Skip to main content

Selection of Proper Activation Functions in Back-Propagation Neural Network Algorithm for Transformer and Transmission System Protection

  • Chapter
  • First Online:
Transactions on Engineering Technologies

Abstract

This paper presents an analysis on the selection of an appropriate activation function used in neural networks for fault diagnosis decision algorithm in transformer and transmission line protection scheme. A decision algorithm based on a combination of discrete wavelet transform (DWT) and back-propagation neural networks (BPNN) is developed. The discrete wavelet transform is employed for extracting the high frequency component contained in the fault signals. The training process for the neural network and fault diagnosis decision are implemented using toolboxes on MATLAB/Simulink. The activation functions in each hidden layers and output layer have been varied to find out and to select the best activation function for fault diagnosis decision algorithm. It is found that the use of Hyperbolic tangent-function for the hidden layers, and linear activation function for the output layer gives the most satisfactory accuracy in these particular case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O.A.S. Youssef, Discrimination between faults and magnetizing inrush currents in transformers based on wavelet transforms. Electr. Power Syst. Res. 63(2), 87–94

    Google Scholar 

  2. M.E. Hamedani Golshan, M. Saghaian-nejad, A. Saha, H. Samet, A new method for recognizing internal faults from inrush current conditions in digital differential protection of power transformers. Electr. Power Syst. Res. 71(1), 61–71

    Google Scholar 

  3. A.A. Yusuff, A.A. Jimoh, J.L. Munda, Determinant-based feature extraction for fault detection and classification for power transmission lines. IET Gener. Transm. Distrib. 5(12), 1259–1267

    Google Scholar 

  4. F.E. Perez, R. Aguilar, E. Orduna, G. Guidi, High-speed non-unit transmission line protection using single-phase measurements and an adaptive wavelet: zone detection and fault classification. IET Gener. Transm. Distrib. 6(7), 593–604

    Google Scholar 

  5. P. Chiradeja, A. Ngaopitakkul, Identification of fault types for single circuit transmission line using discrete wavelet transform and artificial neural networks, in Proceedings of the International Multiconference of Engineers and Computer Scientists 2009, IMECS2009, 18–20 Mar 2009, Hong Kong. Lecture Notes in Engineering and Computer Science, pp. 1520–1525

    Google Scholar 

  6. D. Barbosa, U. Chemin Netto, D.V. Coury, M. Oleskovicz, Power transformer differential protection based on clarke’s transform and fuzzy systems. IEEE Trans. Power Deliv. 26(2), 1212–1220

    Google Scholar 

  7. N. Perera, A.D. Rajapakse, Development and hardware implementation of a fault transients recognition system. IEEE Trans. Power Deliv. 27(1), 40–412

    Google Scholar 

  8. S. Seyedtabaii, Improvement in the performance of neural network-based power transmission line fault classifiers. IET Gener. Transm. Distrib. 6(8), 731–737

    Google Scholar 

  9. A. Ngaopitakkul, C. Jettanasen, Combination of discrete wavelet transform and probabilistic neural network algorithm for detecting fault location on transmission system. Int. J. Innovative Comput. Inf. Control 7(4), 1861–1874

    Google Scholar 

  10. J. Upendar, C.P. Gupta, G.K. Singh, Fault classification scheme based on the adaptive resonance theory neural network for protection of transmission lines. Electr. Power Compon. Syst. 38(4), 424–444

    Google Scholar 

  11. A. Abu-Siada, S. Islam, A novel online technique to detect power transformer winding faults. IEEE Trans. Power Deliv. 27(2), 849–857

    Google Scholar 

  12. Z. Gajic, Use of standard 87T differential protection for special three-phase power transformers part I: theory. IEEE Trans. Power Deliv. 27(3), 1035–1040

    Google Scholar 

  13. M. Moscoso, S. Hosseini, G.J. Lloyd, K. Liu, Operation and design of a protection relay for transformer condition monitoring, in Proceedings of 11th International Conference on Developments in Power System Protection, DPSP2012, pp. 1–6

    Google Scholar 

  14. A. Ashrafian, M. Rostami, G.B. Gharehpetian, Hyperbolic S-transform-based method for classification of external faults, incipient faults, inrush currents and internal faults in power transformers. IET Gener. Transm. Distrib. 6(10), 940–950

    Google Scholar 

  15. O.A.S. Youssef, A wavelet-base technique for discrimination between faults and magnetizing inrush currents in transformers. IEEE Trans. Power Deliv. 18(1), 170–176

    Google Scholar 

  16. A. Ngaopitakkul, C. Pothisarn, Selection of proper activation functions in back-propagation neural networks algorithm for fault classification in underground cable. IAENG Trans. Eng. Technol. 7(1), 308–319

    Google Scholar 

  17. N. Suttisinthong, B. Seewirote, A. Ngaopitakkul, C. Pothisarn, Selection of proper activation functions in back-propagation neural network algorithm for single-circuit transmission line, in Proceedings of the International MultiConference of Engineers and Computer Scientists 2014, IMECS2014, 12–14 Mar 2014, Hong Kong. Lecture Notes in Engineering and Computer Science, pp. 758–762

    Google Scholar 

  18. A. Ngaopitakkul, A. Kunakorn, Internal fault classification in transformer windings using combination of discrete wavelet transforms and back-propagation neural networks. Int. J. Control Autom. Syst. (IJCAS) 4(3), 365–371

    Google Scholar 

Download references

Acknowledgment

The authors wish to gratefully acknowledge financial support for this research from the King Mongkut’s Institute of Technology Ladkrabang Research fund, Thailand. The authors would like also to thank for partially supported by the Faculty of Engineering, Rajamangala University of Technology Rattanakosin Research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atthapol Ngaopitakkul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ngaopitakkul, A., Bunjongjit, S. (2015). Selection of Proper Activation Functions in Back-Propagation Neural Network Algorithm for Transformer and Transmission System Protection. In: Yang, GC., Ao, SI., Huang, X., Castillo, O. (eds) Transactions on Engineering Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9588-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9588-3_22

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9587-6

  • Online ISBN: 978-94-017-9588-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics