Skip to main content

Bondonic Chemistry: Predicting Ionic Liquids’ (IL) Bondons by Raman-IR Spectra

  • Chapter
  • First Online:

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 8))

Abstract

The notable nowadays physical-chemical structures as ionic liquids (ILs) are, due to their versatility properties adjusted by changing either the anion or cation sides, with spread applications as solvents (viz. organic reaction, bio- and nano-catalysis, polymerization), electrolytes (viz. fuel cells, batteries and sensors), lubricants and additives (including fuel additives), or in chemical engineering including separation (gas chromatography/GC-head space solvents, gas separation, membranes extraction, extractive distillation), heat storage (as thermal fluids), till the nano-technology (protein crystallization, liquids crystals and their use in monitor displays, robotics and artificial muscles), just to name few, are in the present chapter reviewed from the scientific generations created with their structural consequences; they are then used as the compounds for which the recently predicted bondon as the quantum quasi-particle of chemical bonding may be identified in the allied Raman/IR spectra through a specific algorithm involving the bondonic quantum numbers prediction in spectra and of their most tangible quantum appearance; this because the invariable four-levels for bondonic formations confirms the quantum entangled states associated with their existences, as just noted by Putz and Ori 2015, see Chap. 10 of the same monograph, while the objective realization associates either with IR or Raman of IL computed spectra; connection with experimental recorded IR spectra is also presented with encouragement perspective for bondonic observation, while correlation with eco-toxicological data (EC50) is equally presented and interpreted from a bondonic sub-atomic perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrusci C, Palomar J, Pablos JL, Rodriguez F, Catalina F (2011) Efficient biodegradation of common ionic liquids by Sphingomonas paucimobilis bacterium. Green Chem 13:709–717

    CAS  Google Scholar 

  • Allen CR, Richard PL, Ward AJ, van de Water LGA, Masters AF, Maschmeyer T (2006) Facile synthesis of ionic liquids possessing chiral carboxylates. Tetrahedron Lett 47(41):7367–7370

    CAS  Google Scholar 

  • Anthony L, Maginn EJ, Brennecke JF (2001) Solution thermodynamics of Imidazolium-Based Ionic liquids and water. J Phys Chem B 105(44):10942–10949

    CAS  Google Scholar 

  • Anthony JL, Maginn EJ, Brennecke JF (2002) Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-Butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106(29):7315–7320

    CAS  Google Scholar 

  • Appetecchi GB, Montanino M, Zane D, Carewska M, Alessandrini F, Passerini S (2009) Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids. Electrochim Acta 54:1325–1332

    CAS  Google Scholar 

  • Boethling RS (1994) Cationic surfactants. In: Cross J, Singer EJ (Eds) Surfactant science series, vol 53. Marcus Dekker, New York; pp 95–135

    Google Scholar 

  • Bremen University Data Base (2014) http://www.il-eco.uft.uni-bremen.de/. Accessed July 2014

  • Calvano CD, Ceglie CD, D’Accolti L, Zambonin CG (2012) MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent. Food Chem 134(2):1192–1198

    CAS  Google Scholar 

  • Carrera GVSM, Frade RFM, Aires-De-Sousa J, Afonso CAM, Branco LC (2010) Synthesis and properties of new functionalized guanidinium based ionic liquids as non-toxic versatile organic materials. Tetrahedron 66(45):8785–8794

    CAS  Google Scholar 

  • Cheetham AK, Day P (1987) Solid state chemistry—techniques (Chap. 9). Clarendon Press, Oxford

    Google Scholar 

  • Chemical Book (2014) http://www.chemicalbook.com/. Accessed July 2014

  • Cho CW, Jeon YC, Pham TP, Vijayaraghavan K, Yun YS (2008) The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol Environ Saf 71(1):166–171

    CAS  Google Scholar 

  • Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids Chem Soc Rev 39:600–637

    CAS  Google Scholar 

  • Compton A (1923) A quantum theory of the scattering of X-rays by light elements. Phys Rev 21:483

    CAS  Google Scholar 

  • Costa Gomes MF (2007) Low-pressure solubility and thermodynamics of solvation of carbon dioxide, ethane, and hydrogen in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)-amide between temperatures of 283 and 343 K. J Chem Eng Data 52:472–475

    Google Scholar 

  • Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling. Green Chem 8:82–90

    CAS  Google Scholar 

  • Deng Y, Morrissey S, Gathergood N, Delort A-M, Husson P, Costa Gomes MF (2010) The presence of functional groups key for biodegradation in ionic liquids: effect on gas solubility. ChemSusChem 3:377–385

    CAS  Google Scholar 

  • Deng Y, Husson P, Delort A-M, Besse-Hoggan P, Sancelme M, Costa Gomes MF (2011) Influence of an oxygen functionalization on the physicochemical properties of ionic liquids: density, viscosity, and carbon dioxide solubility as a function of temperature. J Chem Eng Data 56(11):4194–4202

    CAS  Google Scholar 

  • Deng Y, Besse-Hogganb P, Hussona P, Sancelme M, Delortb AM, Stepnowskic P, Paszkiewiczc M, Gołębiowskic M, Costa Gomes MF (2012) Relevant parameters for assessing the environmental impact of some pyridinium, ammonium and pyrrolidinium based ionic liquids. Chemosphere 89(3):327–333

    CAS  Google Scholar 

  • Docherty K, Kulpa C (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189

    CAS  Google Scholar 

  • Docherty KM, Dixon JK, Kulpa CF (2007) Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation 18:481–493

    CAS  Google Scholar 

  • Docherty KM, Joyce MV, Kulacki KJ, Kulpa CF (2010) Novel microbial biodegradation and metabolite toxicity of three Pyridinium-Cation ionic liquids. Green Chem 12:701–712

    CAS  Google Scholar 

  • Energy Units Converter (2014) http://www.colby.edu/chemistry/PChem/Hartree.html. Accessed July 2014

  • Farmer VC (1974) The infrared spectra of minerals. Monograph, no. 4. Mineralogical Society of London, London

    Google Scholar 

  • Ferraz R, Branco LC, Prudêncio C, Noronha JP, Petrovski Ž (2011) Ionic liquids as active pharmaceutical ingredients. ChemMedChem 6(6):975–985

    CAS  Google Scholar 

  • Florindo C, Araújo JMM, Alves F, Matos C, Ferraz R, Prudêncio C, Noronha JP, Petrovski Ž, Branco L, Rebelo LPN, Marrucho IM (2013) Evaluation of solubility and partition properties of ampicillin-based ionic liquids Int. J Pharm 456(2):553–559

    CAS  Google Scholar 

  • Ford L, Harjani JR, Atefi F, Garcia MT, Singer RD, Scammells PJ (2010) Further studies on the biodegradation of ionic liquids. Green Chem 12: 1783–1789

    CAS  Google Scholar 

  • Frade RFM, Afonso CAM (2010) Impact of ionic liquids in environment and humans: an overview. Hum Exp Toxicol 29(12):1038–1054

    CAS  Google Scholar 

  • Freeman S (1974) Applications of laser Raman spectroscopy. Wiley, New York

    Google Scholar 

  • Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural aminoacids. J Am Chem Soc 127:2398–2399

    CAS  Google Scholar 

  • Gao H, Zhang Y, Wang HJ, Liu J, Chen J (2010) Theoretical study on the structure and cation-anion interaction of amino acid cation based amino acid ionic liquid [Pro] + [NO3]. J Phys Chem A 114(37):10243–10252

    CAS  Google Scholar 

  • Garcia MT, Gathergood N, Scammells PJ (2005) Green Chem 7:9–14

    CAS  Google Scholar 

  • Gathergood N, Scammells PJ (2002) Design and preparation of room-temperature ionic liquids containing biodegradable side chains. Aust J Chem 55:557–560

    CAS  Google Scholar 

  • Gathergood N, Garcia MT, Scammells PJ (2004) Green Chem 6:166–175

    CAS  Google Scholar 

  • Gathergood N, Scammells PJ, Garcia MT (2006) Biodegradable ionic liquids. Part III: the first readily biodegradable ionic liquids. Green Chem 8:156–160

    CAS  Google Scholar 

  • Harjani JR, Singer RD, Garcia MT, Scammells PJ (2008) Green Chem 4:436–438

    Google Scholar 

  • Harjani JR, Singer RD, Garciac MT, Peter J (2009) Scammells biodegradable pyridinium ionic liquids: design, synthesis and evaluation. Green Chem 11:83–90.

    CAS  Google Scholar 

  • Heitler W (1954) The quantum theory of radiation, 3rd ed. Cambridge University Press: New York

    Google Scholar 

  • Hussey CL (1983) Room temperatures molten salt systems. Adv Molten Salt Chem 5:185–229

    CAS  Google Scholar 

  • Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD, Davis JH, Rogers Jr RD (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436

    CAS  Google Scholar 

  • Howard PH, Boethling RS, Stiteler W, Meylan W, Beauman J (1991) Sci Total Environ 635:109–110

    Google Scholar 

  • HyperChem (2002) Hypercube Inc. 7.01 [Program package]

    Google Scholar 

  • Imperato G, König B, Chiappe C (2007) Ionic green solvents from renewable resources. Eur J Org Chem 7:1049–1058

    Google Scholar 

  • Jastorff B, Molter K, Behrend P, Weber UB, Filser J, Heimers A, Ondruschka B, Ranke J, Schaefer M, Schroder H, Stark A, Stepnowski P, Stock F, Störmann R, Stolte S, Biermann UW, Ziegert S, Thoming J (2005) Green Chem 7:362–372

    CAS  Google Scholar 

  • Kendall DN (1966) Applied infrared spectroscopy. Reinhold Publishing Corporation, NY

    Google Scholar 

  • Koke S, Grebing C, Frei H, Anderson A, Assion A, Steinmeyer G (2010) Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Nat Photonics 4:462–465

    CAS  Google Scholar 

  • Kumar RA, Papaïconomou N, Lee JM, Salminen J, Clark DS, Prausnitz JM (2009) In vitro cytotoxicities of ionic liquids: effect of cation rings, functional groups, and anions. Environ Toxicol 24(4):388–95

    CAS  Google Scholar 

  • Landsberg G., Mandelstam L. (1928) A novel effect of light scattering in crystals. Naturwissenschaften 16:557

    CAS  Google Scholar 

  • Latala A, Nedzi M, Stepnowski P (2010) Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem 12: 60–64

    CAS  Google Scholar 

  • Li Y, Li G, Wang X, Zhu Z, Ma H, Zhang T, Jin J (2012) Poly(ionic liquid)-wrapped single-walled carbon nanotubes for sub-ppb detection of CO2. Chem Commun 48:8222–8224

    CAS  Google Scholar 

  • Mallakpour S, Rafiee Z (2011a) Ionic liquids as environmentally friendly solvents in macromolecules chemistry and technology, Part I. J Polym Environ 19:447–484

    CAS  Google Scholar 

  • Mallakpour S, Rafiee Z (2011b) Ionic liquids as environmentally friendly solvents in macromolecules chemistry and technology, Part II. J Polym Environ 19:485–517

    CAS  Google Scholar 

  • Marciniak A (2010) The solubility parameters of ionic liquids. Int J Mol Sci 11(5):1973–1990

    CAS  Google Scholar 

  • Marrucho IM, Branco LC, Rebelo LP (2014) Ionic liquids in pharmaceutical applications. Annu Rev Chem Biomol Eng 5:527–546

    CAS  Google Scholar 

  • McMillian PF, Hofmeister A (1988) Infrared and Raman spectroscopy. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology. Reviews in mineralogy, vol 18. Mineralogical Society of America, USA, pp 99–159

    Google Scholar 

  • Metric Converter (2014) http://www.ecoterr.com/length_units_metric_standard_calculator.htm. Accessed July 2014

  • Mohajeri A, Ashrafi A (2011) Structure and electronic properties of amino acid ionic liquids. J Phys Chem A 115(24):6589–6593

    CAS  Google Scholar 

  • Mu X, Qi L, Zhang H, Shen Y, Qiao J, Ma H (2012) Ionic liquids with amino acids as cations: novel chiral ligands in chiral ligand-exchange capillary electrophoresis. Talanta 97:349–354

    CAS  Google Scholar 

  • Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF (2007) Improving carbon dioxide solubility in ionic liquids. J Phys Chem B 111:9001–9009

    CAS  Google Scholar 

  • Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  • Ohno H, Fukumoto K. (2007) Amino acid ionic liquids. Acc Chem Res 40:1122–1129

    CAS  Google Scholar 

  • Ohno H, Yoshizawa M, Mizumo T (2005) In: Ohno H (Ed) Electrochemical aspects of ionic liquids. Wiley, Hoboken, pp 75–81

    Google Scholar 

  • Palomar J, Torrecilla JS, Lemus J, Ferro VR, Rodriguez F (2010) Phys Chem Chem Phys 12:1991–2000

    CAS  Google Scholar 

  • Papaiconomou N, Salminen J, Lee J-M, Prausnitz JM (2007) Physicochemical properties of hydrophobic ionic liquids containing 1-Octylpyridinium, 1-Octyl-2-methylpyridinium, or 1-Octyl-4-methylpyridinium Cations. J Chem Eng Data 52:833–840

    CAS  Google Scholar 

  • Papaiconomou N, Estager J, Traore Y, Bauduin P, Bas C, Legeai S, Viboud S, Draye M (2010) Synthesis, physicochemical properties, and toxicity data of new hydrophobic ionic liquids containing dimethylpyridinium and trimethylpyridinium cations. J Chem Eng Data 55:1971–1979

    CAS  Google Scholar 

  • Patrascu C, Sugisaki C, Mingotaud C, Marty J-D, Genisson Y, Lauth-de Viguerie N (2004) New pyridinium chiral ionic liquids. Heterocycles 63(9):2033–2041

    CAS  Google Scholar 

  • Pernak J, Syguda A, Janiszewska D, Materna K, Praczyk T (2011) Ionic liquids with herbicidal anions. Tetrahedron 67:4838–4844

    CAS  Google Scholar 

  • Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability Chem Soc Rev 40:1383–1403

    CAS  Google Scholar 

  • Pham TPT, Cho C-W, Jeon C-O, Chung Y-J, Lee M-W, Yun Y-S (2009) Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms. Environ Sci Technol 43:516–521

    CAS  Google Scholar 

  • Pham TPT, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372

    CAS  Google Scholar 

  • Praczyk T, Kardasz P, Jakubiak E, Syguda A, Materna K, Pernak J (2012) Herbicidal ionic liquids with 2, 4-D. Weed Sci 60(2):189–192

    CAS  Google Scholar 

  • Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L. (2009) Acute toxicity of ionic liquids for three freshwater organisms: pseudokirchneriella subcapitata, Daphnia magna and Danio rerio Ecotoxicol. Environ Saf 72(4):1170–1176

    CAS  Google Scholar 

  • Putz MV (2010a) The bondons: the quantum particles of the chemical bond. Int J Mol Sci 11(11):4227–4256

    CAS  Google Scholar 

  • Putz MV (2010b) Beyond quantum nonlocality: chemical bonding field. Int J Environ Sci 1: 25–31

    Google Scholar 

  • Putz MV (2012a) Quantum theory: density, condensation, and bonding. Apple Academics, Toronto

    Google Scholar 

  • Putz MV (2012b) Chemical orthogonal spaces, in mathematical chemistry monographs, vol 14. University of Kragujevac, Kragujevac

    Google Scholar 

  • Putz MV (ed) (2012c) QSAR & SPECTRAL-SAR in computational Ecotoxicology. Apple Academics, Toronto; CRC Press–—Taylor & Francis Group, New Jersey

    Google Scholar 

  • Putz MV (2013) Quantum and optical dynamics of matter for nanotechnology. IGI Global, Hershey

    Google Scholar 

  • Putz MV (2015a) Quantum nanochemistry, vol 3 (Quantum molecules and reactivity). Apple Academics Press, Toronto

    Google Scholar 

  • Putz MV (2015b) Quantum nanochemistry, vol 4 (Quantum solids and orderability). Apple Academics Press, Toronto

    Google Scholar 

  • Putz MV (2015c) Quantum nanochemistry, vol. 3 (Quantum molecule and reactivity) & vol. 5 (Quantum structure-activity relationships). Apple Academics Press, Toronto

    Google Scholar 

  • Putz AM, Putz MV (2012) Spectral inverse quantum (Spectral-IQ) method for modeling mesoporous systems. Application on silica films by FTIR. Int J Mol Sci 13(12):15925–15941

    CAS  Google Scholar 

  • Putz AM, Putz MV (2013) Spectral-Structure activity relationship (Spectral-SAR) assessment of ionic liquids’ in silico ecotoxicity. In: Kadokawa J (Ed) Ionic liquids—new aspects for the future. InTech, Rijeka, pp 85–126. doi:10.5772/51657; Chapter 4.

    Google Scholar 

  • Putz MV, Lacrămă A-M, Ostafe V (2007) Spectral-SAR, ecotoxicology of ionic liquids the daphnia magna case. Int J Ecol (former Research Letters in Ecology) 12813:5. doi:10.1155/2007/12813

    Google Scholar 

  • Putz MV, Putz A-M, Ostafe V, Chiriac A (2010) Spectral-SAR ecotoxicology of ionic liquids-Acetylcholine interaction on E. Electricus Species. Int J Chem Model 2:85–96

    CAS  Google Scholar 

  • Rahman MBA, Jumbri K, Basri M, Abdulmalek E, Sirat K, Salleh AB (2010) Synthesis and physico-chemical properties of new tetraethylammonium-based amino acid chiral ionic liquids. Molecules 15: 2388–2397

    Google Scholar 

  • Raman CV, Krishnan KS (1928) The optical analog of the Compton effect. Nature 121:711

    CAS  Google Scholar 

  • Raman CV, Krishnan KS (1929) The production of new radiations by light scattering. Proc Roy Soc 122:23

    Google Scholar 

  • Ranke J, Molter K, Stock F, BottinWeber U, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastorff B (2004) Ecotoxicol Environ Saf 58:396–404

    CAS  Google Scholar 

  • Ranke J, Muller A, Bottin-Weber U, Stock F, Stolte S, Arning J, Stormann R, Jastorff B (2007a) Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity. Ecotoxicol Environ Saf 67:430–438

    CAS  Google Scholar 

  • Ranke J, Stolte S, Stormann R, Arning J, Jastorff B (2007b) Chem Rev 107:2183–2206

    CAS  Google Scholar 

  • Ranke J, Othman A, Fan P, Müller A (2009) Explaining ionic liquid water solubility in terms of cation and anion hydrophobicity. Int J Mol Sci 10(3):1271–1289

    CAS  Google Scholar 

  • Romero A, Santos A, Tojo J, Rodriguez A (2008) J Hazard Mater 151:268–273

    CAS  Google Scholar 

  • Scammells PJ, Scott JL, Singer RD (2005) Ionic liquids: the neglected issues. Aust J Chem 58(3):155–169

    CAS  Google Scholar 

  • Seddon KR, Stark A, Torres M-J (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72(12):2275–2287

    CAS  Google Scholar 

  • Smekal A (1923) The quantum theory of dispersion. Naturwissenschaften 11:873

    CAS  Google Scholar 

  • Stark A, Seddon KR (2007) In: Seidel A (Ed) Kirk-Othmer Encyclopaedia of chemical technology, vol 26. Wiley, New York; pp 836–920

    Google Scholar 

  • Stasiewicz M, Mulkiewicz E, Tomczak-Wandzel R, Kumirska J, Siedlecka EM, Goebiowski M, Gajdus J, Czerwicka M, Stepnowski P (2008) Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol Environ Saf 71:157–165

    CAS  Google Scholar 

  • Stepnowski P, Skladanowski AC, Ludwiczak A, Laczynska E (2004) Hum Exp Toxicol 23:513–517

    CAS  Google Scholar 

  • Stolte S, Arning J, Bottin-Weber U, Mueller A, Pitner W.R, Welz-Biermann U, Jastorff B, Ranke J (2007a) Green Chem 9:760–767

    Google Scholar 

  • Stolte S, Matzke M, Arning J, Boschen A, Pitner W.R, Welz-Biermann U, Jastorff B, Ranke J (2007b) Green Chem 9:1170–1179

    Google Scholar 

  • Stolte S, Abdulkarim S, Arning J, Blomeyer-Nienstedt A-K, Bottin-Weber U, Matzke M, Ranke J, Jastorff B, Thoming J (2008) Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazoliumchloride and electrochemical wastewater treatment of poorly biodegradable compounds. Green Chem 10:214–224

    CAS  Google Scholar 

  • Suarez PAZ, Selbach VM, Dullius JEL, Einloft S, Piatnicki CMS, Azambuja DS, de Souza RF, Dupont J (1997) Enlarged electrochemical window in dialkyl-imidazolium cation based room-temperature air and water-stable molten salts. Electrochim Acta 42(16):2533–2535

    CAS  Google Scholar 

  • Sutton M (2009) Twinkle, twinkle little star—History of spectroscopy. Chem World 6(12):50–53

    Google Scholar 

  • Thomas NC (1991) The early history of spectroscopy. J Chem Educ 68(8):631–634

    CAS  Google Scholar 

  • Torrecilla JS, Garcia J, Rojo E, Rodriguez F (2009) Estimation of toxicity of Ionic liquids in Leukemia Rat Cell Line and Acetylcholinesterase enzyme by principal component analysis, neural networks and multiple lineal regressions. J Hazard Mater 164(1):182–194

    CAS  Google Scholar 

  • Torrecilla JS, Palomar J, Lemus J, Rodriguez F (2010) Green Chem 12:123–134

    CAS  Google Scholar 

  • Walden P (1914) Molecular weights and electrical conductivity of several fused salts Bull. Acad Imper Sci (St. Petersburg) 8:405–422

    Google Scholar 

  • Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors Analytica Chimica Acta 607(2):126–135

    CAS  Google Scholar 

  • Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-Ethyl-3-Methylimidazolium based ionic liquids. J Chem Soc Chem Comm 1992:965–967

    Google Scholar 

  • Yang X, Chen QY, Li X, Gao J (2012) Functional ionic liquids induced the formation of mitochondria targeted fluorescent core-shell ellipsoidal nanoparticles with anticancer properties. Coll Surf B Biointerfaces 98:91–96

    CAS  Google Scholar 

  • Yoshida Y, Baba O, Saito G (2007) Ionic liquids based on dicyanamide anion: influence of structural variations in cationic structures on ionic conductivity. J Phys Chem B 111(18):4742–4749

    CAS  Google Scholar 

  • Yu YH, Lu XM, Zhou Q, Dong K, Yao HW, Zhang SJ (2008) Chem Eur J 14:11174–11182

    CAS  Google Scholar 

  • Zhang Q, Li Z, Zhang J, Zhang S, Zhu L, Yang J, Zhang X, Deng Y (2007) Physicochemical properties of nitrile-functionalized ionic liquids. J Phys Chem B 111:2864–2872

    CAS  Google Scholar 

  • Zhang S, Lu X, Zhang Y, Zhou Q, Sun J, Han L, Yue G, Liu X, Cheng W, Li S (2009) Ionic liquids and relative process design molecular thermodynamics of complex systems. Struct Bond 131:143–191

    CAS  Google Scholar 

  • Zhao D, Fei Z, Ang WH, Dyson PJ (2007) Sulfonium-based Ionic liquids incorporating the allyl functionality. Int J Mol Sci 8:304–315

    CAS  Google Scholar 

Download references

Acknowledgement

Authors thank West University of Timişoara; Faculty of Chemistry, Biology, Geography; and Biology-Chemistry Department, for working and research facilities provided for the present joint chapter though the recent accredited “Laboratory of Computational and Structural Physical-Chemistry for Nanosciences and QSAR”. AMP kindly thanks Romanian Academy too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai V. Putz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Putz, M., Dudaş, N., Putz, AM. (2015). Bondonic Chemistry: Predicting Ionic Liquids’ (IL) Bondons by Raman-IR Spectra. In: Putz, M., Ori, O. (eds) Exotic Properties of Carbon Nanomatter. Carbon Materials: Chemistry and Physics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9567-8_13

Download citation

Publish with us

Policies and ethics