Skip to main content

Understanding the Exohedral Functionalization of Endohedral Metallofullerenes

  • Chapter
  • First Online:
  • 784 Accesses

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 8))

Abstract

The endohedral metallofullerenes (EMFs) and their exohedral functionalized derivatives present an increasing attention due to their potential applications in materials science and medicine. However, the current understanding of the reactivity of endohedral metallofullerenes is still very incomplete. In this chapter, we present a thorough study of the Diels-Alder (DA) reactivity of D 3h -C 78 , Sc3N@D 3h -C 78 , Y3N@D 3h -C 78 , Ti2C2@D 3h -C 78, Sc3N@D 5h -C 80 , Lu3N@D 5h -C 80 , Gd3N@D 5h -C 80 , Sc3N@I h -C 80 , Lu3N@I h -C 80 -C80, Gd3N@I h -C 80 , Y3N@I h -C 80 , La2@I h -C 80 , Y3@I h -C 80 , Sc3C2@I h -C 80 , Sc4C2@I h -C 80 , Sc3CH@I h -C 80 , Sc3NC@I h -C 80 , Sc4O2@I h -C 80 , Sc4O3@I h -C 80 , and La@C 2v -C 82. We have studied both the thermodynamic and the kinetic regioselectivity , taking into account when it was required the free rotation of the metallic cluster inside the fullerene. This systematic investigation was possible only because we use the Frozen Cage Model , which is a low-cost approach to determine the EMF exohedral regioselectivity. Our study has allowed the correction of two wrong experimental assignations of DA adducts, highlighting the key role of computational studies to achieve a deep understanding of exohedral reactivity of the EMFs. The incarceration of the metallic cluster reduces the reactivity of the EMFs respect to the hollow fullerenes. Our results also show that bond distances, pyramidalization angles , LUMOs shape, charge transfer , and cluster volume are the key factors that determine the DA regioselectivity of the fullerenes and EMFs. However, none of them can be used alone to predict which bond will be attacked. Finally, we focus our attention on the essential role of the dispersion interactions to reproduce the experimental results of the exohedral cycloaddition on EMFs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aihara J-I (2001) Chem Phys Lett 343:465–469

    CAS  Google Scholar 

  • Akasaka T, Nagase S (2002) Endofullerenes: a new family of carbon clusters. Kluwer Academic, Dordrecht

    Google Scholar 

  • Akasaka T, Nagase S, Kobayashi K, Wälchli M, Yamamoto K, Funasaka H, Kako M, Hoshino T, Erata T (1997) Angew Chem Int Ed Engl 36:1643–1645

    CAS  Google Scholar 

  • Aroua S, Garcia-Borràs M, Osuna S, Yamakoshi Y (2014) Chem Eur J 20:14032–14039

    Google Scholar 

  • Atkins P, De Paula J (2006) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41–51

    CAS  Google Scholar 

  • Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, Faassen MV, Fan L, Fischer TH, Fonseca Guerra C, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, van Lenthe E, Mccormack DA, Michalak A, Mitoraj M, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodriguez JI, Ros P, Schipper PRT, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, Te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL (2010) ADF2010. ADF201001.ADF2010.01. SCM, Amsterdam

    Google Scholar 

  • Becke AD (1988) Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  • Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  • Cai T, Slebodnick C, Xu L, Harich K, Glass TE, Chancellor C, Fettinger JC, Olmstead MM, Balch AL, Gibson HW, Dorn HC (2006a) J Am Chem Soc 128:6486–6492

    CAS  Google Scholar 

  • Cai T, Xu LS, Anderson MR, Ge ZX, Zuo TM, Wang XL, Olmstead MM, Balch AL, Gibson HW, Dorn HC (2006b). J Am Chem Soc 128:8581–8589

    CAS  Google Scholar 

  • Campanera JM, Bo C, Olmstead MM, Balch AL, Poblet JM (2002) J Phys Chem A 106:12356–12364

    CAS  Google Scholar 

  • Campanera JM, Bo C, Poblet JM (2005) Angew Chem Int Ed 44:7230–7233

    CAS  Google Scholar 

  • Campanera JM, Bo C, Poblet JM (2006) J Org Chem 71:46–54

    CAS  Google Scholar 

  • Cao B, Hasegawa M, Okada K, Tomiyama T, Okasaki T, Suenaga K, Shinohara H (2001) J Am Chem Soc 123:9679–9680

    CAS  Google Scholar 

  • Cardona CM, Kitaygorodskiy A, Echegoyen L (2005a) J Am Chem Soc 127:10448–10453

    CAS  Google Scholar 

  • Cardona CM, Kitaygorodskiy A, Ortiz A, Herranz MÁ, Echegoyen L (2005b) J Org Chem 70:5092–5097

    CAS  Google Scholar 

  • Cardona CM, Elliott B, Echegoyen L (2006) J Am Chem Soc 128:6480–6485

    CAS  Google Scholar 

  • Chai Y, Guo T, Jin C, Haufler RE, Chibante LPF, Fure J, Wang L, Alford JM, Smalley RE (1991) J Phys Chem 95:7564–7568

    CAS  Google Scholar 

  • Chaur MN, Melin F, Elliott B, Athans AJ, Walker K, Holloway BC, Echegoyen L (2007) J Am Chem Soc 129:14826–14829

    CAS  Google Scholar 

  • Chaur MN, Melin F, Ortiz AL, Echegoyen L (2009) Angew Chem Int Ed 48:7514–7538

    CAS  Google Scholar 

  • Chen N, Fan LZ, Tan K, Wu YQ, Shu CY, Lu X, Wang CR (2007) J Phys Chem C 111:11823–11828

    CAS  Google Scholar 

  • Dapprich S, Komáromi I, Byu KS, Morokuma K, Frisch MJ (1999). J Mol Struct (Theochem) 461–462:1–21

    Google Scholar 

  • Duchamp JC, Demortier A, Fletcher KR, Dorn D, Iezzi EB, Glass T, Dorn HC (2003) Chem Phys Lett 375:655–659

    CAS  Google Scholar 

  • Fatouros PP, Corwin FD, Chen ZJ, Broaddus WC, Tatum JL, Kettenmann B, Ge Z, Gibson HW, Russ JL, Leonard AP, Duchamp JC, Dorn HC (2006) Radiology 240:756–764

    Google Scholar 

  • Garcia-Borràs M, Osuna S, Luis JM, Swart M, Solà M (2012a) Chem Eur J 18:7141–7154

    Google Scholar 

  • Garcia-Borràs M, Romero-Rivera A, Osuna S, Luis JM, Swart M, Solà M (2012b) J Chem Theory Comput 8:1671–1683

    Google Scholar 

  • Garcia-Borràs M, Luis JM, Swart M, Solà M (2013a) Chem Eur J 19:4468–4479

    Google Scholar 

  • Garcia-Borràs M, Osuna S, Swart M, Luis JM, Solà M (2013b) Angew Chem Int Ed. 52:9275–9278

    Google Scholar 

  • Garcia-Borràs M, Osuna S, Swart M, Luis JM, Solà M (2013c) Chem Eur J. 19:14931–14940

    Google Scholar 

  • Goerigk L, Grimme S (2010) J Chem Theory Comput 6:107–126

    CAS  Google Scholar 

  • Grimme S (2004) J Comput Chem 25:1463–1473

    CAS  Google Scholar 

  • Grimme S (2006). J Comput Chem 27:1787–1799

    CAS  Google Scholar 

  • Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Google Scholar 

  • Guha S, Nakamoto K (2005) Coord Chem Rev 249:1111–1132

    CAS  Google Scholar 

  • Guldi DM, Feng L, Radhakrishnan SG, Nikawa H, Yamada M, Mizorogi N, Tsuchiya T, Akasaka T, Nagase S, Angeles Herranz M, Martin N (2010) J Am Chem Soc 132:9078–9086

    CAS  Google Scholar 

  • Haddon RC (1988) QCPE 508/QCMP 044. QCPE Bull 8

    Google Scholar 

  • Haddon RC (2001) J Phys Chem A 105:4164–4165

    CAS  Google Scholar 

  • Haddon RC, Chow SY (1998) J Am Chem Soc 120:10494–10496

    CAS  Google Scholar 

  • Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    CAS  Google Scholar 

  • Heath JR, OBrien SC, Zhang Q, Liu Y, Curl RF, Kroto HW, Tittel FK, Smalley RE (1985) J Am Chem Soc 107:7779–7780

    CAS  Google Scholar 

  • Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657–2664

    CAS  Google Scholar 

  • Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    CAS  Google Scholar 

  • Hesselmann A, Korona T (2011) Phys Chem Chem Phys 13:732–743

    CAS  Google Scholar 

  • Iezzi EB, Duchamp JC, Harich K, Glass TE, Lee HM, Olmstead MM, Balch AL, Dorn HC (2002) J Am Chem Soc 124:524–525

    CAS  Google Scholar 

  • Iiduka Y, Ikenaga O, Sakuraba A, Wakahara T, Tsuchiya T, Maeda Y, Nakahodo T, Akasaka T, Kako M, Mizorogi N, Nagase S (2005a) J Am Chem Soc 127:9956–9957

    CAS  Google Scholar 

  • Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu MTH, Mizorogi N, Kobayashi K, Nagase S (2005b) J Am Chem Soc 127:12500–12501

    CAS  Google Scholar 

  • Ishitsuka MO, Sano S, Enoki H, Sato S, Nikawa H, Tsuchiya T, Slanina Z, Mizorogi N, Liu MTH, Akasaka T, Nagase S (2011) J Am Chem Soc 133:7128–7134

    CAS  Google Scholar 

  • Iwasaki K, Hino S, Yoshimura D, Cao B, Okasaki T, Shinohara H (2004) Chem Phys Lett 397:169–173

    CAS  Google Scholar 

  • Jaffiol R, Débarre A, Julien C, Nutarelli D, Tchénio P, Taninaka A, Cao B, Okasaki T, Shinohara H (2003) Phys Rev B 68:014105

    Google Scholar 

  • Kobayashi K, Nagase S, Yoshida M, Ōsawa E (1997) J Am Chem Soc 119:12693–12694

    CAS  Google Scholar 

  • Korona T, Hesselmann A, Dodziuk H (2009) J Chem Theory Comput 5:1585–1596

    CAS  Google Scholar 

  • Krause M, Ziegs F, Popov AA, Dunsch L (2007) Chem Phys Chem 8:537–540

    CAS  Google Scholar 

  • Kroto HW (1987) Nature 329:529–531

    CAS  Google Scholar 

  • Kroto HW, Heath JR, OBrien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

    CAS  Google Scholar 

  • Kruse H, Grimme S (2009) J Phys Chem C 113:17006–17010

    CAS  Google Scholar 

  • Kurihara H, Iiduka Y, Rubin Y, Waelchli M, Mizorogi N, Slanina Z, Tsuchiya T, Nagase S, Akasaka T (2012) J Am Chem Soc 134:4092–4095

    CAS  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    CAS  Google Scholar 

  • Lee HM, Olmstead MM, Iezzi E, Duchamp JC, Dorn HC, Balch AL (2002) J Am Chem Soc 124:3494–3495

    CAS  Google Scholar 

  • Liu S, Sun S (2000) J Organomet Chem 599:74–86

    CAS  Google Scholar 

  • Lu X, Akasaka T, Nagase S (2011) Chem Commun 47:5942–5957

    CAS  Google Scholar 

  • Lu X, Feng L, Akasaka T, Nagase S (2012) Chem Soc Rev 41:7723–7760

    Google Scholar 

  • Lu X, Nikawa H, Nakahodo T, Tsuchiya T, Ishitsuka MO, Maeda Y, Akasaka T, Toki M, Sawa H, Slanina Z, Mizorogi N, Nagase S (2008) J Am Chem Soc 130:9129–9136

    CAS  Google Scholar 

  • Lukoyanova O, Cardona CM, Rivera J, Lugo-Morales LZ, Chancellor CJ, Olmstead MM, Rodriguez-Fortea A, Poblet JM, Balch AL, Echegoyen L (2007) J Am Chem Soc 129:10423–10430

    CAS  Google Scholar 

  • Maeda Y, Miyashita J, Hasegawa T, Wakahara T, Tsuchiya T, Nakahodo T, Akasaka T, Mizorogi N, Kobayashi K, Nagase S, Kato T, Ban N, Nakajima H, Watanabe Y (2005) J Am Chem Soc 127:12190–12191

    CAS  Google Scholar 

  • Maeda Y, Sato S, Inada K, Nikawa H, Yamada M, Mizorogi N, Hasegawa T, Tsuchiya T, Akasaka T, Kato T, Slanina Z, Nagase S (2010) Chem Eur J 16:2193–2197

    CAS  Google Scholar 

  • Mercado BQ, Olmstead MM, Beavers CM, Easterling ML, Stevenson S, Mackey MA, Coumbe CE, Phillips JD, Phillips JP, Poblet JM, Balch AL (2010) Chem Commun 46:279–281

    CAS  Google Scholar 

  • Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Google Scholar 

  • Murata M, Murata Y, Komatsu K (2008) Chem Commun 6083–6094

    Google Scholar 

  • Nishibori E, Narioka S, Takata M, Sakata M, Inoue T, Shinohara H (2006) ChemPhysChem 7:345–348

    CAS  Google Scholar 

  • Osuna S, Houk KN (2009) Chem Eur J 15:13219–13231

    CAS  Google Scholar 

  • Osuna S, Swart M, Campanera JM, Poblet JM, Solà M (2008) J Am Chem Soc 130:6206–6214

    CAS  Google Scholar 

  • Osuna S, Swart M, Solà M (2009a) J Am Chem Soc 131:129–139

    CAS  Google Scholar 

  • Osuna SL, Morera J, Cases M, Morokuma K, Solà M (2009b) J Phys Chem A 113:9721–9726

    CAS  Google Scholar 

  • Osuna S, Swart M, Solà M (2011a) Phys Chem Chem Phys 13:3585–3603

    CAS  Google Scholar 

  • Osuna S, Swart M, Solà M (2011b) J Phys Chem A 115:3491–3496

    CAS  Google Scholar 

  • Osuna S, Rodriguez-Fortea A, Poblet JM, Solà M, Swart M (2012a) Chem Commun 48:2486–2488

    CAS  Google Scholar 

  • Osuna S, Valencia R, Rodríguez-Fortea A, Swart M, Solà M, Poblet JM (2012b). Chem Eur J 18:8944–8956

    CAS  Google Scholar 

  • Pascual-Ahuir JL, Silla E, Tuñon I (1994) J Comput Chem 15:1127

    CAS  Google Scholar 

  • Perdew JP (1986) Phys Rev B 33:8822–8824

    Google Scholar 

  • Popov AA, Dunsch L (2008) J Am Chem Soc 130:17726–17742

    CAS  Google Scholar 

  • Popov AA, Zhang L, Dunsch L (2010) ACS Nano 4:795–802

    CAS  Google Scholar 

  • Rivera-Nazario DM, Pinzón JR, Stevenson S, Echegoyen LA (2013) J Phys Org Chem 26:194–205

    CAS  Google Scholar 

  • Rodríguez-Fortea A, Alegret N, Balch AL, Poblet JM (2010) Nat Chem 2:955–961

    Google Scholar 

  • Rodríguez-Fortea A, Campanera JM, Cardona CM, Echegoyen L, Poblet JM (2006) Angew Chem Int Ed Engl 45:8176–8180

    Google Scholar 

  • Rodríguez-Fortea A, Balch AL, Poblet JM (2011) Chem Soc Rev 40:3551–3563

    Google Scholar 

  • Shi Z-Q, Wu X, Wang C-R, Lu X, Shinohara H (2006) Angew Chem Int Ed Engl 45:2107–2111

    CAS  Google Scholar 

  • Slater JC (1974) Quantum theory of molecules and solids. McGraw-Hill, New York

    Google Scholar 

  • Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    CAS  Google Scholar 

  • Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Nature 401:55–57

    CAS  Google Scholar 

  • Stevenson S, Phillips JP, Reid JE, Olmstead MM, Rath SP, Balch AL (2004) Chem Commun 2814–2815

    Google Scholar 

  • Stevenson S, Mackey MA, Stuart MA, Phillips JP, Easterling ML, Chancellor CJ, Olmstead MM, Balch AL (2008) J Am Chem Soc 130:11844–11845

    CAS  Google Scholar 

  • Suzuki T, Maruyama Y, Kato T, Kikuchi K, Nakao Y, Achiba Y, Kobayashi K, Nagase S (1995) Angew Chem Int Ed Engl 34:1094–1096

    CAS  Google Scholar 

  • Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357–19363

    CAS  Google Scholar 

  • Swart M, Bickelhaupt FM (2006) Int J Quant Chem 106:2536–2544

    CAS  Google Scholar 

  • Swart M, Bickelhaupt FM (2008) J Comput Chem 29:724–734

    CAS  Google Scholar 

  • Swart M, Snijders JG (2003) Theor Chem Acc 110:34–41

    CAS  Google Scholar 

  • Takano Y, Obuchi S, Mizorogi N, García R, Herranz MÁ, Rudolf M, Guldi DM, Martín N, Nagase S, Akasaka T (2012) J Am Chem Soc 134:19401–19408

    CAS  Google Scholar 

  • Tan K, Lu X (2005) Chem Commun 4444–4446

    Google Scholar 

  • Tan K, Lu X (2006) J Phys Chem A 110:1171–1176

    CAS  Google Scholar 

  • Tan K, Lu X, Wang C-R (2006) J Phys Chem B 110:11098–11102

    CAS  Google Scholar 

  • Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    CAS  Google Scholar 

  • Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    CAS  Google Scholar 

  • Valencia R, Rodriguez-Fortea A, Poblet JM (2007) Chem Commun 4161–4163

    Google Scholar 

  • Valencia R, Rodríguez-Fortea A, Poblet JM (2008) J Phys Chem A 112:4550–4555

    CAS  Google Scholar 

  • Van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610

    CAS  Google Scholar 

  • Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    CAS  Google Scholar 

  • Vreven T, Byun KS, Komáromi I, Dapprich S, Montgomery Jr JA, Morokuma K, Frisch MJ (2006) J Chem Theory Comput 2:815–826

    CAS  Google Scholar 

  • Wang C-R, Inakuma M, Shinohara H (1999) Chem Phys Lett 300:379–384

    CAS  Google Scholar 

  • Wang C-R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2001) Angew Chem Int Ed Engl 40:397–399

    CAS  Google Scholar 

  • Wang T, Wu J, Xu W, Xiang J, Lu X, Li B, Jiang L, Shu C, Wang C (2010a) Angew Chem Int Ed 49:1786–1789

    CAS  Google Scholar 

  • Wang T-S, Feng L, Wu J-Y, Xu W, Xiang J-F, Tan K, Ma Y-H, Zheng J-P, Jiang L, Lu X, Shu C-Y, Wang C-R (2010b) J Am Chem Soc 132:16362–16364

    CAS  Google Scholar 

  • Wolff SK (2005) Int J Quantum Chem 104:645–659

    CAS  Google Scholar 

  • Yamada M, Akasaka T, Nagase S (2010) Acc Chem Res 43:92–102

    CAS  Google Scholar 

  • Yamada M, Wakahara T, Nakahodo T, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Horn E, Mizorogi N, Nagase S (2006) J Am Chem Soc 128:1402–1403

    CAS  Google Scholar 

  • Yamada M, Someya C, Wakahara T, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Horn E, Liu MTH, Mizorogi N, Nagase S (2008) J Am Chem Soc 130:1171–1176

    CAS  Google Scholar 

  • Yamada M, Okamura M, Sato S, Someya CI, Mizorogi N, Tsuchiya T, Akasaka T, Kato T, Nagase S (2009) Chem Eur J 15:10533–10542

    CAS  Google Scholar 

  • Yang SF, Popov AA, Dunsch L (2008) Angew Chem Int Ed 47:8196–8200

    CAS  Google Scholar 

  • Yang S, Liu F, Chen C, Jiao M, Wei T (2011) Chem Commun 47:11822–11839

    CAS  Google Scholar 

  • Yumura T, Sato Y, Suenaga K, Iijima S (2005) J Phys Chem B 109:20251–20255

    CAS  Google Scholar 

  • Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    CAS  Google Scholar 

  • Zheng H, Zhao X, Wang W-W, Yang T, Nagase S (2012) J Chem Phys 137:014308

    Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the Spanish MICINN (projects CTQ2011-23156/BQU and CTQ2011-25086/BQU), the Catalan DIUE (projects 2014SGR931, 2009SGR637, 2009SGR528, and XRQTC), the FEDER fund for the grant UNGI08-4E-003. M.G.-B. thanks the Spanish MECD for a PhD fellowship (AP2010-2517) and S.O. thanks the European Community for a postdoctoral fellowship (PIOF-GA-2009-252856). Excellent service by Excellent service by the CESCA is acknowledged. The authors are also grateful to the computer resources and assistance provided by the BSC-CNS. M. Solà thanks the Catalan DIUE for the ICREA Academia 2009 Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Garcia-Borràs .

Editor information

Editors and Affiliations

Appendix: Computational Details

Appendix: Computational Details

All Density Functional Theory (DFT ) calculations were performed with the Amsterdam Density Functional (ADF) program (Baerends et al. 2010). The molecular orbitals (MOs) were expanded in an uncontracted set of Slater type orbitals (STOs) of double-ζ (DZP) and triple-ζ (TZP) quality containing diffuse functions and one set of polarization functions. In order to reduce the computational time needed to carry out the calculations, the frozen core approximation has been used (te Velde et al. 2001). In this approximation, the core density is obtained and included explicitly, albeit with core orbitals that are kept frozen during the SCF procedure. It was shown that the frozen core approximation has a negligible effect on the optimized equilibrium geometries (Swart and Snijders 2003). Scalar relativistic corrections have been included self-consistently using the Zeroth Order Regular Approximation (ZORA) (van Lenthe et al. 1993). An auxiliary set of s, p, d, f, and g STOs was used to fit the molecular density and to represent the Coulomb and exchange potentials accurately for each SCF cycle (Baerends et al. 1973). Energies and gradients were calculated using the local density approximation (Slater exchange) with non-local corrections for exchange (Becke88) (Becke 1988) and correlation (Lee-Yang-Parr) (Lee et al. 1988) included self-consistently (i.e. the BLYP functional). In some cases, energies and gradients were calculated using the local density approximation (Slater exchange and VWN correlation) (Vosko et al. 1980) with non-local corrections for exchange (Becke 1988) and correlation (Perdew 1986) included self-consistently (i.e. the BP86 functional). Also in some studies, we performed single point energy calculations at the B3LYP-D2/TZP level of theory (Becke 1993; Lee et al. 1988; Stephens et al. 1994) (i.e., B3LYP-D2/TZP//BLYP-D2/DZP). Open-shell systems were treated with the unrestricted formalism.

Moreover, energy dispersion corrections were introduced using Grimme’s methodology (Grimme 2006; Grimme et al. 2010) (D2/D3) implemented in ADF 2010.01 version (Baerends et al. 2010). All the structures were fully optimized using these corrections in each optimization step. It was shown that dispersion corrections are essential for a correct description of the thermodynamics and kinetics of fullerene and nanotube reactions (Osuna et al. 2010; Garcia-Borràs et al. 2012a).

The actual geometry optimizations and transition state (TS) searches were performed with the QUILD (Swart and Bickelhaupt 2008) (QUantum-regions Interconnected by Local Descriptions) program, which functions as a wrapper around the ADF program. The QUILD program constructs all input files for ADF, runs ADF, and collects all data; ADF is used only for the generation of the energy and gradients. Furthermore, the QUILD program uses improved geometry optimization techniques, such as adapted delocalized coordinates (Swart and Bickelhaupt 2006) and specially constructed model Hessians with the appropriate number of eigenvalues (Swart and Bickelhaupt 2006). The latter is particularly useful for TS searches. All TSs were characterized by computing the analytical (Wolff 2005) vibrational frequencies, to have one and only one imaginary frequency corresponding to the approach of the reacting carbons. In selected DA attacks, analytical Hessians were computed for all stationary points along the reaction coordinate to calculate unscaled zero-point energies (ZPEs) as well as thermal corrections and entropy effects using the standard statistical-mechanics relationships for an ideal gas (Atkins and De Paula 2006). These two latter terms were computed at 298.15 K and 1 atm to provide the reported relative Gibbs energies (ΔG298). Pyramidalization angles , introduced by Haddon (Haddon 2001; Haddon and Chow 1998) as a measure of the local curvature in polycyclic aromatic hydrocarbons, were calculated using the POAV3 program (Haddon 1988).

In the case of the first study including dispersion corrections, full geometry optimizations were carried out with the hybrid B3LYP (Becke 1993; Lee et al. 1988; Stephens et al. 1994) density functional with the standard 6-31G(d) basis set (Hehre et al. 1972; Hariharan and Pople 1973). The two-layered ONIOM approach (ONIOM2) (Svensson et al. 1996; Dapprich et al. 1999; Vreven et al. 2006) were employed to perform geometry optimizations using a combination of the SVWN method (Slater 1974; Vosko et al. 1980) together with the standard STO-3G basis set (Hehre et al. 1969) for the low level calculations and the B3LYP methods with the standard 6-31G(d) basis set (Hehre et al. 1972; Hariharan and Pople 1973) for the high level part. In both cases, we performed the study including dispersion corrections following the Grimme’s approach (B3LYP-D and ONIOM2-D) (Grimme 2004, 2006; Grimme et al. 2010). In selected cases, we carried out calculations with the M06-2X functional (Zhao and Truhlar 2008). Frequency calculations indicated that we obtained the correct stationary points, characterized by the number of imaginary eigenvalues of their analytic Hessian matrix. Solvent effects were estimated in some particular cases with single point calculations on the gas phase optimized structures using the polarizable continuous solvation model (PCM) and considering toluene as the solvent (Tomasi and Persico 1994). All calculations including Grimme’s dispersion corrections (Grimme 2004, 2006) were performed using a locally modified version of the Gaussian 09 (revision A.02) program (“IOP(3/124 = 3)” for including the dispersion correction; the S6 value for B3LYP was set to 1.05). Apart from that, we adapted the program to allow the inclusion of dispersion effects within the ONIOM approach (the S6 value is set to 1.05 for the high level B3LYP-D and 1.0 for the low level SVWN-D).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Garcia-Borràs, M., Osuna, S., Luis, J., Swart, M., Solà, M. (2015). Understanding the Exohedral Functionalization of Endohedral Metallofullerenes . In: Putz, M., Ori, O. (eds) Exotic Properties of Carbon Nanomatter. Carbon Materials: Chemistry and Physics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9567-8_4

Download citation

Publish with us

Policies and ethics