Skip to main content

The Conceptual and Methodological Tools of Ichnology

  • Chapter
  • First Online:
The Trace-Fossil Record of Major Evolutionary Events

Part of the book series: Topics in Geobiology ((TGBI,volume 39))

Abstract

In order to be able to turn our attention to the potential of trace fossils to unravel information on evolutionary events, the conceptual and methodological tools of ichnology need to be briefly reviewed. Ichnology is the multidisciplinary science that focuses on the study of traces produced by organisms (both animals and plants) on or within a substrate, including all issues related to bioturbation, bioerosion, and biodeposition. Preservational aspects need to be assessed in any study involving trace fossils and a number of classification schemes are available. Because trace fossils are primarily evidence of animal behavior, evaluation of the ethologic significance of trace fossils is central to any application of ichnology, and the ethologic classification of trace fossils is an important component of the conceptual framework of ichnology. Ichnologists tend to frame their work within two different research traditions: the ichnofacies model and the ichnofabric approach. Both research strategies may be employed in conjunction, resulting in a more holistic view of the trace-fossil record. The strength of the ichnofacies model relies on its archetypal nature, whereas the strength of the ichnofabric approach resides in the evaluation of the taphonomic controls that filter the biogenic signal through the fossilization barrier. The concepts of ichnodiversity and ichnodisparity are useful to evaluate changes in types of animal–substrate interactions through geologic time. The three components of global diversity (alpha, beta, and gamma) commonly used in paleobiology for body fossils have been adapted for ichnology through the definition of alpha, beta, and gamma ichnodiversity. The concept of ichnodisparity is based on the definition of several categories of architectural designs. Whereas ichnodiversity refers to ichnotaxonomic richness, ichnodisparity provides a measure of the variability of trace-fossil morphologic plans. A model is proposed to analyze benthic ecospace occupation on the basis of tiering, motility, feeding mode, and ways in which animals modify and rework sediments. The conceptual and methodological tools briefly summarized in this chapter allow exploration of the potential for trace fossils to reconstruct macroevolutionary events, such as radiations, mass extinctions, and ecosystem colonization and construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel O (1935) Vorzeitliche Lebensspuren. Gustav Fischer, Jena

    Google Scholar 

  • Ausich WI, Bottjer DJ (1982) Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173–174

    Article  CAS  Google Scholar 

  • Baird D (1957) Triassic reptile footprint faunules from Milford, New Jersey. Bull Mus Comp Zool 117:449–520

    Google Scholar 

  • Bambach RK, Bush AM, Erwin DH (2007) Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:1–22

    Article  Google Scholar 

  • Bertling M, Braddy SJ, Bromley RG, Demathieu GR, Genise JF, Mikuláš R, Neilsen KSS, Rindsberg AK, Schlirf M, Uchman A (2006) Names for trace fossils: a uniform approach. Lethaia 39:265–286

    Article  Google Scholar 

  • Bottjer DJ, Ausich WI (1982) Tiering and sampling requirements in paleocommunity reconstruction. In: Proceedings of the 3rd North American Paleontology Convention, vol 1, pp 57–59

    Google Scholar 

  • Bottjer DJ, Ausich WI (1986) Phanerozoic development of tiering in soft-substrate suspension-feeding communities. Paleobiology 12:400–420

    Article  Google Scholar 

  • Bromley RG (1990) Trace Fossils: Biology and Taphonomy. Unwin Hyman, London

    Google Scholar 

  • Bromley RG (1992) Bioerosion: eating rocks for fun and profit. In: Maples CG, West RR (eds) Trace fossils. Paleontological Society Short Course 5:121–129

    Google Scholar 

  • Bromley RG (1994) The palaeoecology of bioerosion. In: Donovan SK (ed) The Palaeobiology of Trace Fossils. John Wiley & Sons, Chichester

    Google Scholar 

  • Bromley RG (1996) Trace Fossils: Biology, Taphonomy and Applications. Chapman & Hall, London

    Book  Google Scholar 

  • Bromley RG, Ekdale AA (1986) Composite ichnofabrics and tiering of burrows. Geol Mag 123:59–65

    Article  Google Scholar 

  • Bromley RG, Pemberton SG, Rahmani RA (1984) A Cretaceous woodground: the Teredolites ichnofacies. J Paleontol 58:488–498

    Google Scholar 

  • Buatois LA, Mángano MG (1995) The paleoenvironmental and paleoecological significance of the lacustrine Mermia ichnofacies: an archetypical subaqueous nonmarine trace fossil assemblage. Ichnos 4:151–161

    Article  Google Scholar 

  • Buatois LA, Mángano MG (2011) Ichnology: Organism–Substrate Interactions in Space and Time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Buatois LA, Mángano MG (2013) Ichnodiversity and ichnodisparity: significance and caveats. Lethaia 46:281–292

    Article  Google Scholar 

  • Buatois LA, Mángano MG, Genise JF, Taylor TN (1998) The ichnologic record of the invertebrate invasion of nonmarine ecosystems: evolutionary trends in ecospace utilization, environmental expansion, and behavioral complexity. Palaios 13:217–240

    Article  Google Scholar 

  • Buatois LA, Gingras MK, MacEachern J, Mángano MG, Zonneveld JP, Pemberton SG, Netto RG, Martin AJ (2005) Colonization of brackish-water systems through time: evidence from the trace-fossil record. Palaios 20:321–347

    Article  Google Scholar 

  • Buatois LA, Wisshak M, Wilson MA, Mángano MG (2016a) Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth Sc Rev (in press)

    Google Scholar 

  • Buatois LA, Mangano MG, Olea, RA, Wilson MA (2016b) Decoupled evolution of soft and hard substrate communities during the Cambrian Explosion and Great Ordovician Biodiversification Event. PNAS 113:6945–6948

    Google Scholar 

  • Bush AM, Bambach RK, Daley GM (2007) Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:76–97

    Article  Google Scholar 

  • Crimes TP (1994) The period of early evolutionary failure and the dawn of evolutionary success. In: Donovan SK (ed) The Palaeobiology of Trace Fossils. John Wiley & Sons, Chichester

    Google Scholar 

  • de Gibert JM, Domènech R, Martinell J (2004) An ethological framework for animal bioerosion trace fossils upon mineral substrates with a proposal for a new class, fixichnia. Lethaia 37:429–437

    Article  Google Scholar 

  • de Gibert JM, Domènech R, Martinell J (2007) Bioerosion in shell beds from the Pliocene Roussillon Basin, France: implications for the (macro) bioerosion ichnofacies model. Acta Palaeontol Pol 52:783–798

    Google Scholar 

  • Ekdale AA (1985) Paleoecology of the marine endobenthos. Palaeogeogr Palaeoclimatol Palaeocol 50:63–81

    Article  Google Scholar 

  • Ekdale AA, Bromley RG (1983) Trace fossils and ichnofabric in the Kjølby Gaard Marl, uppermost Cretaceous, Denmark. Bull Geol Soc Denmark 31:107–119

    Google Scholar 

  • Ekdale AA, Bromley RG, Pemberton SG (1984) Ichnology: trace fossils in sedimentology and stratigraphy. Society for Sedimentary Geology Short Course Notes 15, Tulsa

    Google Scholar 

  • Ekdale AA, Bromley RG, Loope DB (2007) Ichnofacies of an ancient erg: a climatically influenced trace fossil association in the Jurassic Navajo Sandstone, Southern Utah, USA. In: Miller W III (ed) Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam

    Google Scholar 

  • Ekdale AA, Bromley RG, Knaust D (2012) The ichnofabric concept. In: Knaust D, Bromley RG (eds) Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, vol 64. Elsevier, Amsterdam

    Google Scholar 

  • François F, Poggiale J-C, Durbec J-P, Stora G (1997) A new approach for the modeling of sediment reworking induced by a macrobenthic community. Acta Biotheor 45:295–319

    Article  Google Scholar 

  • François F, Gerino M, Stora G, Durbec J-P, Poggiale J-C (2002) Functional approach to sediment reworking by gallery-forming macrobenthic animals: modeling and application with the polychaete Nereis diversicolor. Mar Ecol Prog Ser 229:127–136

    Article  Google Scholar 

  • Frey RW (1973) Concepts in the study of biogenic sedimentary structures. J Sediment Petrol 43:6–19

    Google Scholar 

  • Frey RW (1975) The realm of ichnology, its strengths and limitations. In: Frey RW (ed) The Study of Trace Fossils: A Synthesis of Principles, Problems, and Procedures in Ichnology. Springer, New York

    Chapter  Google Scholar 

  • Frey RW, Pemberton SG (1984) Trace fossil facies models. In: Walker RG (ed) Facies Models. Geoscience Canada reprint series

    Google Scholar 

  • Frey RW, Pemberton SG (1985) Biogenic structures in outcrops and cores: I. Approaches to ichnology. Bull Can Petrol Geol 33:72–115

    Google Scholar 

  • Frey RW, Pemberton SG (1987) The Psilonichnus ichnocoenose, and its relationship to adjacent marine and nonmarine ichnocoenoses along the Georgia coast. Bull Can Petrol Geol 35:333–357

    Google Scholar 

  • Frey RW, Seilacher A (1980) Uniformity in marine invertebrate ichnology. Lethaia 13:183–207

    Article  Google Scholar 

  • Frey RW, Wheatcroft RA (1989) Organism-substrate relations and their impact on sedimentary petrology. J Geol Educ 37:261–279

    Article  Google Scholar 

  • Genise JF, Bown TM (1994) New Miocene scarabeid and hymenopterous nests and Early Miocene (Santacrucian) paleoenvironments, Patagonian Argentina. Ichnos 3:107–117

    Article  Google Scholar 

  • Genise JF, Mángano MG, Buatois LA, Laza J, Verde M (2000) Insect trace fossil associations in paleosols: the Coprinisphaera ichnofacies. Palaios 15:33–48

    Article  Google Scholar 

  • Genise JF, Melchor RN, Bellosi ES, Gonzalez MG, Krause M (2007) New insect pupation chambers (Pupichnia) from the Upper Cretaceous of Patagonia, Argentina. Cretaceous Res 28:545–559

    Article  Google Scholar 

  • Genise JF, Melchor RN, Bellosi ES, Verde M (2010) Invertebrate and vertebrate trace fossils from continental carbonates. In: Alonso-Zarza AM, Tanner L (eds) Carbonates in Continental Settings: Facies, Environments, and Processes. Developments in Sedimentology, vol 61. Elsevier, Amsterdam

    Google Scholar 

  • Goldring R (1993) Ichnofacies and facies interpretation. Palaios 8:403–405

    Article  Google Scholar 

  • Goldring R (1995) Organisms and the substrate: response and effect. In: Bosence DWJ, Allison PA (eds) Marine Palaeoenvironmental Analysis from Fossils. Geol Soc Spec Pub 83

    Google Scholar 

  • Hunt AP, Lucas SG (2007) Tetrapod ichnofacies: a new paradigm. Ichnos 14:59–68

    Article  Google Scholar 

  • Jensen S, Buatois LA, Mángano MG (2013) Testing for palaeogeographical patterns in the distribution of Cambrian trace fossils. In: Harper DAT, Servais T (eds) Early Palaeozoic Biogeography and Palaeogeography. Geol Soc London Mem 38

    Google Scholar 

  • Knaust D, WarchoÅ‚ M, Kane IA (2014) Ichnodiversity and ichnoabundance: revealing depositional trends in a confined turbidite system. Sedimentology 61:2218–2267

    Article  Google Scholar 

  • Krapovickas V, Mángano MG, Buatois LA, Marsicano CA (2016) Integrated ichnofacies models for deserts: recurrent patterns and megatrends. Earth Sci Rev 157:61–85

    Google Scholar 

  • Labandeira CC (2002) The history of associations between plants and animals. In: Herrera C, Pellmyr O (eds) History of Plant-Animal Interactions. Blackwell Science, Oxford

    Google Scholar 

  • Lehane JR, Ekdale AA (2013) Pitfalls, traps, and webs in ichnology: traces and trace fossils of an understudied behavioral strategy. Palaeogeogr Palaeoclimatol Palaeoecol 375:59–69

    Article  Google Scholar 

  • MacEachern JA, Bann KL, Pemberton SG, Gingras MK (2007) The ichnofacies paradigm: high-resolution paleoenvironmental interpretation of the rock record. In: MacEachern JA, Bann KL, Gingras MK, Pemberton SG (eds) Applied Ichnology. Society for Sedimentary Geology Short Course Notes 52

    Google Scholar 

  • Mángano MG, Buatois LA (2012) A multifaceted approach to ichnology. Ichnos 19:121–126

    Article  Google Scholar 

  • Mángano MG, Buatois LA (2014) Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedbacks. Proc R Soc B 281(1780):20140038

    Article  Google Scholar 

  • Martinsson A (1970) Toponomy of trace fossils. In: Crimes TP, Harper JC (eds) Trace Fossils. Geol J Spec Iss 3

    Google Scholar 

  • Miller W III (1998) Complex marine trace fossils. Lethaia 31:29–32

    Article  Google Scholar 

  • Miller W III (2003) Paleobiology of complex trace fossils. Palaeogeogr Palaeoclimatol Palaeoecol 192:3–14

    Article  Google Scholar 

  • Minter NJ, Braddy SJ, Davis RB (2007) Between a rock and a hard place: arthropod trackways and ichnotaxonomy. Lethaia 40:365–375

    Article  Google Scholar 

  • Orr PJ (1996) The ichnofauna of the Skiddaw Group (Early Ordovician) of the Lake District, England. Geol Mag 133:193–216

    Article  Google Scholar 

  • Orr PJ (2001) Colonization of the deep-marine environment during the early Phanerozoic: the ichnofaunal record. Geol J 36:265–278

    Article  Google Scholar 

  • Padian K, Olsen PE (1984a) Footprints of the komodo monitor and the trackways of fossil reptiles. Copeia 1984:662–671

    Article  Google Scholar 

  • Padian K, Olsen PE (1984b) The fossil trackway Pteraichnus: not pterosaurian, but crocodilian. J Paleontol 58:178–184

    Google Scholar 

  • Pemberton SG, Frey RW, Saunders TDA (1990) Trace fossils. In: Briggs DEG, Crowther PR (eds) Palaeobiology, a Synthesis. Blackwell Science, Oxford

    Google Scholar 

  • Pemberton SG, MacEachern JA, Frey RW (1992) Trace fossils facies models: environmental and allostratigraphic significance. In: Walker RG, James NP (eds) Facies Models and Sea Level Changes. Geol Assoc Can

    Google Scholar 

  • Pemberton SG, Spila M, Pulham AJ, Saunders T, MacEachern JA, Robbins D, Sinclair IK (2001) Ichnology and sedimentology of shallow to marginal marine systems, Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin. Geol Assoc Can Short Course Notes 15

    Google Scholar 

  • Reineck HE (1963) Sedimentgefüge im Bereich der südliche Nordsee. Abh Senckenb Nat Gesell 505:1–138

    Google Scholar 

  • Richter R (1929) Gründung und Aufgaben der Forschungsstelle für Meeresgeologie Senckenberg in Wilhelmshaven. Nat Mus 59:122–130

    Google Scholar 

  • Rindsberg AK (2012) Ichnotaxonomy: finding patterns in a welter of information. In: Knaust D, Bromley RG (eds) Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, vol 64. Elsevier, Amsterdam

    Google Scholar 

  • Schäfer W (1956) Wirkungen der Benthos-Organismen auf den jungen Schichverband. Senckenb Lethaia 37:183–263

    Google Scholar 

  • Schäfer W (1962) Aktuo-Paläontologie nach Studien in der Nordsee. Waldemar Kramer, Frankfurt am Main

    Google Scholar 

  • Schäfer W (1972) Ecology and Palaeoecology of Marine Environments. University of Chicago Press, Chicago

    Google Scholar 

  • Seilacher A (1953a) Studien zur palichnologie: I. Ãœber die methoden der palichnologie. N Jahrb Geol Palaeontol Abh 96:421–452

    Google Scholar 

  • Seilacher A (1953b) Studien zur palichnologie: II. Die fossilen ruhespuren (cubichnia). N Jahrb Geol Palaeontol Abh 98:87–124

    Google Scholar 

  • Seilacher A (1954) Die geologische bedeutung fossiler lebensspuren. Z Dtsch Geol Gesell 105:214–227

    Google Scholar 

  • Seilacher A (1955) Spuren und lebensspuren der trilobiten. In: Schindewolf OH, Seilacher A (eds) Beitrage zur kenntnis des Kambriums in der Salt Range (Pakistan). Akademie der Wissenschaften und der Literatur zu Mainz, Mathematisch-Naturwissenschaftliche Klasse, Abhandlungen 10

    Google Scholar 

  • Seilacher A (1958) Zur ökologische n charakteristik von flysch und molasse. Eclogae Geol Helv 51:1062–1078

    Google Scholar 

  • Seilacher A (1963) Lebensspuren und sakinitatsfazies. Fortschr Geol Rheinland Westfalen 10:81–94

    CAS  Google Scholar 

  • Seilacher A (1964) Sedimentological classification and nomenclature of trace fossils. Sedimentology 3:253–256

    Article  Google Scholar 

  • Seilacher A (1967) Bathymetry of trace fossils. Mar Geol 5:413–428

    Article  Google Scholar 

  • Seilacher A (1974) Flysch trace fossils: evolution of behavioural diversity in the deep-sea. N Jahrb Geol Palaeontol Miner 1974:233–245

    Google Scholar 

  • Seilacher A (1992) An updated Cruziana stratigraphy of Gondwanan Palaeozoic sandstones. In: Salem MJ (ed) The Geology of Lybia, vol 5. Elsevier, Amsterdam

    Google Scholar 

  • Seilacher A (1994) How valid is Cruziana stratigraphy? Geol Rundsch 83:752–758

    Article  Google Scholar 

  • Seilacher A (2007) Trace Fossil Analysis. Springer, Heidelberg

    Google Scholar 

  • Solan M, Wigham BD (2005) Biogenic particle reworking and bacterial-invertebrate interactions in marine sediments. Coast Estuar Stud 60:105–124

    Article  Google Scholar 

  • Systra YJ, Jensen S (2006) Trace Fossils from the Dividalen Group of northern Finland with remarks on early Cambrian trace fossil provincialism. GFF 128:321–325

    Article  Google Scholar 

  • Tapanila L (2005) Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: trace fossil evidence. Lethaia 38:89–99

    Article  Google Scholar 

  • Taylor AM, Goldring R (1993) Description and analysis of bioturbation and ichnofabric. J Geol Soc 150:141–148

    Article  Google Scholar 

  • Uchman A (2004) Phanerozoic history of deep-sea trace fossils. In: McIlroy D (ed) The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geol Soc Spec Pub 228

    Google Scholar 

  • Vallon LH, Rindsberg AK, Bromley RG (2015a) An updated classification of animal behaviour preserved in substrates. Geodin Acta 28:5–20

    Google Scholar 

  • Vallon LH, Schweigert G, Bromley RG, Röper M, Ebert M (2015b) Ecdysichnia—a new ethological category for trace fossils produced by moulting. Ann Soc Geol Pol 85:433–444

    Google Scholar 

  • Wisshak M, Tribollet A, Golubic S, Jakobsen J, Freiwald A (2011) Temperate bioerosion: ichnodiversity and biodiversity from intertidal to bathyal depths (Azores). Geobiology 9:492–520

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by Natural Sciences and Engineering Research Council (NSERC) Discovery Grants 311727-08/15 and 311726-13 awarded to Mángano and Buatois; and a Government of Canada Postdoctoral Research Fellowship awarded to Minter under the Canadian Commonwealth Scholarship Programme. Zain Belaústegui reviewed this chapter providing valuable comments. It also benefitted from feedback on some of the methodologies presented from Russell Garwood, Ken McNamara, Bill DiMichele, and Godfrey Nowlan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Minter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Minter, N.J., Buatois, L.A., Mángano, M.G. (2016). The Conceptual and Methodological Tools of Ichnology. In: Mángano, M., Buatois, L. (eds) The Trace-Fossil Record of Major Evolutionary Events. Topics in Geobiology, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9600-2_1

Download citation

Publish with us

Policies and ethics