Skip to main content

The Prelude to Continental Invasion

  • Chapter
  • First Online:
The Trace-Fossil Record of Major Evolutionary Events

Abstract

The colonization of land by animals was a major evolutionary transition. Ichnologic evidence suggests that this process may have begun at the end of the Ediacaran interval with incursions into very shallow, marginal-marine settings, shortly after the estimated time of the emergence of bilaterian taxa. Animals made their first unequivocal amphibious terrestrial forays during the Cambrian and may have managed to establish themselves in truly alluvial environments by the Late Ordovician. Following this early stage, the Silurian to Permian is characterized by an unequivocal explosion of diversity and expansion into new environments and niches. Subaqueous and transitional subaqueous to subaerial marginal-marine environments were colonized late in the Ediacaran but ecospace occupation was limited, extending to shallow and semi-infaunal tiers respectively. The Cambrian shows no ichnologic evidence that true continental environments were colonized but rather indicates brackish-water colonization as well as excursions into subaerial coastal dune environments by animals able to survive temporary periods of desiccation. In those environments that had begun to be colonized during the Ediacaran, the Cambrian shows a marked increase in ichnodiversity and the number of architectural designs, plus an expansion in ecospace exploitation to the deep infaunal tier. Of the phyla to colonize the land, the Arthropoda, Mollusca, and one or more of the Annelida, Nematoda, and Nemertea had already begun to adapt to marginal-marine habitats by the end of the Cambrian. What followed in the Ordovician, rather than an increase in ecospace occupation, was an increase in ichnodiversity and architectural designs within already exploited ecospace. The Ordovician yields arguably the first evidence for animals appearing in truly alluvial environments. A pattern emerges in which initial colonization of a new environment is followed by rapid filling of ecospace, after which animals establish new behavioral programs represented first by the appearance of original architectural designs, and then by a proliferation of ichnogenera representing variation upon these established themes. This pattern is consistent with the early burst model of diversification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allulee JA, Holland SM (2005) The sequence stratigraphic and environmental context of primitive vertebrates: harding Sandstone, Upper Ordovician, Colorado, USA. Palaios 20:518–533

    Article  Google Scholar 

  • Almond JE, Buatois LA, Gresse PG, Germs GJB (2008) Trends in metazoan body size, burrowing behaviour and ichnodiversity across the Precambrian-Cambrian boundary: ichnoassemblages from the Vanrhynsdorp Group of South Africa. In: Conference programme and abstracts, 15th biennial meeting of the Palaeontological Society of South Africa, Matjiesfontein, pp 15–20

    Google Scholar 

  • Amireh BS, Schneider W, Abed AM (1994) Evolving fluvial-transitional-marine deposition through the Cambrian sequence of Jordan. Sediment Geol 89:65–90

    Article  Google Scholar 

  • Astini RA, Mángano MG, Thomas WA (2000) El icnogénero Cruziana en el Cámbrico Temprano de la Precordillera Argentina: el registro más antiguo de Sudamérica. Rev Asoc Geol Argent 55:111–120

    Google Scholar 

  • Astini R, Waisfeld B, Toro B, Benedetto JL (2004) El Paleozoico inferior y medio de la región de Los Colorados, borde occidental de la Cordillera Oriental (provincia de Jujuy). Rev Asoc Geol Argent 59:273–280

    Google Scholar 

  • Baldwin CT (1977) The stratigraphy and facies associations of trace fossils in some Cambrian and Ordovician rocks of north western Spain. In: Crimes TP, Harper JC (eds) Trace Fossils 2, Geol J Spec Issue 9. Seel House Press, Liverpool, pp 9–40

    Google Scholar 

  • Baldwin CT, Strother PK, Beck JH, Rose E (2004) Palaeoecology of the Bright Angel Shale in the eastern Grand Canyon, Arizona, USA, incorporating sedimentological, ichnological and palynological data. In: McIlroy D (ed) The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geol Soc Spec Pub 228:213–236

    Google Scholar 

  • Battison L, Brasier MD (2012) Remarkably preserved prokaryote and eukaryote microfossils within 1 Ga-old lake phosphates of the Torridon Group, NW Scotland. Precambrian Res 196:204–217

    Article  CAS  Google Scholar 

  • Battistuzzi FU, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4:44

    Article  CAS  Google Scholar 

  • Benton MJ, Simms MJ (1995) Testing the marine and continental fossil records. Geology 23:601–604

    Article  Google Scholar 

  • Blank CE (2013) Phylogenetic distribution of compatible solute synthesis genes support a freshwater origin for cyanobacteria. J Phycol 49:880–895

    Article  CAS  Google Scholar 

  • Blank CE, Sánchez-Baracaldo P (2010) Timing of morphological and ecological innovations in the cyanobacteria—a key to understanding the rise in atmospheric oxygen. Geobiology 8:1–23

    Article  CAS  Google Scholar 

  • Braddy SJ, Almond JE (1999) Eurypterid trackways from the Table Mountain Group (Ordovician) of South Africa. J Afr Earth Sci 29:165–177

    Article  Google Scholar 

  • Branney MJ (1988) The subaerial setting of the Ordovician Borrowdale Volcanic Group, English Lake District. J Geol Soc Lond 145:887–890

    Article  Google Scholar 

  • Buatois LA, Mángano MG (1993) Ecospace utilization, paleoenvironmental trends and the evolution of early nonmarine biotas. Geology 21:595–598

    Google Scholar 

  • Buatois LA, Mángano MG (2002) Trace fossils from Carboniferous floodplain deposits in western Argentina: implications for ichnofacies models of continental environments. Palaeogeogr Palaeoclimatol Palaeoecol 183:71–86

    Article  Google Scholar 

  • Buatois LA, Mángano MG (2003) Sedimentary facies and depositional evolution of the Upper Cambrian to Lower Ordovician Santa Rosita Formation in northwest Argentina. J S Am Earth Sci 16:343–363

    Article  Google Scholar 

  • Buatois LA, Mángano MG (2007) Invertebrate ichnology of continental freshwater environments. In: Miller W III (ed) Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, pp 285–323

    Chapter  Google Scholar 

  • Buatois LA, Mángano MG (2012) The trace-fossil record of animal-matground interactions in space and time. In: Noffke N, Chafez H (eds) Microbial Mats in Siliciclastic Sediments. SEPM Spec Pub 101:15–28

    Google Scholar 

  • Buatois LA, Mángano MG, Maples CG, Lanier WP (1997) The paradox of nonmarine ichnofaunas in tidal rhythmites: integrating sedimentologic and ichnologic data from the Late Carboniferous of eastern Kansas, USA. Palaios 12:467–481

    Article  Google Scholar 

  • Buatois LA, Mángano MG, Genise JF, Taylor TN (1998a) The ichnologic record of the invertebrate invasion of nonmarine ecosystems: evolutionary trends in ecospace utilization, environmental expansion, and behavioral complexity. Palaios 13:217–240

    Google Scholar 

  • Buatois LA, Mángano MG, Mikuláš R, Maples CG (1998b) The ichnogenus Curvolithus revisited. J Paleontol 72:758–769

    Article  Google Scholar 

  • Buatois LA, Gingras MK, MacEachern J, Mángano MG, Zonneveld J-P, Pemberton SG, Netto RG, Martin A (2005) Colonization of brackish-water systems through time: evidence from the trace-fossil record. Palaios 20:321–347

    Article  Google Scholar 

  • Buatois LA, Zeballo FJ, Albanesi GL, Ortega G, Vaccari NE, Mángano MG (2006) Depositional environments and stratigraphy of the upper Cambrian-Lower Ordovician Santa Rosita Formation at the Alfarcito area, Cordillera Oriental, Argentina: integration of biostratigraphy data within a sequence stratigraphic framework. Lat Am J Sedimentol Basin Anal 13:1–29

    Google Scholar 

  • Buatois LA, Almond J, Gresse P, Germs G (2007) The elusive Proterozoic-Cambrian boundary: ichnologic data from Vanrynsdorp Group of South Africa. In: IX International Ichnofabric Workshop, Abstracts with Program, pp 8–9

    Google Scholar 

  • Buatois LA, Almond J, Germs GJB (2013) Environmental tolerance and range offset of Treptichnus pedum: implications for the recognition of the Ediacaran-Cambrian boundary. Geology 41:519–522

    Article  Google Scholar 

  • Butterfield NJ (2011) Animals and the invention of the Phanerozoic Earth system. Trends Ecol Evol 26:81–87

    Article  Google Scholar 

  • Callow RHT, Battison L, Brasier MD (2011) Diverse microbially induced sedimentary structures from 1 Ga lakes of the Diabaig Formation, Torridon Group, northwest Scotland. Sediment Geol 239:117–128

    Article  Google Scholar 

  • Callow RHT, Brasier MD, McIlroy D (2013) Discussion: “Were the Ediacaran siliciclastics of South Australia coastal or deep marine?” by Retallack et al., Sedimentology 59, 1208–1236. Sedimentology 60:624–627

    Article  Google Scholar 

  • Chlupáč R (1995) Lower Cambrian arthropods from the Paseky Shale (Barrandian area, Czech Republic). J Czech Geol Soc 40:9–25

    Google Scholar 

  • Clarke JT, Warnock RCM, Donoghue PCJ (2011) Establishing a time-scale for plant evolution. New Phytol 192:266–301

    Article  Google Scholar 

  • Collette JH, Hagadorn JW (2010) Three-dimensionally preserved arthropods from Cambrian Lagerstätten of Quebec and Wisconsin. J Paleontol 84:646–667

    Article  Google Scholar 

  • Collette JH, Hagadorn JA, Lacelle MA (2010) Dead in their tracks—Cambrian arthropods and their traces from intertidal sandstones of Quebec and Wisconsin. Palaios 25:475–486

    Article  Google Scholar 

  • Collette JH, Gass KC, Hagadorn JW (2012) Protichnites eremita unshelled? Experimental model-based neoichnology and new evidence for a euthycarcinoid affinity for this ichnospecies. J Paleontol 86:442–454

    Article  Google Scholar 

  • Corenblit D, Davies NS, Steiger J, Gibling MR, Bornette G (2015) Considering river structure and stability in the light of evolution: feedbacks between riparian vegetation and hydrogeomorphology. Earth Surf Process Landf 40:189–207

    Article  Google Scholar 

  • Cotter E (1983) Shelf, paralic, and fluvial environments and eustatic sea-level fluctuations in the origin of the Tuscarora Formation (Lower Silurian) of central Pennsylvania. J Sediment Petrol 53:25–49

    Google Scholar 

  • Crimes TP, Anderson MM (1985) Trace fossils from Late Precambrian-Early Cambrian strata of southern Newfoundland (Canada): temporal and environmental implications. J Paleontol 59:310–343

    Google Scholar 

  • Crimes TP, Jiang J (1986) Trace fossils from the Precambrian-Cambrian boundary candidate at Meischucun, Jinning, Yunnan, China. Geol Mag 123:641–649

    Article  Google Scholar 

  • Crimes TP, Legg I, Marcos A, Arboleya M (1977) Late Precambrian-low Lower Cambrian trace fossils from Spain. In: Crimes TP, Harper JC (eds) Trace Fossils 2. Geol J Spec Issue 9:91–138

    Google Scholar 

  • Dalrymple RW, Choi K (2007) Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation. Earth Sci Rev 81:135–174

    Article  Google Scholar 

  • Davies NS, Gibling MR (2010) Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth Sci Rev 98:171–200

    Article  Google Scholar 

  • Davies NS, Gibling MR (2012) Comment: Early Cambrian metazoans in fluvial environments, evidence of the non-marine Cambrian radiation. Geology 40:e270

    Article  Google Scholar 

  • Davies NS, Gibling MR (2013) The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems. Earth Sci Rev 120:40–79

    Article  Google Scholar 

  • Davies NS, Sansom IJ (2009) Ordovician vertebrate habitats: a Gondwanan perspective. Palaios 24:717–722

    Article  Google Scholar 

  • Davies NS, Sansom IJ, Albanesi GL, Cespedes R (2007) Ichnology, palaeoecology and taphonomy of an Ordovician vertebrate habitat: the Anzaldo Formation, central Bolivia. Palaeogeogr Palaeoclimatol Palaeoecol 249:18–35

    Article  Google Scholar 

  • Davies NS, Rygel MC, Gibling MR (2010) Marine influence in the Upper Ordovician Juniata Formation (Potters Mills, Pennsylvania): implications for the history of life on land. Palaios 25:527–539

    Article  Google Scholar 

  • Davies NS, Gibling MR, Rygel MC (2011a) Alluvial facies evolution during the Palaeozoic greening of the continents: case studies, conceptual models and modern analogues. Sedimentology 58:220–258

    Article  Google Scholar 

  • Davies NS, Rygel MC, Gibling MR (2011b) Reply: Marine influence in the Upper Ordovician Juniata Formation (Potters Mills, Pennsylvania): implications for the history of life on land. Palaios 26:674–676

    Article  Google Scholar 

  • Davies NS, Sansom IJ, Nicoll RS, Ritchie A (2011c) Ichnology of the fish-fossil beds of the Stairway Sandstone (Middle Ordovician, central Australia). Alcheringa 35:553–569

    Article  Google Scholar 

  • Davies NS, Liu AG, Gibling MR, Miller RF (2016) Resolving MISS conceptions and misconceptions: a geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth Sci Rev 154:210–246. doi:10.1016/j.earscirev.2016.01.005

    Article  Google Scholar 

  • Davis RB, Minter NJ, Braddy SJ (2007) The neoichnology of terrestrial arthropods. Palaeogeogr Palaeoclimatol Palaeoecol 255:284–307

    Article  Google Scholar 

  • Desjardins PR, Mángano MG, Buatois LA, Pratt BR (2010) Skolithos pipe rock and associated ichnofabrics from the southern Rocky Mountains, Canada: colonization trends and environmental controls in an early Cambrian sand-sheet complex. Lethaia 43:507–528

    Article  Google Scholar 

  • Desjardins PR, Buatois LA, Pratt BR, Mángano MG (2012a) Forced regressive tidal flats: response to falling sea level in tide-dominated settings. J Sediment Res 82:149–162

    Article  Google Scholar 

  • Desjardins PR, Buatois LA, Pratt BR, Mángano MG (2012b) Subtidal sandbody architecture and ichnology in the Early Cambrian Gog Group of western Canada: implications for an integrated sedimentologic-ichnologic model of tide-dominated shelf settings. Sedimentology 59:1452–1477

    Article  CAS  Google Scholar 

  • Dix GR, Salad Hersi O, Nowlan GS (2004) The Potsdam-Beekmantown Group boundary, Nepean Formation type section (Ottawa, Ontario): a cryptic sequence boundary, not a conformable transition. Can J Earth Sci 41:897–902

    Article  Google Scholar 

  • Driese G, Byers CW, Dott RH Jr (1981) Tidal deposition in the basal Upper Cambrian Mt. Simon Formation in Wisconsin. J Sediment Petrol 51:367–381

    Google Scholar 

  • Durand J (1985) Le Gres Armoricain. Sédimentologie—Traces fossils: Milieux de epot. Centre Armoricain d'Étude structurale des Socles, Mémoires et Documents 3:1–150

    Google Scholar 

  • Evans R, Mory AJ, Tait AM (2007) An outcrop gamma ray study of the Tumblagooda Sandstone, Western Australia. J Petrol Sci Eng 57:37–59

    Article  CAS  Google Scholar 

  • Fedo CM, Cooper JD (2001) Sedimentology and sequence stratigraphy of Neoproterozoic and Cambrian units across a craton margin hinge zone, southeastern California and implications for the early evolution of the Cordilleran margin. J Sediment Geol 141–142:501–522

    Article  Google Scholar 

  • Fedorchuk ND, Dornbos SQ, Corsetti FA, Isbell JL, Petryshyn VA, Bowles JA, Wilmeth DT (2016) Early non-marine life: evaluating the biogenicity of Mesoproterozoic fluvial-lacustrine stromatolites. Precambrian Res 275:105–118

    Article  CAS  Google Scholar 

  • Fillion D, Pickerill RK (1990) Ichnology of the Upper Cambrian? to Lower Ordovician Bell Island and Wabana groups of eastern Newfoundland, Canada. Palaeontogr Can 7:1–119

    Google Scholar 

  • Fischer WA (1978) The habitat of the early vertebrates: trace and body fossil evidence from the Harding Formation (Middle Ordovician), Colorado. Mountain Geol 15:1–26

    Google Scholar 

  • Garwood RJ, Sharma PP, Dunlop JA, Giribet G (2014) A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development. Curr Biol 24:1017–1023

    Article  CAS  Google Scholar 

  • Gehling JG, Narbonne GM, Anderson MM (2000) The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology 43:427–456

    Article  Google Scholar 

  • Gehling JG, Jensen S, Droser ML, Myrow PM, Narbonne GM (2001) Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland. Geol Mag 138:213–218

    Article  Google Scholar 

  • Getty PR, Hagadorn JW (2008) Reinterpretation of Climactichnites Logan 1860 to include subsurface burrows, and erection of Musculopodus for resting traces of the trailmaker. J Paleontol 82:1161–1172

    Article  Google Scholar 

  • Getty PR, Hagadorn JW (2009) Palaeobiology of the Climactichnites tracemaker. Palaeontology 52:753–778

    Article  Google Scholar 

  • Geyer G, Uchman A (1995) Ichnofossil assemblages from the Nama Group (Neoproterozoic–Lower Cambrian) in Namibia and the Proterozoic–Cambrian boundary problem revisited. Beringeria 2:175–202

    Google Scholar 

  • Geyer G, Elicki O, Fatka O, Zylinska A (2008) Cambrian. In: McCann T (ed) The Geology of Central Europe, vol 1, Precambrian and Palaeozoic. The Geological Society of London, London, pp 155–202

    Google Scholar 

  • Gibb S, Chatterton BDE, Pemberton SG (2009) Arthropod ichnofossils from the Ordovician Stairway Sandstone of central Australia. Mem Assoc Australas Palaeontol 37:695–716

    Google Scholar 

  • Gibling MR, Davies NS (2012) Palaeozoic landscapes shaped by plant evolution. Nat Geosci 5:99–105

    Article  CAS  Google Scholar 

  • Gierlowski-Kordesch E (1991) Ichnology of an ephemeral lacustrine/alluvial plain system: Jurassic East Berlin Formation, Hartford Basin, USA. Ichnos 1:221–232

    Article  Google Scholar 

  • Graffin G (1992) A new locality of fossiliferous Harding Sandstone: evidence for freshwater Ordovician vertebrates. J Vertebr Paleontol 12:1–10

    Article  Google Scholar 

  • Greenwood B, Sherman DJ (1986) Hummocky cross-stratification in the surf zone—flow parameters and bedding genesis. Sedimentology 33:33–45

    Article  Google Scholar 

  • Hagadorn JW, Belt ES (2008) Stranded in Upstate New York: Cambrian scyphomedusae from the Potsdam Sandstone. Palaios 23:424–441

    Article  Google Scholar 

  • Hagadorn JW, Seilacher A (2009) Hermit arthropods 500 million years ago? Geology 37:295–298

    Article  Google Scholar 

  • Hagadorn JW, Dott RH Jr, Damrow D (2002) Stranded on a Late Cambrian shoreline: medusae from central Wisconsin. Geology 30:147–150

    Article  Google Scholar 

  • Hagadorn JW, Kirschvink JL, Raub TB, Rose EC (2011a) Above the great unconformity: a fresh look at the Tapeats Sandstone, Arizona-Nevada, USA. In: Hollingsworth JS, Sundberg FA, Foster JR (eds) Cambrian Stratigraphy and Paleontology of Northern Arizona and Southern Nevada. Museum of Northern Arizona Bulletin 67:63–77

    Google Scholar 

  • Hagadorn JW, Collette JH, Belt ES (2011b) Eolian-aquatic deposits and faunas of the Middle Cambrian Potsdam Group. Palaios 26:314–334

    Article  Google Scholar 

  • Harazim D, McIlroy D (2015) Mud-rich density-driven flows along an Early Ordovician storm-dominated shoreline: Implications for shallow-marine facies models. J Sed Res 85:509–528

    Article  CAS  Google Scholar 

  • Hofmann R, Mángano MG, Elicki O, Shinaq R (2012) Paleoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environments from the Middle Cambrian (Stage 5) of Jordan. J Paleontol 86:931–955

    Article  Google Scholar 

  • Hogan EG, Fedo CM, Cooper JD (2011) Reassessment of the Basal Sauk Supersequence Boundary across the Laurentian Craton-Margin Hinge Zone, Southeastern California. J Geol 119:661–685

    Article  CAS  Google Scholar 

  • Horodyski RJ, Knauth LP (1994) Life on land in the Precambrian. Science 263:494–498

    Article  CAS  Google Scholar 

  • Horodyskyj LB, White TS, Kump LR (2012) Substantial biologically mediated phosphorus depletion from the surface of a Middle Cambrian paleosol. Geology 40:503–506

    Article  CAS  Google Scholar 

  • Jago JB, Gehling JG, Paterson JR, Brock GA (2012) Comments on Retallack, G.J. 2011: Problematic megafossils in Cambrian palaeosols of South Australia. Palaeontology 55:913–917

    Article  Google Scholar 

  • Jensen S (2003) The Proterozoic and earliest Cambrian trace fossil record; patterns, problems and perspectives. Integr Comp Biol 43:219–228

    Article  Google Scholar 

  • Jensen S, Droser ML, Gehling JG (2006) A critical look at the Ediacaran trace fossil record. In: Xiao S, Kaufman AJ (eds) Neoproterozoic Geobiology and Paleobiology. Springer, Amsterdam, pp 115–157

    Chapter  Google Scholar 

  • Johnson EW, Briggs DEG, Suthren RJ, Wright JL, Tunnicliff SP (1994) Non-marine arthropod traces from the subaerial Ordovician Borrowdale Volcanic Group, English Lake District. Geol Mag 131:395–406

    Article  Google Scholar 

  • Kalmar A, Currie DJ (2010) The completeness of the continental fossil record and its impact on patterns of diversification. Paleobiology 36:51–60

    Article  Google Scholar 

  • Kennedy MJ, Droser ML (2011) Early Cambrian metazoans in fluvial environments, evidence of the non-marine Cambrian radiation. Geology 39:583–586

    Article  Google Scholar 

  • Kennedy MJ, Droser ML (2012) Reply: Early Cambrian metazoans in fluvial environments, evidence of the non-marine Cambrian radiation. Geology 40:e271

    Article  Google Scholar 

  • Kennedy M, Droser M, Mayer LM, Pevear D, Mrofka D (2006) Late Precambrian oxygenation; inception of the clay mineral factory. Science 311:1446–1449

    Article  CAS  Google Scholar 

  • Kenrick P, Wellman CH, Schnieder H, Edgecombe GD (2012) A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philos Trans R Soc B 367:519–536

    Article  Google Scholar 

  • Knauth LP, Kennedy MJ (2009) The late Precambrian greening of the Earth. Nature 460:728–732

    CAS  Google Scholar 

  • Landing E, Narbonne GM, Myrow P, Benus AP, Anderson MM (1988) Faunas and depositional environments of the Upper Precambrian through Lower Cambrian, southeastern Newfoundland. Bull N Y State Mus 463:18–52

    Google Scholar 

  • Legg IC (1985) Trace fossils from a Middle Cambrian deltaic sequence, North Spain. In: Curran HA (ed) Biogenic Structures: Their Use in Interpreting Depositional Environments. SEPM Spec Pub 35:151–165

    Google Scholar 

  • Lenton TM, Crouch M, Johnson M, Pires N, Dolan L (2012) First plants cooled the Ordovician. Nat Geosci 5:86–89

    Article  CAS  Google Scholar 

  • MacNaughton RB, Narbonne GM (1999) Evolution and ecology of Neoproterozoic-Lower Cambrian trace fossils, NW Canada. Palaios 14:97–115

    Article  Google Scholar 

  • MacNaughton RB, Dalrymple RW, Narbonne GM (1997) Early Cambrian braid-delta deposits, Mackenzie Mountains, north-western Canada. Sedimentology 44:587–609

    Article  Google Scholar 

  • MacNaughton RB, Cole JM, Dalrymple RW, Braddy SJ, Briggs DEG, Lukie TD (2002) First steps on land: arthropod trackways in Cambrian-Ordovician eolian sandstone, southeastern Ontario, Canada. Geology 30:391–394

    Article  Google Scholar 

  • Makhlouf IM, Abed AM (1991) Depositional facies and environments in the Umm Ishrim Sandstone Formation, Dead Sea area, Jordan. Sediment Geol 71:177–187

    Article  Google Scholar 

  • Mángano MG, Buatois LA (2003) Rusophycus leiferikssoni en la Formación Campanario: Implicancias paleobiológicas, paleoecológicas y paleoambientales. In: Buatois LA, Mángano MG (eds) Icnología: Hacia una Convergencia Entre Geología y Biología. Publicación Especial de la Asociación Paleontológica Argentina 9:65–84

    Google Scholar 

  • Mángano MG, Buatois LA (2004) Reconstructing early Phanerozoic intertidal ecosystems: ichnology of the Cambrian Campanario Formation in northwest Argentina. In: Webby BD, Mángano MG, Buatois LA (eds) Trace Fossils in Evolutionary Palaeoecology. Fossils Strata 51:17–38

    Google Scholar 

  • Mángano MG, Buatois LA (2014) Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks. Proc R Soc B 281:20140038

    Article  Google Scholar 

  • Mángano MG, Buatois LA (2015) The trace-fossil record of tidal flats through the Phanerozoic: evolutionary innovations and faunal turnover. In: McIlroy D (ed) Ichnology: Papers from Ichnia III. Geol Assoc Can, Miscellaneous Publication 9:157–177

    Google Scholar 

  • Mángano MG, Buatois LA, Moya MC (2001) Trazas fósiles de trilobites de la Formación Mojotoro (Ordovícico inferior–medio de Salta, Argentina): Implicancias paleoecológicas, paleobiológicas y bioestratigráficas. Rev Esp Paleontol 16:9–28

    Google Scholar 

  • Mángano MG, Buatois LA, Rindsberg AK (2002) Carboniferous Psammichnites: systematic re-evaluation, taphonomy and autecology. Ichnos 9:1–22

    Article  Google Scholar 

  • Mángano MG, Buatois LA, Hofmann R, Elicki O, Shinaq R (2013) Exploring the aftermath of the Cambrian explosion: the evolutionary significance of marginal- to shallow-marine ichnofaunas of Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 374:1–15

    Article  Google Scholar 

  • Mángano MG, Buatois LA, Astini R, Rindsberg AK (2014) Trilobites in early Cambrian tidal flats and the landward expansion of the Cambrian explosion. Geology 42:143–146

    Article  Google Scholar 

  • Mannion PD, Upchurch P, Carrano MT, Barrett PM (2011) Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biol Rev 86:157–181

    Article  Google Scholar 

  • Martin AJ, Rindsberg AK (1999) Just what were those trilobites doing on the tidal flats? Meniscate burrows from the Upper Ordovician of the southern Appalachians. Geological Society of America, Abstracts with Papers 31:A-28

    Google Scholar 

  • Martini da Rosa CL (1999) Interação animalo/sedimento nos depósitos do Alogrupo Santa Bárbara. Master’s Dissertation, Universidade do Vale do Rio dos Sinos

    Google Scholar 

  • McIlroy D (2012) Comment: Early Cambrian metazoans in fluvial environments, evidence of the non-marine Cambrian radiation. Geology 40:e269

    Article  Google Scholar 

  • McNamara KJ (2014) Early Paleozoic colonisation of the land: evidence from the Tumblagooda Sandstone, Southern Carnarvon Basin, Western Australia. W Aust Sci J R Soc W Aust 97:111–132

    Google Scholar 

  • Mikuláš R (1995) Trace fossils from the Paseky Shale (Early Cambrian, Czech Republic). J Czech Geol Soc 40:37–45

    Google Scholar 

  • Miller MF, Labandeira CC (2002) Slow crawl across the salinity divide: delayed colonization of freshwater ecosystems by invertebrates. GSA Today 12:4–10

    Article  Google Scholar 

  • Minter NJ, Krainer K, Lucas SG, Braddy SJ, Hunt AP (2007) Palaeoecology of an Early Permian playa lake trace fossil assemblage from Castle Peak, Texas, USA. Palaeogeogr Palaeoclimatol Palaeoecol 246:390–423

    Article  Google Scholar 

  • Mory AJ, Iasky RP, Ghorl KAR (2003) A summary of the geological evolution and petroleum potential of the Southern Carnarvon Basin, Western Australia. W Aust Geol Surv Rep 86:1–26

    Google Scholar 

  • Narbonne GM, Myrow PM, Landing E, Anderson MM (1987) A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Can J Earth Sci 24:1277–1293

    Article  Google Scholar 

  • Netto RG (2012) Evidences of life in terminal Proterozoic deposits of southern Brazil: a synthesis. Soc Bras Paleontol Monogr 2:15–26

    Google Scholar 

  • Netto RG, Martini da Rosa CL (2001a) A biota vendiana da sub-bacia de Santa Bárbara, Bacia do Camaqua. In: 17 Congresso Brasileiro de Paleontologia, Sociedade Brasileira de Paleontologia, Boletim de Resumos, Rio Branco, p 94

    Google Scholar 

  • Netto RG, Martini da Rosa CL (2001b) Colonización de ambiente marginales marinos en el Precámbrico: La biota vendiana del Alogrupo Santa Bárbara en el sur de Brasil (sub-cuenca de Santa Bárbara, Cuenca de Camaquã). Coloquio Internacional: Vendiano–Cámbrico del Gondwana Occidental, Proyecto CSIC C-32, Montevideo

    Google Scholar 

  • Netto RG, Paim PSG, Martini da Rosa CL (1992) Informe preliminar sobre a ocorrência de traços fósseis nos sedimentitos das Bacias do Camaquã e Santa Bárbara. 1st Workshop sobre as Bacias Molássicas Brasilianas, São Leopoldo, Anais, pp 90–96

    Google Scholar 

  • Peterson KJ, Cotton JA, Gehling JG, Pisani D (2008) The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philos Trans R Soc B 363:1435–1443

    Article  Google Scholar 

  • Pollock SG, Harper DAT, Rohr D (1994) Late Ordovician nearshore faunas and depositional environments, northwestern Maine. J Paleontol 68:925–937

    Article  Google Scholar 

  • Prave AR (2002) Life on land in the Proterozoic: evidence from the Torridonian rocks of northwest Scotland. Geology 30:811–814

    Article  Google Scholar 

  • Ranger MJ (1979) The stratigraphy and depositional environments of the Bell Island Group, the Wabana Group and the Wabana Iron Ores, Conception Bay, Newfoundland. M.Sc. Thesis, Memorial University, Canada

    Google Scholar 

  • Retallack GJ (1985) Fossil soils as grounds for interpreting the advent of large plants and animals on land. Philos Trans R Soc B 309:105–142

    Article  Google Scholar 

  • Retallack GJ (2001) Scoyenia burrows from Ordovician palaeosols of the Juniata Formation in Pennsylvania. Palaeontology 44:209–235

    Article  Google Scholar 

  • Retallack GJ (2009) Cambrian-Ordovician non-marine fossils from South Australia. Alcheringa 33:355–391

    Article  Google Scholar 

  • Retallack GJ (2011a) Problematic megafossils in Cambrian palaeosols of South Australia. Palaeontology 54:1223–1242

    Article  Google Scholar 

  • Retallack GJ (2011b) Comment: Marine influence in the Upper Ordovician Juniata Formation (Potters Mills, Pennsylvania): implications for the history of life on land. Palaios 26:672–673

    Article  Google Scholar 

  • Retallack GJ (2012a) Reply to comments on Retallack 2011: problematic megafossils in Cambrian palaeosols of South Australia. Palaeontology 55:919–921

    Article  Google Scholar 

  • Retallack GJ (2012b) Were Ediacaran siliciclastics of South Australia coastal or deep marine? Sedimentology 59:1208–1236

    Article  CAS  Google Scholar 

  • Retallack GJ (2013a) Reply to the Discussion by Callow et al. on “Were the Ediacaran siliciclastics of South Australia coastal or deep marine?” by Gregory J. Retallack, Sedimentology, 59, 1208–1236. Sedimentology 60:628–630

    Article  Google Scholar 

  • Retallack GJ (2013b) Ediacaran life on land. Nature 493:89–92

    Article  CAS  Google Scholar 

  • Retallack GJ (2014) Comment: Affirming the life aquatic for the Ediacara biota in China and Australia. Geology 42:e325

    Article  Google Scholar 

  • Retallack GJ, Feakes CR (1987) Trace fossil evidence for Late Ordovician animals on land. Science 235:61–63

    Article  CAS  Google Scholar 

  • Rindsberg AK (1983) Ichnology and paleoecology of the Sequatchie and Red Mountain Formations (Ordovician-Silurian), Georgia-Tennessee. M.Sc. Thesis, University of Georgia, USA

    Google Scholar 

  • Romano M, Whyte MA (2015) A review of the trace fossil Selenichnites. P Yorks Geol Soc 60:275–288

    Article  Google Scholar 

  • Ronov AB, Khain VE, Balukhovsky AN, Seslavinsky KB (1980) Quantitative analysis of Phanerozoic sedimentation. Sediment Geol 25:311–325

    Article  Google Scholar 

  • Rota-Stabelli O, Daley AC, Pisani D (2013) Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23:392–398

    Article  CAS  Google Scholar 

  • Rubinstein CV, Gerrienne P, de la Puente GS, Astini RA, Steemans P (2010) Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol 188:365–369

    Article  CAS  Google Scholar 

  • Rubinstein CV, de la Puente GS, Delabroye A, Astini RA (2015) The palynological record across the Ordovician/Silurian boundary in the Cordillera Oriental, Central Andean Basin, northwestern Argentina. Rev Palaeobot Palynol 224:14–25

    Article  Google Scholar 

  • Sanford BV, Arnott RWC (2010) Stratigraphic and structural framework of the Potsdam Group in eastern Ontario, western Quebec and northern New York State. Geol Surv Can Bull 597:1–84

    Google Scholar 

  • Schmidt PW, Embleton BJJ (1990) The palaeomagnetism of the Tumblagooda Sandstone, Western Australia: Gondwana palaeozoic [sic] apparent polar wandering. Phys Earth Planet Inter 64:303–313

    Article  Google Scholar 

  • Schmidt PW, Hamilton PJ (1990) Palaeomagnetism and the age of the Tumblagooda Sandstone, Western Australia. Aust J Earth Sci 37:381–385

    Article  Google Scholar 

  • Seilacher A, Buatois LA, Mángano MG (2005) Trace fossils in the Ediacaran-Cambrian transition: Behavioral diversification, ecological turnover and environmental shift. Palaeogeogr Palaeoclimatol Palaeoecol 227:323–356

    Article  Google Scholar 

  • Selley RC (1970) Ichnology of Paleozoic sandstones in the southern desert of Jordan: a study of trace fossils in their sedimentologic context. In: Crimes TP, Harper JC (eds) Trace Fossils. Geol J Spec Issue 3:477–488

    Google Scholar 

  • Sharpe CFS (1932) Eurypterid trail from the Ordovician. Am J Sci 24:395–406

    Google Scholar 

  • Simpson EL, Heness E, Bumby A, Eriksson PG, Eriksson KA, Hilbert-Wolff HL, Linnevelt S, Malenda HF, Modungwa T, Okafor OJ (2013) Evidence for 2.0 Ga microbial mats in a paleodesert setting. Precambrian Res 237:36–50

    Article  CAS  Google Scholar 

  • Smith AB, McGowan AJ (2007) The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of western Europe? Palaeontology 50:765–774

    Article  Google Scholar 

  • Spjeldnaes N (1979) The palaeoecology of the Ordovician Harding Sandstone (Colorado, U.S.A.). Palaeogeogr Palaeoclimatol Palaeoecol 26:317–347

    Article  Google Scholar 

  • Steemans P (2000) Miospore evolution from the Ordovician to Silurian. Rev Palaeobot Palynol 113:189–196

    Article  CAS  Google Scholar 

  • Strother PK, Wood GD, Taylor WA, Beck JH (2004) Middle Cambrian cryptospores and the origin of land plants. Mem Assoc Australas Palaeontol 29:99–113

    Google Scholar 

  • Strother PK, Battison L, Brasier MD, Wellman CH (2011) Earth’s earliest non-marine eukaryotes. Nature 473:505–509

    Article  CAS  Google Scholar 

  • Tanner WF (1958) An occurrence of flat-topped ripple marks. J Sediment Petrol 28:95–96

    Article  Google Scholar 

  • Trewin NH, McNamara KJ (1995) Arthropods invade the land: trace fossils and palaeoenvironments of the Tumblagooda Sandstone (?late Silurian) of Kalbarri, Western Australia. Trans Roy Soc Edinb Earth Sci 85:177–210

    Article  Google Scholar 

  • Uchman A (1995) Taxonomy and paleoecology of flysch trace fossils: the Marnoso-Arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15:1–115

    Google Scholar 

  • Vavrdová M, Mikuláš R, Nehyba S (2003) Lower Cambrian siliciclastic sediments in southern Moravia (Czech Republic) and their paleogeographical constraints. Geol Carpath 54:67–79

    Google Scholar 

  • Watanabe Y, Martini JEJ, Ohmoto H (2000) Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature 408:574–578

    Article  CAS  Google Scholar 

  • Weber B, Braddy SJ (2004) A marginal marine ichnofauna from the Blaiklock Glacier Group (?Lower Ordovician) of the Shakleton Range, Antarctica. Trans R Soc Edinb Earth Sci 94:1–20

    Article  Google Scholar 

  • Wellman CH, Strother PK (2015) The terrestrial biota prior to the origin of land plants (embryophytes): a review of the evidence. Palaeontology 58:601–627

    Article  Google Scholar 

  • Williams GE (1989) Late Precambrian tidal rhythmites in South Australia and the history of the Earth’s rotation. J Geol Soc Lond 146:97–111

    Article  Google Scholar 

  • Xiao S, Knauth LP (2013) Fossils come in to land. Nature 493:28–29

    Article  CAS  Google Scholar 

  • Xiao S, Droser M, Gehling JG, Hughes IV, Wan B, Chen Z, Yuan X (2013) Affirming life aquatic for the Ediacara biota in China and Australia. Geology 41:1095–1098

    Article  Google Scholar 

  • Xiao S, Droser M, Gehling JG, Hughes IV, Wan B, Chen Z, Yuan X (2014) Reply: Affirming the life aquatic for the Ediacara biota in China and Australia. Geology 42:e326

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the constructive comments of Godfrey Nowlan on an earlier version of this chapter, and for the thorough review from Russell Garwood. Paul Shepherd is thanked for facilitating access to specimens from the Borrowdale Volcanic Group at the British Geological Survey, Keyworth. The initial stages of this research were made possible thanks to a Government of Canada Postdoctoral Research Fellowship awarded to Minter under the Canadian Commonwealth Scholarship Programme. Financial support for this study was provided by Natural Sciences and Engineering Research Council (NSERC) Discovery Grants 311727-08/15 and 311726-08/13 awarded to Mángano and Buatois, respectively. Gibling also acknowledges funding from an NSERC Discovery Grant. This is Earth Sciences Sector Contribution 20140048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Minter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Minter, N.J., Buatois, L.A., Mángano, M.G., MacNaughton, R.B., Davies, N.S., Gibling, M.R. (2016). The Prelude to Continental Invasion. In: Mángano, M., Buatois, L. (eds) The Trace-Fossil Record of Major Evolutionary Events. Topics in Geobiology, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9600-2_5

Download citation

Publish with us

Policies and ethics