hilgert J, Rechulski MDK (2014) Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products. Catalysis Today 234:24–30

    Google Scholar 

  70. Hocking MB (1997) Vanillin: synthetic flavoring from spent sulfite liquor. J Chem Educ 74:1055

    Article  Google Scholar 

  71. Kleine T, Buendia J, Bolm C (2013) Mechanochemical degradation of lignin and wood by solvent-free grinding in a reactive medium. Green Chem 15:160–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Blair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blair, R.G. (2015). Mechanical and Combined Chemical and Mechanical Treatment of Biomass. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ultrasound. Biofuels and Biorefineries, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9624-8_10

Download citation

Publish with us

Policies and ethics