Skip to main content

Related Circuitry and Synaptic Connectivity in Psychiatric Disorders

  • Chapter
  • First Online:
Neurosurgical Treatments for Psychiatric Disorders

Abstract

Deciphering the connectivity supporting brain function in psychiatric disorders is one of the major challenges in clinical neurosciences. Neural correlates of psychiatric disorders are not well-known because experimental research is extremely difficult to carry on facing the complexity of biological, medical and socio-psychological concepts. Although far from an extensive knowledge of such complex issue, one can summarize most main macroscopic or microscopic circuits known in human and higher species, but also in rodents. After a reminder of scales and functionality of neurobiological circuits , anatomo-functional correlates of the executive-behavioral system and psychiatric disorders are exposed, focusing on most frequent domains of psychiatry, anxiety, mood, substance disorders and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggleton JP. Multiple anatomical systems embedded within the primate medial temporal lobe: Implications for hippocampal function. Neurosci Biobehav Rev. 2012;36:1579–96.

    Article  PubMed  Google Scholar 

  2. Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K. Understanding wiring and volume transmission. Brain Res Rev. 2010;64:137–59.

    Article  PubMed  Google Scholar 

  3. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.

    Article  CAS  PubMed  Google Scholar 

  4. Andrés P. Frontal cortex as the central executive of working memory: time to revise our view. Cortex J Devoted Stud Nerv Syst Behav. 2003;39:871–95.

    Article  Google Scholar 

  5. Avery JA, Drevets WC, Moseman SE, Bodurka J, Barcalow JC, Simmons WK. Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biol Psychiatry. 2013.

    Google Scholar 

  6. Barbizet J. Defect of memorizing of hippocampal-mammillary origin: A review. J Neurol Neurosurg Psychiatry. 1963;26:127–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, Axmacher N, Lemke M, Cooper-Mahkorn D, Cohen MX, Brockmann H, Lenartz D, Sturm V, Schlaepfer TE. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry. 2010;67:110–6.

    Article  PubMed  Google Scholar 

  8. Bonini F, Burle B, Liégeois-Chauvel C, Régis J, Chauvel P, Vidal F. Action monitoring and medial frontal cortex: Leading role of supplementary motor area. Science. 2014;343:888–91.

    Article  CAS  PubMed  Google Scholar 

  9. Borisovska M, Bensen AL, Chong G, Westbrook GL. Distinct modes of dopamine and GABA release in a dual transmitter neuron. J Neurosci Off J Soc Neurosci. 2013;33:1790–6.

    Article  CAS  Google Scholar 

  10. Britt JP, Bonci A. Optogenetic interrogations of the neural circuits underlying addiction. Curr Opin Neurobiol. 2013;23:539–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Broca P. Sur la circonvolution limbique et la scissure limbique. Bull Société Anthr Paris. 1877;12:646–57.

    Article  Google Scholar 

  12. Brüstle O. Developmental neuroscience: miniature human brains. Nature. 2013;501:319–20.

    Article  PubMed  Google Scholar 

  13. Creed MC, Ntamati NR, Tan KR. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front Behav Neurosci. 2014;8:8.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Dani A, Huang B, Bergan J, Dulac C, Zhuang X. Superresolution imaging of chemical synapses in the brain. Neuron. 2010;68:843–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. De Smet HJ, Paquier P, Verhoeven J, Mariën P. The cerebellum: its role in language and related cognitive and affective functions. Brain Lang. 2013;127:334–42.

    Google Scholar 

  16. Dejerine J. Anatomie des centres nerveux (Tomes 1 and 2), Rueff et Cie. ed. Paris; 1901.

    Google Scholar 

  17. Drevets WC, Price JL, Simpson JR Jr, Todd RD, Reich T, Vannier M, Raichle ME. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386:824–7.

    Article  CAS  PubMed  Google Scholar 

  18. Drevets WC, Savitz J, Trimble M. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr. 2008;13:663–81.

    PubMed Central  PubMed  Google Scholar 

  19. Duvernoy H, Cabanis E-A, Iba-Zizen M-T, Tamraz J, Guyot J. Le cerveau humain: surfaces, coupes sériées tridimentionelles et IRM. Paris: Springer; 1992.

    Google Scholar 

  20. Euston DR, Gruber AJ, McNaughton BL. The role of medial prefrontal cortex in memory and decision making. Neuron. 2012;76:1057–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ferrarelli F, Tononi G. The thalamic reticular nucleus and schizophrenia. Schizophr Bull. 2011;37:306–15.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ferreira JGP, Del-Fava F, Hasue RH, Shammah-Lagnado SJ. Organization of ventral tegmental area projections to the ventral tegmental area-nigral complex in the rat. Neuroscience. 2008;153:196–213.

    Article  CAS  PubMed  Google Scholar 

  23. Fontaine D, Lanteri-Minet M, Ouchchane L, Lazorthes Y, Mertens P, Blond S, Geraud G, Fabre N, Navez M, Lucas C, Dubois F, Sol JC, Paquis P, Lemaire JJ. Anatomical location of effective deep brain stimulation electrodes in chronic cluster headache. Brain J Neurol. 2010;133:1214–23.

    Article  Google Scholar 

  24. Fossati P. Neural correlates of emotion processing: from emotional to social brain. Eur Neuropsychopharmacol. 2012;22:S487–91.

    Article  CAS  PubMed  Google Scholar 

  25. Fudge JL, Emiliano AB. The extended amygdala and the dopamine system: another piece of the dopamine puzzle. J Neuropsychiatry Clin Neurosci. 2003;15:306–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Fudge JL, Haber SN. Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates. Neuroscience. 2001;104:807–27.

    Article  CAS  PubMed  Google Scholar 

  27. Fudge JL, deCampo DM, Becoats KT. Revisiting the hippocampal–amygdala pathway in primates: association with immature-appearing neurons. Neuroscience. 2012;212:104–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Garavan H. Insula and drug cravings. Brain Struct Funct. 2010;214:593–601.

    Article  PubMed  Google Scholar 

  29. Ge J-F, Qi C-C, Zhou J-N. Imbalance of leptin pathway and hypothalamus synaptic plasticity markers are associated with stress-induced depression in rats. Behav Brain Res. 2013;249:38–43.

    Article  CAS  PubMed  Google Scholar 

  30. Geyer S, Luppino G, Rozzi S. Motor cortex. In: Mai JK, Paxinos G, editors. The human nervous system; 3rd ed. Elsevier: London; 2012. p. 1012–1035.

    Google Scholar 

  31. Goldman-Rakic PS, Selemon LD, Schwartz ML. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience. 1984;12:719–43.

    Article  CAS  PubMed  Google Scholar 

  32. Govindaiah G, Wang Y, Cox CL. Substance P selectively modulates GABA(A) receptor-mediated synaptic transmission in striatal cholinergic interneurons. Neuropharmacology. 2010;58:413–22.

    Article  CAS  PubMed  Google Scholar 

  33. Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS, Malloy PF, Salloway SP, Okun MS, Goodman WK, Rasmussen SA. Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2006;31:2384–93.

    Article  Google Scholar 

  34. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26:317–30.

    Article  PubMed  Google Scholar 

  35. Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull. 2009;78:69–74.

    Article  PubMed  Google Scholar 

  36. Haber SN, Knutson B. The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology. 2009;35:4–26.

    Article  PubMed Central  Google Scholar 

  37. Haber SN, Adler A, Bergman H. The basal ganglia. In: Mai JK, Paxinos G, editors. The human nervous system. 3rd ed. Amsterdam: Academic Press; 2011. p. 678–738.

    Google Scholar 

  38. Haynes WIA, Haber SN. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci Off J Soc Neurosci. 2013;33:4804–14.

    Article  CAS  Google Scholar 

  39. Heimer L. Basal forebrain in the context of schizophrenia. Brain Res Brain Res Rev. 2000;31:205–35.

    Article  CAS  PubMed  Google Scholar 

  40. Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J. Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience. 1997;76:957–1006.

    Google Scholar 

  41. Heng S, Song AW, Sim K. White matter abnormalities in bipolar disorder: insights from diffusion tensor imaging studies. J Neural Transm. 2010;1996(117):639–54.

    Article  Google Scholar 

  42. Hryhorczuk C, Sharma S, Fulton SE. Metabolic disturbances connecting obesity and depression. Front Neurosci. 2013;7:177.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev. 2007;56:27–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ikemoto S, Wise RA. Mapping of chemical trigger zones for reward. Neuropharmacology. 2004;47(1):190–201.

    Article  CAS  PubMed  Google Scholar 

  45. Ikemoto S, Bonci A. Neurocircuitry of drug reward. Neuropharmacology. 2014;76:329–341.

    Google Scholar 

  46. Jones DK, Christiansen KF, Chapman RJ, Aggleton JP. Distinct subdivisions of the cingulum bundle revealed by diffusion MRI fibre tracking: implications for neuropsychological investigations. Neuropsychologia. 2013;51:67–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Karachi C, François C, Parain K, Bardinet E, Tandé D, Hirsch E, Yelnik J. Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. J Comp Neurol. 2002;450:122–34.

    Article  PubMed  Google Scholar 

  48. Kash TL. The role of biogenic amine signaling in the bed nucleus of the stria terminals in alcohol abuse. Alcohol. 2012;46:303–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kha HT, Finkelstein DI, Pow DV, Lawrence AJ, Horne MK. Study of projections from the entopeduncular nucleus to the thalamus of the rat. J Comp Neurol. 2000;426:366–77.

    Article  CAS  PubMed  Google Scholar 

  50. Klingler J. Erleichterung des makroskopischen praeparation des gehirns durch den gefrierprozess. Schweiz Arch Neurol Psychiatr. 1935;36:247–56.

    Google Scholar 

  51. Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, Wherrett J, Naglie G, Hamani C, Smith GS, Lozano AM. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol. 2010;68:521–34.

    Article  CAS  PubMed  Google Scholar 

  52. LeDoux J. The emotional brain, fear, and the amygdala. Cell Mol Neurobiol. 2003;23:727–38.

    Article  PubMed  Google Scholar 

  53. LeDoux J. The amygdala. Curr Biol. 2007;17:R868–74.

    Article  CAS  PubMed  Google Scholar 

  54. Lemaire J, Sakka L, Ouchchane L, Caire F, Gabrillargues J, Bonny J. Anatomy of the human thalamus based on spontaneous contrast and microscopic voxels in high-field magnetic resonance imaging. Neurosurgery. 2010;66:161–72.

    Article  PubMed  Google Scholar 

  55. Lemaire J-J, Frew AJ, McArthur D, Gorgulho AA, Alger JR, Salomon N, Chen C, Behnke EJ, De Salles AAF. White matter connectivity of human hypothalamus. Brain Res. 2011;1371:43–64.

    Google Scholar 

  56. Lipsman N, Woodside DB, Giacobbe P, Hamani C, Carter JC, Norwood SJ, Sutandar K, Staab R, Elias G, Lyman CH, Smith GS, Lozano AM. Subcallosal cingulate deep brain stimulation for treatment-refractory anorexia nervosa: a phase 1 pilot trial. Lancet. 2013;381:1361–70.

    Article  PubMed  Google Scholar 

  57. Lucassen PJ, Pruessner J, Sousa N, Almeida OFX, Van Dam AM, Rajkowska G, Swaab DF, Czéh B. Neuropathology of stress. Acta Neuropathol (Berl). 2014;127:109–35.

    Google Scholar 

  58. MacLean PD. Psychosomatic disease and the visceral brain; recent developments bearing on the Papez theory of emotion. Psychosom Med. 1949;11:338–53.

    Article  CAS  PubMed  Google Scholar 

  59. Mallet L, Schüpbach M, N’Diaye K, Remy P, Bardinet E, Czernecki V, Welter M-L, Pelissolo A, Ruberg M, Agid Y, Yelnik J. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci USA. 2007;104:10661–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Mallet L, Polosan M, Jaafari N, Baup N, Welter M-L, Fontaine D, du Montcel ST, Yelnik J, Chéreau I, Arbus C, Raoul S, Aouizerate B, Damier P, Chabardès S, Czernecki V, Ardouin C, Krebs M-O, Bardinet E, Chaynes P, Burbaud P, Cornu P, Derost P, Bougerol T, Bataille B, Mattei V, Dormont D, Devaux B, Vérin M, Houeto J-L, Pollak P, Benabid A-L, Agid Y, Krack P, Millet B, Pelissolo A. STOC Study Group. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med. 2008;359:2121–34.

    Article  Google Scholar 

  61. Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, Rauch SL, Rasmussen SA, Machado AG, Kubu CS, Tyrka AR, Price LH, Stypulkowski PH, Giftakis JE, Rise MT, Malloy PF, Salloway SP, Greenberg BD. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65:267–75.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Marchand WR. Cortico-basal ganglia circuitry: a review of key research and implications for functional connectivity studies of mood and anxiety disorders. Brain Struct Funct. 2010;215:73–96.

    Article  PubMed  Google Scholar 

  63. Markram H. The blue brain project. Nat Rev Neurosci. 2006;7:153–60.

    Article  CAS  PubMed  Google Scholar 

  64. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.

    Article  CAS  PubMed  Google Scholar 

  65. McCollum LA, Roche JK, Roberts RC. Immunohistochemical localization of enkephalin in the human striatum: a postmortem ultrastructural study. Synapse. 2012;66:204–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. McGaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci. 2004;27:1–28.

    Article  CAS  PubMed  Google Scholar 

  67. Melega WP, Lacan G, Gorgulho AA, Behnke EJ, De Salles AAF. Hypothalamic deep brain stimulation reduces weight gain in an obesity-animal model. PLoS One. 2012;7:e30672.

    Google Scholar 

  68. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214:655–67.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Mignarri A, Tessa A, Carluccio MA, Rufa A, Storti E, Bonelli G, Marcotulli C, Santorelli FM, Leonardi L, Casali C, Federico A, Dotti MT. Cerebellum and neuropsychiatric disorders: insights from ARSACS. Neurol Sci. 2013.

    Google Scholar 

  70. Miyawaki E, Perlmutter JS, Tröster AI, Videen TO, Koller WC. The behavioral complications of pallidal stimulation: a case report. Brain Cogn. 2000;42:417–34.

    Article  CAS  PubMed  Google Scholar 

  71. Mohr P, Rodriguez M, Slavíčková A, Hanka J. The application of vagus nerve stimulation and deep brain stimulation in depression. Neuropsychobiology. 2011;64:170–81.

    Article  PubMed  Google Scholar 

  72. Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haache EM. Duvernoy’s atlas of the human brain stem and cerebellum. Austria: Springer; 2009.

    Book  Google Scholar 

  73. Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res. 2002;43:111–7.

    Article  PubMed  Google Scholar 

  74. Niciu MJ, Kelmendi B, Sanacora G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol Biochem Behav. 2012;100:656–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Nieh EH, Kim S-Y, Namburi P, Tye KM. Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors. Brain Res. 2013;1511:73–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Oades RD, Halliday GM. Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res Rev. 1987;12:117–65.

    Article  Google Scholar 

  77. Okun MS, Mann G, Foote KD, Shapira NA, Bowers D, Springer U, Knight W, Martin P, Goodman WK. Deep brain stimulation in the internal capsule and nucleus accumbens region: responses observed during active and sham programming. J Neurol Neurosurg Psychiatry. 2007;78:310–4.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Oldenburg IA, Ding JB. Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Curr Opin Neurobiol. 2011;21(3):425−432.

    Google Scholar 

  79. Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatry. 1937;38:725–43.

    Article  Google Scholar 

  80. Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev. 1995;20:91–127.

    Article  CAS  PubMed  Google Scholar 

  81. Perry RH, Candy JM, Perry EK, Thompson J, Oakley AE. The substantia innominata and adjacent regions in the human brain: histochemical and biochemical observations. J Anat. 1984;138(Pt 4):713–32.

    PubMed Central  PubMed  Google Scholar 

  82. Petrides M, Pandya DN. The frontal cortex. In: Mai JK, Paxinos G, editors. The human nervous system, 3rd ed. London; 2012. p. 988–1011.

    Google Scholar 

  83. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry. 2003;54:504–14.

    Article  PubMed  Google Scholar 

  84. Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008;13(829):833–57.

    Article  Google Scholar 

  85. Pirone A, Cozzi B, Edelstein L, Peruffo A, Lenzi C, Quilici F, Antonini R, Castagna M. Topography of Gng2- and NetrinG2-expression suggests an insular origin of the human claustrum. PLoS One. 2012;7:e44745.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacol: Neuropsychopharmacol Off Publ Am Coll; 2009.

    Google Scholar 

  87. Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci. 2012;16:61–71.

    Article  PubMed  Google Scholar 

  88. Rieu I, Derost P, Ulla M, Marques A, Debilly B, De Chazeron I, Chéreau I, Lemaire JJ, Boirie Y, Llorca PM, Durif F. Body weight gain and deep brain stimulation. Sci: J Neurol; 2011.

    Google Scholar 

  89. Riley H. An atlas of the basal ganglia, brain stem and spinal cord. Williams & Wilkins: Baltimore; 1953.

    Google Scholar 

  90. Rive MM, van Rooijen G, Veltman DJ, Phillips ML, Schene AH, Ruhé HG. Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neurosci Biobehav Rev. 2013.

    Google Scholar 

  91. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14:609–25.

    Article  CAS  PubMed  Google Scholar 

  92. Rück C, Karlsson A, Steele JD, Edman G, Meyerson BA, Ericson K, Nyman H, Asberg M, Svanborg P. Capsulotomy for obsessive-compulsive disorder: long-term follow-up of 25 patients. Arch Gen Psychiatry. 2008;65:914–21.

    Article  PubMed  Google Scholar 

  93. Sadikot AF, Rymar VV. The primate centromedian-parafascicular complex: anatomical organization with a note on neuromodulation. Brain Res Bull. 2009;78:122–30.

    Article  PubMed  Google Scholar 

  94. Schaltenbrand G, Bailey P, editors. Introduction to stereotaxis with an atlas of the human brain, Georg Thieme: Stuttgart; 1959.

    Google Scholar 

  95. Sinha R. Disgust, insula, immune signaling, and addiction. Biol Psychiatry. 2014;75:90–1.

    Article  PubMed  Google Scholar 

  96. Solomon MB, Furay AR, Jones K, Packard AEB, Packard BA, Wulsin AC, Herman JP. Deletion of forebrain glucocorticoid receptors impairs neuroendocrine stress responses and induces depression-like behavior in males but not females. Neuroscience. 2012;203:135–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Stamatakis AM, Sparta DR, Jennings JH, McElligott ZA, Decot H, Stuber GD. Amygdala and bed nucleus of the stria terminalis circuitry: implications for addiction-related behaviors. Neuropharmacology. 2014; 76:320–328.

    Google Scholar 

  98. Strakowski SM, Adler CM, Almeida J, Altshuler LL, Blumberg HP, Chang KD, DelBello MP, Frangou S, McIntosh A, Phillips ML, Sussman JE, Townsend JD. The functional neuroanatomy of bipolar disorder: a consensus model. Bipolar Disord. 2012;14:313–25.

    Article  PubMed  Google Scholar 

  99. Strutt AM, Simpson R, Jankovic J, York MK. Changes in cognitive-emotional and physiological symptoms of depression following STN-DBS for the treatment of Parkinson’s disease. Eur J Neurol Off J Eur Fed Neurol Soc. 2012;19:121–7.

    CAS  Google Scholar 

  100. Suthana N, Haneef Z, Stern J, Mukamel R, Behnke E, Knowlton B, Fried I. Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med. 2012;366:502–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Ting JT, Feng G. Neurobiology of obsessive-compulsive disorder: insights into neural circuitry dysfunction through mouse genetics. Curr Opin Neurobiol. 2011;21:842–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Tsuchida A, Fellows LK. Are core component processes of executive function dissociable within the frontal lobes? Evidence from humans with focal prefrontal damage. Cortex. J Devoted Stud Nerv Syst Behav. 2013;49:1790–800.

    Article  Google Scholar 

  103. Ulla M, Thobois S, Llorca P-M, Derost P, Lemaire J-J, Chereau-Boudet I, de Chazeron I, Schmitt A, Ballanger B, Broussolle E, Durif F. Contact dependent reproducible hypomania induced by deep brain stimulation in Parkinson’s disease: clinical, anatomical and functional imaging study. J Neurol Neurosurg Psychiatry. 2010.

    Google Scholar 

  104. Van Domburg PH, ten Donkelaar HJ. The human substantia nigra and ventral tegmental area. A neuroanatomical study with notes on aging and aging diseases. Adv Anat Embryol Cell Biol. 1991;121:1–132.

    Google Scholar 

  105. Van Wieringen J-P, Booij J, Shalgunov V, Elsinga P, Michel MC. Agonist high- and low-affinity states of dopamine D2 receptors: methods of detection and clinical implications. Naunyn Schmiedebergs Arch Pharmacol. 2013;386:135–54.

    Google Scholar 

  106. Vann SD. Gudden’s ventral tegmental nucleus is vital for memory: re-evaluating diencephalic inputs for amnesia. Brain J Neurol. 2009;132:2372–84.

    Article  Google Scholar 

  107. Vogt BA, Palomero-Gallagher N. Cingulate cortex, In: Mai JK, Paxinos G, editors. The human nervous system. 3rd ed. Elsevier: London; 2012. p. 943–987.

    Google Scholar 

  108. Voorn P, Brady LS, Berendse HW, Richfield EK. Densitometrical analysis of opioid receptor ligand binding in the human striatum—I. Distribution of μ opioid receptor defines shell and core of the ventral striatum. Neuroscience. 1996;75:777–92.

    Article  CAS  PubMed  Google Scholar 

  109. Weltens N, Zhao D, Van Oudenhove L. Where is the comfort in comfort foods? Mechanisms linking fat signaling, reward, and emotion. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc. 2014;26:303–15.

    Google Scholar 

  110. Whiting DM, Tomycz ND, Bailes J, de Jonge L, Lecoultre V, Wilent B, Alcindor D, Prostko ER, Cheng BC, Angle C, Cantella D, Whiting BB, Mizes JS, Finnis KW, Ravussin E, Oh MY. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism. J Neurosurg. 2013;119:56–63.

    Google Scholar 

  111. Zhou Y, Chen C-C, Weber AE, Zhou L, Baker LA, Hou J. Potentiometric-scanning ion conductance microscopy for measurement at tight junctions. Tissue Barriers. 2013;1:e25585.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Lemaire .

Editor information

Editors and Affiliations

List of Abbreviations Used in Figures

AC

Anterior commissure

ACc

Anterior cingulate cortex

Ach

Acetylcholine

Ag

Amygdala

Al

Ansa lenticularis

Alat

Anterolateral nucleus (Thalamus)

Am

Anteromedial nucleus (Thalamus)

Ant

Anterior thalamus

Ap

Anterior perforate region

Ar

Arcuate nucleus (hypothalamus)

Av

Alveus

Bfb

Basal forebrain bundle

Bst

Bed of stria terminalis

CAg

Centromedial amygdala

Cc

Corpus callosum

Clau

Claustrum

Cd, h, t

Caudate nucleus, head, tale

Cg

Cingulate (gyrus)

Ci

Cingulum (longitudinal fascicle of the gyrus limbici)

Cao

Carrefour olfactif of Broca (paraolfactory area)

Cs

Cingulate sulcus

D1, 2

Dopamine receptor: types 1 and 2

DA

Dopamine neuron

DACg

Dorsal anterior cingulate

Db

Diagonal band of Broca

Dl

Dorsolateral nucleus (thalamus)

DLPF

Dorsolateral prefronal cortex

DMPF

Dorsomedial prefronal cortex

Dm

Dorsomedial nucleus (thalamus)

Dom

Dorsomedial nucleus (hypothalamus)

DPM

Dorsal premotor cortex

Ea

Extended amygdala

ECg

External cingulate gyrus

Ep

Epithalamus

Epl

Lateral habenula

Ent

Entorhinal cortex

Fa

Fascicle angularis

Fbc

Fronto-basal cortex

FEF

Frontal eye field

Fi

Fimbria

Fo

Fascicle olfactorius, diagonal band of Broca

FPc

Frontopolar cortex

Fr

Fascicle retroflexus

Fx

Fornix

Gaba

Gamma-aminobutyric acid neuron

Glu

Glutamate

gR

Gyrus rectus

Gp, e, i, v

Globus pallidum extern, intern, ventral

Hi

Hippocampus

Hy, l

Hypothalamus, lateral

Ical

Internal capsule anterior limb

Ida

Insular dysgranular area

Ifs

Inferior frontal gyrus

Ins

Insula

Ipn

Interpeduncular nucleus

Isth

Isthmus

Lat

Lateral nucleus (hypothalamus)

Lgb

Lateral geniculate body

LBco

Laterobasal complex of amygdala

M-I

Primary motor area

M-II, SMA

Supplementary motor area

Mb

Mammilary body

MCc

Midcingulate cortex

MFc

Motor frontal cortex

MiT

Midline thalamus

MPF

Medial prefrontal cortex

Msn

Medium spiny neuron

Mtb

Mamillo-thalamic bundle

Nac (c, s)

Nucleus accumbens (core, shell)

Nal

Nucleus ansa lenticularis

NM

Nucleus of Meynert

Mt

Mammillo-tegmental fascicle

Oc

Orbitofrontal cortex

OFg

Orbitofrontal gyri

Ol

Ofactive system

Ot

Optical tract

Ox

Optic chiasma

ParaHg

Parahypoccampal gyrus

PCc

Posterior cingulate cortex

PCs

Paracingulate sulcus

Pf

Parafascicular nucleus (thalamus)

Pfo

Perifornical nucleus (hypothalamus)

PFc

Prefrontal cortex

Pol

Temporo-polar region

Pos

Paraolfactive or subcallosal sulcus

Post

Posterior nucleus (hypothalamus)

Pr

Preoptic nucleus (hypothalamus)

PreCuneus

Pre cuneus of the medial parieto-cingulate region

Pu, a

Putamen, anterior

Pul

Pulvinar

Pv

Periventricular nucleus (hypothalamus)

Pvg

Paraventricular grey matter

Pvt

Paraventricular thalamus

RCc

Radiation of the corpus callosum

RSC

Retrosplenial cingulate cortex

Ro

Olfactive radiation

Rn

Red nucleus

Rrn

Retrorubral nucleus or field

Sc

Suprachiasmatic nucleus (hypothalamus)

SCg

Subcallosal gyrus

Se

Septum (nuclei)

Ser

Serotonine or 5-hydroxytryptamine

Si

Substantia innominata

Sm

Stria medullaris

So

Supraoptic nucleus (hypothalamus)

Sos

Supraorbitaris sulci

Spl

Splenium of the corpus callosum

Sq

Substance Q

St

Stria terminalis

Stn

Subthalamic nucleus

Std

Dorsal striatum

Stv

Ventral striatum

Sn, c, r

Substantia nigra, compacta, reticulata

Teg

Tegmentum

Thal

Thalamus

Tm

Nucleus tuberomammillaris (hypothalamus)

Trg

Transverse gyri

VLPF

Ventrolateral prefrontal cortex

VMPF

Ventromedial prefrontal cortex

Vc

Thalamus ventro-caudal

Vm

Ventromedial nucleus (hypothalamus)

Vo

Thalamus ventro-oral

VPM

Ventral premotor cortex

Vta, L, CM

Ventral tegmental area, lateral and caudo-medial parts

Zi

Zona incerta

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiao Tong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lemaire, JJ. (2015). Related Circuitry and Synaptic Connectivity in Psychiatric Disorders. In: Sun, B., Salles, A. (eds) Neurosurgical Treatments for Psychiatric Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9576-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9576-0_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9575-3

  • Online ISBN: 978-94-017-9576-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics