Skip to main content

The End-Cretaceous Extinction and Ecosystem Change

  • Chapter
  • First Online:
The Trace-Fossil Record of Major Evolutionary Events

Part of the book series: Topics in Geobiology ((TGBI,volume 40))

Abstract

Examination of fossil plant–insect associations in the continental realm and trace fossils in the marine realm provide considerable data for understanding organismic response to major ecological crises, such as the Cretaceous–Paleogene (K-Pg) event. For the continental realm, terrestrial data from the Williston Basin of North Dakota records plant–insect interactions representing 183 m of strata, 2.2 million years, 106 distinctive stratigraphic levels, 143 localities (floras), and 13,441 specimens that were collected, analyzed, and interpreted. Williston data indicate a major ecological restructuring of plant–insect interactions after the K-Pg event. There was general continuity of generalized interactions but a major decline in host-specialized feeding diversity and abundance across the K-Pg boundary, with recovery occurring ca. 107 years later. These results were not captured in earlier diversity studies of insect body fossils.

In the marine realm, four intensively documented stratigraphic sections representing open-water shelf habitats were examined from the K-Pg boundary interval of Spain and France. Substrate–ichnofossil relationships were assessed to document the extent and timing of tracemaker colonization of macrobenthic environments immediately after the K-Pg event. The results indicate a modest effect of the K-Pg event on macrobenthic trace-making organisms and minor effects in the environment-wide disruption of habitats inhabited by deposit-feeders. A quick recovery is manifested by the record of iron oxide spherules in Thalassinoides burrow infillings, by the highly bioturbated fabric of the K-Pg boundary layer, and by multiple substrate colonization events immediately after the crisis. This rapid recovery is associated with an almost instantaneous return on the order of 102–103 years to pre-impact environmental conditions.

From both studies we identify eight benefits of using ichnologic approaches. Methodological, empirical, and theoretical advances include: (1) application of previously unused methods to quantify ichnologic data; (2) assembly of new matrices with abundant, and rich data; (3) access to novel ecological data, particularly associational and behavioral data; and (4) because of developments 1–3, generation of new paleoecological hypotheses. More phenomenologically based accomplishments are: (5) use of both the preserved and nonpreserved aspects of the fossil record to infer patterns of colonization and recovery; (6) generation of ichnologic data with increased biostratigraphic resolution; (7) capture of ichnologically reworked sediments to provide important, highly resolved data to address catastrophic vs. gradualistic responses accompanying the K-Pg event; and (8) employing effects of the K-Pg event to better understand organismic response to major, future ecologic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez LW, Alvarez W, Asaro F, Michel H (1980) Extraterrestrial cause of the Cretaceous–Tertiary extinction. Science 208:1095–1108

    Article  CAS  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel H (1984) The end of the Cretaceous: sharp boundary or gradual transition? Science 223:1183–1186

    Article  CAS  Google Scholar 

  • Archibald JD, Bryant LJ (1990) Differential Cretaceous–Tertiary extinction of nonmarine vertebrates: evidence from northeastern Montana. In: Sharpton VL, Ward PD (eds) Global catastrophes in earth history: an interdisciplinary conference on impacts, volcanic and mass mortality. Geol Soc Am Spec Pap 257:549–562

    Google Scholar 

  • Arenillas I, Arz JA, Molina E (2004) A new high-resolution planktic foraminiferal zonation and subzonation for the lower Danian. Lethaia 37:79–95

    Article  Google Scholar 

  • Arenillas I, Arz JA, Molina E, Dupuis C (2000) An independent test of planktic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef, Tunisia: catastrophic mass extinction and possible survivorship. Micropaleontology 46:31–49

    Google Scholar 

  • Arthur MA, Zachos JC (1987) Primary productivity and the Cretaceous/Tertiary boundary event. Cretaceous Res 8:43–54

    Article  Google Scholar 

  • Arz JA, Arenillas I, Molina E, Sepulveda R (2000) La estabilidad evolutiva de los foraminíferos planctónicos en el Maastrichtiense Superior y su extinción en el límite Cretácico/Terciario de Caravaca, España. Rev Geol Chile 27:27–47

    Article  Google Scholar 

  • Askin RA, Jacobson S (1996) Palynological change across the Cretaceous–Tertiary boundary on Seymour Island, Antarctica: environmental and depositional factors. In: Keller G, MacLeod N (eds) Cretaceous–Tertiary mass extinctions: biotic and environmental changes. Norton, New York, pp 7–26

    Google Scholar 

  • Auezova G, Brushko Z, Kubykin R (1990) Feeding of biting midges (Leptoconopidae) on reptiles. In: Weismann L, Orságh I, Pont AC (eds) Proceedings of the second international congress of dipterology. SPB Academic Publishers, Amsterdam, p 12

    Google Scholar 

  • Barron EJ, Peterson WH (1991) The Cenozoic circulation based on ocean general circulation model results. Palaeogeogr Palaeoclimatol Palaeoecol 83:1–28

    Article  Google Scholar 

  • Becerra JA (2003) Synchronous coadaptation in an ancient case of herbivory. Proc Natl Acad Sci U S A 100:12804–12807

    Article  CAS  Google Scholar 

  • Beerling DJ, Lomax BH, Royer DL, Upchurch GR Jr, Kump LR (2002) An atmospheric pCO2 reconstruction across the Cretaceous–Tertiary boundary from leaf megafossils. Proc Natl Acad Sci U S A 99:7836–7840

    Article  CAS  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  CAS  Google Scholar 

  • Borkent A (1995) Biting midges in the Cretaceous amber of North America (Diptera: Ceratopogonidae). Backhuys Publishers, Leiden

    Google Scholar 

  • Bown P (2005) Selective calcareous nannoplankton survivorship at the Cretaceous–Tertiary boundary. Geology 33:653–656

    Article  Google Scholar 

  • Braverman Y, Hulley PE (1979) The relationship between the numbers and distribution of some antennal and palpal sense organs and host preference in some Culicoides (Diptera: Ceratopogonidae) from southern Africa. J Med Entomol 15:419–424

    Article  Google Scholar 

  • Brochu C (2004) Calibration age and quartet divergence date estimation. Evolution 58:1375–1382

    Article  Google Scholar 

  • Bromley R, Buatois LA, Genise J, Mángano MG, Melchor R (eds) (2007) Sediment–organism interactions: a multifaceted ichnology. Soc Econ Paleontol Mineral Spec Publ no. 88. Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma

    Google Scholar 

  • Brouwers EM, De Deckker P (1993) Late Maastrichtian and Danian ostracods faunas from Northern Alaska: reconstructions of environment and paleogeography. Palaios 8:140–154

    Article  Google Scholar 

  • Chin K, Gill BD (1996) Dinosaurs, dung beetles and conifers: participants in a Cretaceous food web. Palaios 11:280–285

    Article  Google Scholar 

  • Chin K, Pearson D, Ekdale AA (2013) Fossil worm burrows reveal very early terrestrial animal activity and shed light on trophic resources after the end-Cretaceous mass extinction. PLoS One 8(8):e70920

    Article  CAS  Google Scholar 

  • Coccioni R, Galeotti S (1994) K–T boundary extinction: geologically instantaneous or gradual event? Evidence from deep-sea benthic foraminifera. Geology 22:779–782

    Article  Google Scholar 

  • Colles A, Liow LH, Prinzing A (2009) Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol Lett 12:849–863

    Article  Google Scholar 

  • Connor EF, Taverner MP (1997) The evolution and adaptive significance of the leaf-mining habit. Oikos 79:6–25

    Article  Google Scholar 

  • Cooper A, Penney D (1997) Mass survival of birds across the Cretaceous–Tertiary boundary: molecular evidence. Science 275:1109–1113

    Article  CAS  Google Scholar 

  • Currano ED, Jacobs BF, Pan AD, Tabor NJ (2011) Inferring ecological disturbance in the fossil record: a case study from the late Oligocene of Ethiopia. Palaeogeogr Palaeoclimatol Palaeoecol 309:242–252

    Article  Google Scholar 

  • Currano ED, Labandeira CC, Wilf P (2010) Fossilized insect folivory tracks temperature for six million years. Ecol Monogr 80:547–567

    Article  Google Scholar 

  • Currano ED, Wilf P, Wing SL, Labandeira CC, Lovelock EC, Royer D (2008) Sharply increased insect herbivory during the Paleocene–Eocene thermal maximum. Proc Natl Acad Sci U S A 105:1960–1964

    Article  CAS  Google Scholar 

  • DiMichele WA, Behrensmeyer AK, Olzewski TD, Labandeira CC, Pandolfi JM, Wing SL, Bobe R (2004) Long-term stasis in ecological assemblages: evidence from the fossil record. Annu Rev Ecol Evol Syst 35:285–322

    Article  Google Scholar 

  • D’Hondt S (2005) Consequences of the Cretaceous/Paleocene mass extinction for marine ecosystems. Annu Rev Ecol Syst 36:295–317

    Article  Google Scholar 

  • Donovan M, Wilf P, Labandeira CC, Johnson KR, Peppe DJ (2014) Novel insect leaf-mining after the end-Cretaceous extinction and the demise of Cretaceous leaf miners, Great Plains, USA. PLoS One 9(7):e103542

    Article  CAS  Google Scholar 

  • Dunne J, Labandeira CC, Williams R (2012) Highly resolved middle Eocene food webs have similar network structure to extant ecosystems. Proc Natl Acad Sci U S A 281:20133280

    Google Scholar 

  • Ekdale AA, Bromley RG (1984a) Sedimentology and ichnology of the Cretaceous–Tertiary boundary in Denmark: implications for the causes of the terminal Cretaceous extinction. J Sediment Petrol 54:681–703

    CAS  Google Scholar 

  • Ekdale AA, Bromley RG (1984b) Comparative ichnology of shelf-sea and deep-sea chalk. J Paleontol 58:322–332

    Google Scholar 

  • Ekdale AA, Stinnesbeck W (1998) Trace fossils in Cretaceous–Tertiary (KT) boundary beds in northeastern Mexico: implications for sedimentation during the K/T boundary event. Palaios 13:593–602

    Article  Google Scholar 

  • Erwin DH (1998) The end and beginning: recoveries from mass extinctions. Trends Ecol Evol 13:344–349

    Article  CAS  Google Scholar 

  • Erwin DH (2001) Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci U S A 98:5399–5403

    Article  CAS  Google Scholar 

  • Forister ML, Dyer LA, Singer MS, Stireman JO III, Lill JT (2012) Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 93:981–991

    Article  CAS  Google Scholar 

  • Frederiksen NO (1989) Changes in floral diversities, floral turnover rates, and climate in Campanian and Maastrichtian time, North Slope of Alaska. Cretaceous Res 10:249–266

    Article  Google Scholar 

  • Friedman M (2009) Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proc Natl Acad Sci U S A 106:5218–5223

    Article  CAS  Google Scholar 

  • Friedman M (2010) Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc R Soc B Biol Sci 277:1675–1683

    Article  Google Scholar 

  • Gale J, Rachmilevitch S, Reuveni J, Volokita M (2001) The high oxygen atmosphere toward the end-Cretaceous: a possible contributing factor to the K/T boundary extinctions and to the emergence of C4 species. J Exp Bot 52:801–809

    Article  CAS  Google Scholar 

  • Gallala N, Zaghbib-Turki D, Arenillas I, Arz JA, Molina E (2009) Catastrophic mass extinction and assemblage evolution in planktic foraminifera across the Cretaceous/Paleogene (K/Pg) boundary at Bidart (SW France). Mar Micropaleontol 72:196–209

    Article  Google Scholar 

  • Gardin S (2002) Late Maastrichtian to early Danian calcareous nannofossils at Elles (Northwest Tunisia). A tale of one million years across the K-T boundary. Palaeogeogr Palaeoclimatol Palaeoecol 178:211–231

    Article  Google Scholar 

  • Gardin S, Monechi S (1998) Palaeoecological change in middle to low latitude calcareous nannoplankton at the Cretaceous/Tertiary boundary. Bull Soc Géol Fr 169:709–723

    Google Scholar 

  • Gedl P (2004) Dinoflagellate cyst record of the deep-sea Cretaceous–Tertiary boundary at Uzgruň, Carpathian Mountains, Czech Republic. Geol Soc Lond Spec Publ 230:257–373

    Article  Google Scholar 

  • Gelfo JN, Pascual R (2001) Peligrotherium tropicalis (Mammalia, Dryolestoidea) from the early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation. Geodiversitas 23:369–379

    Google Scholar 

  • Genise JF, Sarzetti LC (2011) Fossil cocoons associated with a dinosaur egg from Patagonia, Argentina. Palaeontology 54:815–823

    Article  Google Scholar 

  • Hardy N, Cook LG (2010) Gall-induction in insects: evolutionary dead-end or specialized driver? BMC Evol Biol 10:257.

    Article  Google Scholar 

  • Hartman JH (1998) The biostratigraphy and paleontology of latest Cretaceous and Paleocene freshwater bivalves from the western Williston Basin, Montana, USA. In: Johnston PA, Haggart JW (eds) An eon of evolution: paleobiological studies honoring Norman D. Newell. University of Calgary Press, Calgary, pp 317–345

    Google Scholar 

  • Hartman JH, Bingle M, Scholz H, Bajpai S, Sharma R (2009) Cretaceous–Paleogene boundary issues and continental molluscs in India and North America: fine-tuned timing and other issues critical to interpreting large scale events on benthic critters. Geol Soc Am Abstr Prog 47(7):240 [abstract]

    Google Scholar 

  • Henriksson AS (1996) Calcareous nannoplankton productivity and succession across the Cretaceous-Tertiary boundary in the Pacific (DSDP Site 465) and Atlantic (DSDP Site 527) Oceans. Cretaceous Res 17:451–477

    Article  Google Scholar 

  • Hickey LJ (1981) Land plant evidence compatible with gradual, not catastrophic, change at the end of the Cretaceous. Nature 292:529–531

    Article  Google Scholar 

  • Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Zanoguera AC, Jacobsen SB, Boynton WM (1991) Chicxulub Crater, a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19:867–871

    Article  Google Scholar 

  • Hou L, Martin M, Zhou Z, Feduccia A (1996) Early adaptive radiation of birds: evidence from fossils from northeastern China. Science 274:1164–1167

    Article  CAS  Google Scholar 

  • Husson D, Galbrun B, Gardin S, Thibault N (2014) Tempo and duration of short-term environmental perturbations across the Cretaceous-Paleogene boundary. Stratigraphy 11:159–171

    Google Scholar 

  • Jablonski D (1989) The biology of mass extinction: a palaeontological view. Philos Tran R Soc B Biol Sci 325:357–368

    Article  CAS  Google Scholar 

  • Jablonski D (2001) Lessons from the past: evolutionary impacts of mass extinctions. Proc Natl Acad Sci U S A 98:5393–5398

    Article  CAS  Google Scholar 

  • Jablonski D (2002) Survival without recovery after mass extinctions. Proc Natl Acad Sci U S A 99:8139–8144

    Article  CAS  Google Scholar 

  • Jablonski D (2005) Mass extinctions and macroevolution. Paleobiology 31:192–210

    Article  Google Scholar 

  • Jablonski D, Raup DM (1995) Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389–391

    Article  CAS  Google Scholar 

  • Jarvis ED, Mirarab S, Aberer AJ, Li B, Honde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Bossau B, Md SB, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, Lindow B, Warren WC, Ray D, Green RE, Brufford MW, Zhan X, Dixon A, Li S, Li N, Huang Y, Derryberry EP, Bertelsen MF, Sheldon FH, Brumfeld RT, Mello CV, Lovell PV, Wirthlin M, Schneider MPC, Prosdocimi F, Samaniego JA, Velazquez AMV, Alfaro-Nuñez A, Campos PF, Petersen B, Sicheritz-Ponten T, Pas A, Bailey T, Scofield P, Bunce M, Lambert DM, Zhou Q, Perelman P, Driskell AC, Shapiro B, Xiong Z, Zeng Y, Liu S, Li Z, Liu B, Wu K, Xiao J, Yinqi X, Zheng Q, Zhang Y, Yang H, Wang J, Smeds L, Rheindt FE, Braun M, Fjeldsa J, Orlando L, Barker FK, Jønsson KA, Johnson W, Koepfli K-P, O’Brien S, Haussler D, Ryder OA, Rahbek C, Willerslev E, Graves GR, Glenn TC, McCormack J, Burt D, Ellegren H, Alström P, Edwards SV, Stamatakis A, Mindell DP, Cracraft J, Braun EL, Warnow T, Jun W, Gilbert MTP, Zhang G (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331

    Article  CAS  Google Scholar 

  • Jeffrey CH (2001) Heart urchins at the Cretaceous/Tertiary boundary: a tale of two clades. Paleobiology 27:140–158

    Article  Google Scholar 

  • Johnson KR (2002) Megaflora of the Hell Creek and lower Fort Union formations in the western Dakotas: vegetational response to climate change, the Cretaceous–Tertiary boundary event, and rapid marine transgression. In: Hartman JH, Johnson KR, Nichols DJ (eds) The Hell Creek Formation and the Cretaceous–Tertiary boundary in the northern Great Plains―an integrated continental record at the end of the Cretaceous. Geol Soc Am Spec Pap 361:329–391

    Google Scholar 

  • Kędzierski M, Rodríguez-Tovar FJ, Uchman A (2011) Vertical displacement and taphonomic filtering of nannofossils by bioturbation in the Cretaceous-Palaeogene boundary section at Caravaca, SE Spain. Lethaia 44:321–328

    Article  Google Scholar 

  • Keller G (1988) Extinction, survivorship and evolution of planktic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Mar Micropaleontol 13:239–263

    Article  Google Scholar 

  • Keller G, Barrera E (1990) The Cretaceous⁄Tertiary boundary impact hypothesis and the paleontological record. In: Sharpton VL, Ward PD (eds) Global catastrophes in earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality. Geol Soc Am Spec Pap 247:563–575

    Google Scholar 

  • Keller G, Li L, Macleod N (1995) The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extinction? Palaeogeogr Palaeoclimatol Palaeoecol 119:221–254

    Article  Google Scholar 

  • Keller G, Stinnesbeck W, Lopez-Oliva JG (1994) Age, deposition and biotic effects of the Cretaceous/Tertiary boundary event al Mimbral, NE Mexico. Palaios 9:144–157

    Article  Google Scholar 

  • Kelley ST, Farrell B (1998) Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae). Evolution 52:1731–1743

    Article  CAS  Google Scholar 

  • Kirchner JW, Weil A (2000) Delayed biological recovery from extinctions throughout the fossil record. Nature 404:177–180

    Article  CAS  Google Scholar 

  • Kitchell JA, Clark DL, Gombos AM (1986) Biological selectivity of extinction: a link between background and mass extinction. Palaios 1:504–511

    Article  Google Scholar 

  • Kölsch G, Pedersen BV (2008) Molecular phylogeny of reed beetles (Col., Chrysomelidae, Donaciinae): the signature of ecological specialization and geographical isolation. Mol Phylogenet Evol 48:936–952

    Article  CAS  Google Scholar 

  • Krug AZ, Jablonski D (2012) Long-term origination rates are reset only at mass extinctions. Geology 40:731–734

    Article  Google Scholar 

  • Krug AZ, Jablonski D, Valentine JW (2009) Signature of the end-Cretaceous mass extinction in the modern biota. Science 323:767–771

    Article  CAS  Google Scholar 

  • Kuhnt W, Collins ES (1996) Cretaceous to Paleogene benthic foraminifers from the Iberia abyssal plain. Proc Ocean Drill Program Sci Results 149:203–216

    Google Scholar 

  • Kuhnt W, Hess S, Holbourn A, Paulsen H, Salomon B (2005) The impact of the 1991 Mt. Pinatubo eruption on deep-sea foraminiferal communities: a model for the Cretaceous–Tertiary (K⁄T) boundary? Palaeogeogr Palaeoclimatol Palaeoecol 224:83–107

    Article  Google Scholar 

  • Labandeira CC (2005) The fossil record of insect extinction: new approaches and future directions. Am Entomol 51:14–29

    Article  Google Scholar 

  • Labandeira CC (2007) Assessing the fossil record of plant–insect associations: ichnodata versus body-fossil data. In: Bromley RG, Buatois LA, Mángano G, Genise JF, Melchor RN (eds) Sediment–organism interactions: a multifaceted ichnology. Soc Econ Paleontol Mineral Spec Publ 88:9–26

    Google Scholar 

  • Labandeira CC, Currano ED (2013) Plant–insect dynamics in the fossil record. Annu Rev Earth Planet Sci 41:287–311

    Article  CAS  Google Scholar 

  • Labandeira CC, Johnson KR, Wilf P (2002a) Impact of the terminal Cretaceous event on plant–insect associations. Proc Natl Acad Sci U S A 99:2061–2066

    Article  CAS  Google Scholar 

  • Labandeira CC, Johnson KR, Lang P (2002b) A preliminary assessment of insect herbivory across the Cretaceous/Tertiary boundary: Extinction and minimal rebound. In: Hartman JH, Johnson KR, Nichols DJ (eds) The Hell Creek Formation and the Cretaceous–Tertiary boundary in the northern Great Plains―an integrated continental record at the end of the Cretaceous. Geol Soc Am Spec Pap 361:297–327

    Google Scholar 

  • Labandeira C, Prevec R (2014) Plant paleopathology and the roles of insects. Int J Paleopathol 4:1–16

    Article  Google Scholar 

  • Labandeira CC, Sepkoski JJ Jr (1993) Insect diversity in the fossil record. Science 261:310–315

    Article  CAS  Google Scholar 

  • Labandeira CC, Wilf P, Johnson KR, Marsh F (2007) Guide to insect (and other) damage types on compressed plant fossils. Version 3.0—Spring, 2007. Smithsonian Institution, Washington, DC. http://paleobiology.si.edu/pdfs/InsectDamageGuide3.01.pdf

  • Lamolda MA, Melinte MC, Kaiho K (2005) Nannofloral extinction and survivors across the K/T boundary at Caravaca, southeastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 224:27–52

    Article  Google Scholar 

  • Larsson SG (1975) Palaeobiology and mode of burial of the insects of the lower Eocene Mo-clay of Denmark. Bull Geol Soc Denmark 24:193–209

    Google Scholar 

  • Lehane MJ (1991) Biology of blood-sucking insects. Harper Collins, London

    Book  Google Scholar 

  • Levinton JS (1996) Trophic group and the end-Cretaceous extinction: did deposit feeders have it made in the shade? Paleobiology 22:104–112

    Article  Google Scholar 

  • Lockwood R (2003) Abundance not linked to survival across the end-Cretaceous mass extinction: patterns in North American bivalves. Proc Natl Acad Sci U S A 100:2478–2482

    Article  CAS  Google Scholar 

  • Lopez-Vaamonde C, Godfray HCJ, Cook JM (2003) Evolutionary dynamics of host-plant use in a genus of leaf-mining moths. Evolution 57:1804–1821

    Article  Google Scholar 

  • Lopez-Vaamonde C, Wikström N, Labandeira CC, Goodman S, Godfray HCJ, Cook JM (2006) Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. J Evol Biol 19:1314–1326

    Article  CAS  Google Scholar 

  • MacLeod N (1998) Impacts and marine invertebrate extinctions. Geol Soc London Spec Publ 140:217–246

    Article  Google Scholar 

  • MacLeod N (2005) End-Cretaceous extinctions. In: Cocks LRM, Plimer I (eds) Encyclopedia of geology. Academic, London, pp 372–386

    Chapter  Google Scholar 

  • MacLeod N, Rawson PF, Forey PL, Banner F, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffrey C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997) The Cretaceous–Tertiary biotic transition. J Geol Soc 154:265–292

    Article  Google Scholar 

  • Mai H, Speijer RP, Schulte P (2003) Calcareous index nannofossils (coccoliths) of the lowermost Paleocene originated in the late Maastrichtian. Micropaleontology 49:189–195

    Article  Google Scholar 

  • Marshall CR, Ward PD (1996) Sudden and gradual molluscan extinctions in the latest Cretaceous of western European Tethys. Science 274:1360–1363

    Article  CAS  Google Scholar 

  • Martín-Peinado F, Rodríguez-Tovar FJ (2010) Mobility of iridium in terrestrial environments: implications for the interpretation of impact-related mass-extinctions. Geochim Cosmochim Acta 74:4531–4542

    Article  CAS  Google Scholar 

  • Martínez-Ruiz F, Huertas MO, Palomo I, Acquafredda P (1997) Quench textures in altered spherules from the Cretaceous–Tertiary boundary layer at Agost and Caravaca, SE Spain. Sediment Geol 113:137–147

    Article  Google Scholar 

  • Martínez-Ruiz F, Huertas MO, Palomo I (1999) Positive Eu anomaly development during diagenesis of the K/T boundary ejecta layer at Agost section: implications for trace-element remobilization. Terra Nova 11:290–296

    Article  Google Scholar 

  • McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:548–557

    Article  Google Scholar 

  • McIver EE, Sweet AR, Basinger JF (1991) Sixty-five-million-year-old flowers bearing pollen of the extinct triprojectate complex―a Cretaceous–Tertiary boundary survivor. Rev Palaeobot Palynol 70:77–88

    Article  Google Scholar 

  • McKenna DD, Farrell BD (2006) Tropical forests are both evolutionary cradles and museums of leaf beetle diversity. Proc Natl Acad Sci U S A 103:10947–10951

    Article  CAS  Google Scholar 

  • Molina E (2015) Evidence and causes of the main extinction events in the Paleogene based on extinction and survival patterns of foraminifera. Earth-Sci Rev 140:166–181

    Article  Google Scholar 

  • Molina E, Arenillas I, Arz JA (1998) Mass extinction in planktic foraminifera at the Cretaceous/Tertiary boundary in subtropical and temperate latitudes. Bull Soc Géol Fr 169:351–363

    Google Scholar 

  • Morrow JR, Hasiotis ST (2007) Endobenthic response through mass-extinction episodes: predictive models and observed patterns. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 575–598

    Chapter  Google Scholar 

  • Nichols DJ (2002) Palynology and palynostratigraphy of the Hell Creek Formation in North Dakota: a microfossil record of plants at the end of Cretaceous time. In: Hartman JH, Johnson KR, Nichols DJ (eds) The Hell Creek Formation and the Cretaceous–Tertiary boundary in the northern Great Plains―an integrated continental record at the end of the Cretaceous. Geol Soc Am Spec Pap 361:393–456

    Google Scholar 

  • Novacek MJ (1999) 100 million years of land vertebrate evolution: the Cretaceous–early Tertiary transition. Ann Missouri Bot Gard 86:230–258

    Article  Google Scholar 

  • Nyman T, Linder HP, Peña C, Malm T, Wahlberg N (2012) Climate-driven diversity dynamics in plants and plant-feeding insects. Ecol Lett 15:889–898

    Article  Google Scholar 

  • O’Keefe F (2001) A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia). Acta Zool Fenn 213:1–63

    Google Scholar 

  • Penney D (2003) Does the fossil record of spiders track that of their principal prey, the insects? Trans R Soc Edin Earth Sci 94:275–281

    Article  Google Scholar 

  • Penney D, Wheater CP, Selden PA (2003) Resistance of spiders to Cretaceous–Tertiary extinction events. Evolution 57:2599–2607

    Google Scholar 

  • Penny D, Phillips MJ (2004) The rise of birds and mammals: are microevolutionary processes sufficient for macroevolution? Trends Ecol Evol 19:516–522

    Article  Google Scholar 

  • Perch-Nielsen K, McKenzie J, He Q (1982) Biostratigraphy and isotope stratigraphy and the catastrophic extinction of calcareous nannoplankton at the Cretaceous/Tertiary boundary. In: Silver LT, Schultz PH (eds) Geological implications of impacts of large asteroids and comets on the earth. Geol Soc Am Spec Pap 190:353–371

    Google Scholar 

  • Pike EM (1994) Historical changes in insect community structure as indicated by hexapods of Upper Cretaceous Alberta (Grassy Lake) amber. Can Entomol 126:695–702

    Article  Google Scholar 

  • Pospichal JJ (1994) Calcareous nannofossils at the K-T boundary El Kef: no evidence for stepwise, gradual, or sequential extinctions. Geology 22:99–102

    Article  Google Scholar 

  • Pospichal JJ, Wise SW (1990) Calcareous nannofossils across the K/T boundary, ODP Hole 690C, Maud Rise, Weddell Sea. Proc Ocean Drill Program Sci Results 113:515–532

    Google Scholar 

  • Pospichal JJ, Wise SW, Asaro F, Hamilton N (1990) The effects of bioturbation across a biostratigraphically complete, high southern latitude Cretaceous/Tertiary boundary. Geol Soc Am Spec Pap 247:497–507

    Google Scholar 

  • Ramírez SR, Gravendeel B, Singer RB, Marshall C, Pierce NE (2007) Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448:1042–1045

    Article  CAS  Google Scholar 

  • Raup DM, Jablonski D (1993) Geography of end-Cretaceous marine bivalve extinctions. Science 260:971–973

    Article  CAS  Google Scholar 

  • Retallack GJ (2004) End-Cretaceous acid rain as a selective extinction mechanism between birds and dinosaurs. In: Currie PJ, Koppelhus EB, Shugar MA, Wright JL (eds) Feathered dragons: studies on the transition from dinosaurs to birds. Indiana University Press, Bloomington and Indianapolis, pp 35–64

    Google Scholar 

  • Roberts EM, Rogers RR, Foreman BZ (2007) Continental insect borings in dinosaur bone: examples from the Late Cretaceous of Madagascar and Utah. J Paleontol 81:201–208

    Article  Google Scholar 

  • Rodríguez-Tovar FJ (2005) Fe-oxide spherules infilling Thalassinoides burrows at the Cretaceous–Paleogene (K–P) boundary: evidence of a near-contemporaneous macrobenthic colonization during the K–P event. Geology 33:585–588

    Article  CAS  Google Scholar 

  • Rodríguez-Tovar FJ, Martín-Peinado FJ (2009) The environmental disaster of Aznancóllar (southern Spain) as an approach to the Cretaceous–Paleogene mass extinction event. Geobiology 7:533–543

    Article  CAS  Google Scholar 

  • Rodríguez-Tovar FJ, Martín-Peinado FJ (2011) Colonization of contaminated sediments: Implications in recovery of mass extinction events. Mineralogical Magazine, Goldschmidt conference abstracts, 1742

    Google Scholar 

  • Rodríguez-Tovar FJ, Martín-Peinado FJ (2014) Lateral and vertical variations in contaminated sediments from the Tinto River area (Huelva, SW Spain): incidence on tracemaker activity and implications of the palaeontological approach. Palaeogeogr Palaeoclimatol Palaeoecol 414:426–437

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Martínez-Ruíz F, Bernasconi SM (2002) Carbon isotope composition of bioturbation infills as indication of the macrobenthic-colonization timing across the Cretaceous-Tertiary boundary (Agost section, SE Spain). Geochim Cosmochim Acta, Spec Suppl 66:A644

    Google Scholar 

  • Rodríguez-Tovar FJ, Martínez-Ruíz F, Bernasconi SM (2004) Carbon isotope evidence of the Cretaceous-Palaeogene macrobenthic colonization at the Agost section (southeast Spain). Palaeogeogr Palaeoclimatol Palaeoecol 203:65–72

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Martínez-Ruíz F, Bernasconi SM (2006) Use of high-resolution ichnological and stable isotope data for assessing completeness of a K–P boundary section, Agost, Spain. Palaeogeogr Palaeoclimatol Palaeoecol 237:137–146

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A (2004a) Trace fossils after the K–T boundary event from the Agost section, SE Spain. Geol Mag 141:429–440

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A (2004b) Ichnotaxonomic analysis of the Cretaceous/Palaeogene boundary interval in the Agost section, south-east Spain. Cretaceous Res 25:635–647

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A (2006) Ichnological analysis of the Cretaceous–Palaeogene boundary interval at the Caravaca section, SE Spain. Palaeogeogr Palaeoclimatol Palaeoecol 242:313–325

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A (2008) Bioturbational disturbance of the Cretaceous– Palaeogene (K–Pg) boundary layer: implications for the interpretation of the K–Pg boundary impact event. Geobios 41:661–667

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A, Molina E, Monechi S (2010) Bioturbational redistribution of Danian calcareous nannofossils in the uppermost Maastrichtian across the K-Pg boundary at Bidart, SW France. Geobios 43:569–579

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A, Orue-Etxebarria X, Apellaniz E, Baceta JI (2011) Ichnological analysis of the Bidart and Sopelana Cretaceous/Paleogene (K/Pg) boundary sections (Basque Basin, W Pyrenees): refining eco-sedimentary environment. Sediment Geol 234:42–55

    Article  CAS  Google Scholar 

  • Rogers RR (1992) Non-marine borings in dinosaur bones from the Upper Cretaceous Two Medicine Formation, northwestern Montana. J Vert Paleontol 12:528–531

    Article  Google Scholar 

  • Romein AJT, Willems H, Mai H (1996) Calcareous nannoplankton of the Geulhemmerberg K/T boundary section, Maastrichtian type area, the Netherlands. Geol Mijn 75:231–238

    Google Scholar 

  • Rosen BR, Turnšek D (1989) Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary. Proceedings of the fifth international symposium on fossil Cnidaria including Archaeocyatha and Spongiomorphs. Memoirs of the Association of Australasian Paleontology 8:355–370. Brisbane, Australia

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Rowley WA, Cornford M (1972) Scanning electron microscopy of the pit of the maxillary palp of selected species of Culicoides. Can J Zool 50:1207–1210

    Article  Google Scholar 

  • Roy K, Hunt G, Jablonski D (2009) Phylogenetic conservatism of extinctions in marine bivalves. Science 325:733–737

    Article  CAS  Google Scholar 

  • Savrda CE (1993) Ichnosedimentologic evidence for a noncatastrophic origin of Cretaceous–Tertiary boundary sands in Alabama. Geology 21:1075–1078

    Article  Google Scholar 

  • Schoene B, Samperton KM, Eddy MP, Keller G, Adatte T, Bowring SA, Khadri SFR, Gertsch B (2015) U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 347:182–184

    Google Scholar 

  • Schulte P, Alegeret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS, Collins GS, Deutsch A, Goldin TJ, Goto K, Grajales-Nishimura JM, Grieve RAF, Gulick SPS, Johnson KR, Kiessling W, Koeberl C, Kring DA, MacLeod KG, Matsui T, Melosh J, Montanari A, Morgan JV, Neal CR, Nichols DJ, Norris RD, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold WU, Robin E, Salge T, Speijer RP, Sweet AR, Urrutia-Fucugauchi J, Vajda V, Whalen MT, Willumsen PS (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–1218

    Article  CAS  Google Scholar 

  • Sereno PC (1999) The evolution of dinosaurs. Science 284:2137–2147

    Article  CAS  Google Scholar 

  • Sheehan PM, Fastovsky D, Baretto C, Hoffman G (2000) Dinosaur abundance was not declining in a “3 m gap” at the top of the Hell creek Formation, Montana and North Dakota. Geology 28:523–526

    Article  Google Scholar 

  • Sheehan PM, Hansen TA (1986) Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14:868–870

    Article  Google Scholar 

  • Simberloff DS (1976) Trophic structure determination and equilibrium in an arthropod community. Ecology 57:395–398

    Article  Google Scholar 

  • Simberloff DS, Wilson EO (1969) Experimental zoogeography of islands: the colonization of empty islands. Ecology 50:278–296

    Article  Google Scholar 

  • Smit J (1990) Meteorite impact, extinctions and the Cretaceous-Tertiary boundary. Geol Mijn 69:187–204

    Google Scholar 

  • Smit J, Romein AJT (1985) A sequence of events across the Cretaceous-Tertiary boundary. Earth Planet Sci Lett 74:155–170

    Article  Google Scholar 

  • Solé RV, Montoya JM, Erwin DH (2002) Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. Philos Trans R Soc B Biol Sci 357:697–707

    Article  Google Scholar 

  • Sosa-Montes de Oca C, Martínez-Ruiz F, Rodríguez-Tovar FJ (2013) Bottom-water conditions in a marine basin after the Cretaceous–Paleogene impact event: timing the recovery of oxygen levels and productivity. PLoS One 8(12):e82241,

    Article  Google Scholar 

  • Stinnesbeck W, Keller G, Adatte T, Lopez-Oliva JG, MacLeod N (1996) Cretaceous–Tertiary boundary clastic deposits in northeastern Mexico: impact tsunami or sea-level lowstand? In: MacLeod N, Keller G (eds) Cretaceous-Tertiary Mass Extinctions: Biotic and Environmental Changes. Norton & Company, New York, pp 471–517

    Google Scholar 

  • Stinnesbeck W, Barbarin JM, Keller G, Lopez-Oliva JG, Pivnik DA, Lyons JB, Officer CB, Adatte T, Graup G, Rocchia R, Robin E (1993) Deposition of channel deposits near the Cretaceous-Tertiary boundary in northeastern Mexico: catastrophic or “normal” sedimentary deposits? Geology 21:797–800

    Article  Google Scholar 

  • Sweet AR, Braman DR (2001) Cretaceous–Tertiary palynofloral perturbations and extinctions within the Aquilapollenites Phytogeographic Province. Can J Earth Sci 38:249–269

    Google Scholar 

  • Tantawy AA (2003) Calcareous nannofossil biostratigraphy and paleoecology of the Cretaceous–Tertiary transition in the central eastern desert of Egypt. Mar Micropaleontol 47:323–356

    Article  Google Scholar 

  • Thierstein HR (1981) Late Cretaceous nannoplankton and the change at the Cretaceous-Tertiary boundary. Soc Econ Paleontol Miner Spec Publ 32:355–394

    Google Scholar 

  • Thierstein HR, Okada H (1979) The Cretaceous/Tertiary boundary event in the North Atlantic. Initial Rep Deep Sea Drill Project 43:601–616

    Google Scholar 

  • Thompson JN (2013) Relentless evolution. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Twichett RJ (2006) The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeogr Palaeoclimatol Palaeoecol 232:190–213

    Article  Google Scholar 

  • Uchman A (2003) Trends in diversity, frequency and complexity of graphoglyptid trace fossils: evolutionary and palaeoenvironmental aspects. Palaeogeogr Palaeoclimatol Palaeoecol 192:123–142

    Article  Google Scholar 

  • Uchman A (2004) Phanerozoic history of deep-sea trace fossils. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc Lond Spec Publ 228:125–139

    Google Scholar 

  • Uchman A (2007) Deep-sea ichnology: development of major concepts. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 248–267

    Chapter  Google Scholar 

  • Uchman A, Bubík M, Mikuláš R (2005) The ichnological record across the Cretaceous/Tertiary boundary in turbiditic sediments at Uzgruň (Moravia, Czech Republic). Geol Carpathica 56:57–65

    Google Scholar 

  • Vandenberghe N, Hilgen FJ, Speijer RP (2012) The Paleogene Period. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale 2012. Elsevier, Amsterdam, pp 855–921

    Chapter  Google Scholar 

  • Wahlberg N, Leneveu J, Kodandaramaiah U, Peña C, Nylin S, Freitas AVL, Bower AVZ (2009) Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc R Soc B Biol Sci 276:4295–4302

    Article  Google Scholar 

  • Wappler T, Currano ED, Wilf P, Rust J, Labandeira CC (2009) No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverse middle Palaeocene plants, Menat, France. Proc R Soc B Biol Sci 276:4271–4277

    Article  Google Scholar 

  • Wappler T, Labandeira CC, Rust J, Frankenhäuser H, Wilde V (2012) Testing for the effects and consequences of mid Paleogene climate change on insect herbivory. PLoS One 7:e40744

    Article  CAS  Google Scholar 

  • Ward PD, Kennedy WJ, MacLeod KG, Mount JF (1991) Ammonite and inoceramid bivalve extinction patterns in Cretaceous/Tertiary boundary sections of the Biscay Region (southwestern France, northern Spain). Geology 19:1181–1184

    Article  Google Scholar 

  • Wiest LA, Buynevich IV, Grandstaff DE, Terry DO Jr, Maza ZA (2015) Trace fossil evidence suggests widespread dwarfism in response to the end-Cretaceous mass extinction: Braggs, Alabama and Brazos River, Texas. Palaeogeogr Palaeoclimatol Palaeoecol 417:105–111

    Article  Google Scholar 

  • Wilf P (2008) Insect-damaged fossil leaves record food web response to ancient climate change and extinction. New Phytol 178:486–502

    Article  CAS  Google Scholar 

  • Wilf P, Johnson KR (2004) Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakotan megafloral record. Paleobiology 30:347–368

    Article  Google Scholar 

  • Wilf P, Labandeira CC (1999) Response of plant–insect associations to Paleocene–Eocene warming. Science 284:2153–2156

    Article  CAS  Google Scholar 

  • Wilf P, Labandeira CC, Kress JW, Staines C, Windsor DM, Allen AL, Johnson KR (2000) Timing the radiations of leaf beetles: hispines on gingers from latest Cretaceous to Recent. Science 289:291–294

    Article  CAS  Google Scholar 

  • Wilf P, Labandeira CC, Johnson KR, Coley PD, Cutter AD (2001) Insect herbivory, plant defense, and early Cenozoic climate change. Proc Natl Acad Sci U S A 98:6221–6226

    Article  CAS  Google Scholar 

  • Wilf P, Labandeira CC, Johnson KR, Cúneo NR (2005) Richness of plant–insect associations in Eocene Patagonia: a legacy for South American biodiversity. Proc Natl Acad Sci U S A 102:8944–8948

    Article  CAS  Google Scholar 

  • Wilf P, Labandeira CC, Johnson KR, Ellis B (2006) Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313:1112–1115

    Article  CAS  Google Scholar 

  • Wing SL, Herrera F, Jaramillo C, Gómez C, Wilf P, Labandeira CC (2009) Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proc Natl Acad Sci U S A 106:18627–18632

    Article  CAS  Google Scholar 

  • Winkler IS, Labandeira CC, Wappler T, Wilf P (2010) Diptera (Agromyzidae) leaf mines from the Paleogene of North America and Germany: implications for host use evolution and an early origin for the Agromyzidae. J Paleontol 84:935–954

    Article  Google Scholar 

  • Wirth WW, Hubert AA (1962) The species of Culicoides related to piliferus Root and Hoffman in eastern North America (Diptera, Ceratopogonidae). Ann Entomol Soc Am 55:182–165

    Article  Google Scholar 

  • Wolbach WW, Lewis RS, Anders E (1985) Cretaceous extinctions: evidence for wildfires and search for meteoritic material. Science 230:167–170

    Article  CAS  Google Scholar 

  • Zvereva EI, Kozlov MV, Hilker M (2010) Evolutionary variations on a theme: host plant specialization in five geographic populations of the leaf beetle Chrysomela lapponica. Pop Ecol 52:389–396

    Article  Google Scholar 

Download references

Acknowledgments

We extend our gratitude to Gabriela Mángano and Luis Buatois for inviting us to provide this contribution to the volume. Reviewers Karen Chin and Charles Savrda provided critical remarks that improved the paper. We thank Finnegan Marsh for producing Figs. 12.1, 12.2, 12.3, and 12.4. Research by Rodríguez-Tovar was carried out with financial support of the Research Projects CGL2008-03007, and CGL2012-33281 (Ministerio de Economía y Competitividad), P08-RNM-03715 and the Research Group RNM-178 (Junta de Andalucía). A. Uchman received additional support from the Jagiellonian University (DS funds). This is contribution 260 of the Evolution of Terrestrial Ecosystems consortium at the National Museum of Natural History, in Washington, D.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad C. Labandeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Labandeira, C.C., Rodríguez-Tovar, F.J., Uchman, A. (2016). The End-Cretaceous Extinction and Ecosystem Change. In: Mángano, M., Buatois, L. (eds) The Trace-Fossil Record of Major Evolutionary Events. Topics in Geobiology, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9597-5_5

Download citation

Publish with us

Policies and ethics