Skip to main content

The Influence of Hydrology on Lacustrine Sediment Contaminant Records

  • Chapter
  • First Online:
Environmental Contaminants

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 18))

Abstract

The way water flows to a lake, through streams, as runoff, or as groundwater, can control the distribution and mass of sediment and contaminants deposited. Whether a lake is large or small, deep or shallow, open or closed, the movement of water to a lake and the circulation patterns of water within a lake control how and where sediment and contaminants are deposited. Particle-associated contaminants may stay close to the input source of contamination or be transported by currents to bathymetric lows. A complex morphology of the lake bottom or shoreline can also affect how contaminants will be distributed. Dissolved contaminants may be widely dispersed in smaller lakes, but may be diluted in large lakes away from the source. Although dissolved contaminants may not be deposited in lake sediments, the impact of dissolved contaminants (such as nitrogen) may be reflected by the ecosystem. For instance, increased phosphorus and nitrogen may increase organic content or algal biomass, and contribute to eutrophication of the lake over time. Changes in oxidation-reduction potential at the sediment-water interface may either release some contaminants to the water column or conversely deposit other contaminants to the sediment depending on the compound’s chemical characteristics. Changes in land use generally affect the hydrology of the watershed surrounding a lake, providing more runoff if soil binding vegetation is removed or if more impervious cover (roads and buildings) is increased. Groundwater inputs may change if pumping of the aquifer connected to the lake occurs. Even if groundwater is only a small portion of the volume of water entering a lake, if contaminant concentrations in the aquifer are high compared to surface water inputs, the mass of contaminants from groundwater may be as, or more, important than surface water contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    No attempt is made to quantify the terms large, deep, small or shallow lakes. This is because the degree to which a hydrologic process is important will vary depending on the combination of these measures of size.

References

  • Abraham J, Allen PM, Dunbar JA, Dworkin SI (1999) Sediment type distribution in reservoirs: sediment source versus morphometry. Environ Geol 38:101–110

    Article  CAS  Google Scholar 

  • Adams WJ, Kimerle RA, Barnett JW Jr (1992) Sediment quality and aquatic life assessment. Environ Sci Technol 26:1864–1875

    Article  CAS  Google Scholar 

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments(Chapter 9). In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring, and chronological techniques. Springer, Dordrecht

    Google Scholar 

  • Arnaud F, Revel M, Chapron E, Desmet M, Tribovillard N (2005) 7200 years of RhĂ´ne river flooding activity in Lake Le Bourget, France: a high-resolution sediment record of NW Alps hydrology. Holocene 15:420–428

    Article  Google Scholar 

  • Benson LV, Meyers PA, Spencer RJ (1991) Change in the size of Walker Lake during the past 5000 years. Palaeogeogr Palaeoclimatol Palaeoecol 81:189–214

    Article  Google Scholar 

  • Benson LV, Kashgarian M, Lund S, Paillet R, Smoot J, Nensing S, Kester C, Meko D, Lindstrom S, Rye R (2002) Multidecadal and multicentennial droughts affecting northern California and Nevada: implications for the future of the West. Quat Sci Rev 21:659–682

    Article  Google Scholar 

  • Binford MW, Kahl JS, Norton SA (1993) Interpretation of 210Pb profiles and verification of the CRS dating model in PIRLA project lake sediment cores. J Paleolimnol 9:275–296

    Article  Google Scholar 

  • Blais JM (2005) Biogeochemistry of persistent bioaccumulative toxicants: processes affecting the transport of contaminants to remote areas. Can J Fish Aquat Sci 62:236–243

    Article  CAS  Google Scholar 

  • Blais JM, Kalff J (1995) The influence of lake morphometry on sediment focusing. Limnol Oceanogr 40:582–588

    Article  CAS  Google Scholar 

  • Bradbury JP, Forester RM, Thompson RS (1989) Late quaternary paleolimnology of Walker Lake, Nevada. J Paleolimnol 1:249–267

    Google Scholar 

  • Brenner, M, Schelske CL, Kenney WF (2004) Inputs of dissolved and particulate 226Ra to lakes and implications for 210Pb dating recent sediments. J Paleolimnol 32:53–66

    Article  Google Scholar 

  • Burne RV Moore LS (1987) Microbialites; organosedimentary deposits of benthic microbial communities. Palaios 2:241–254

    Article  Google Scholar 

  • Callender E (2000) Geochemical effects of rapid sedimentation in aquatic systems minimal diagenesis and the preservation of historical metal signatures. J Paleolimnol 23:243–260

    Article  Google Scholar 

  • Chalmers AT, Van Metre PC, Callender E (2007) The chemical response of particle-associated contaminants in aquatic sediments to urbanization in New England, U.S.A. J Contam Hydrol 91:4–25

    Article  CAS  Google Scholar 

  • Chen RL, Keeney DR (1974) The fate of nitrate in lake sediment columns. Water Resour Bull 10:1162–1172

    Article  CAS  Google Scholar 

  • Davis MB, Ford MS (1982) Sediment focusing in Mirror Lake, New Hampshire. Limnol Oceanogr 27:137–150

    Article  Google Scholar 

  • de Ronde CEJ, Stoffers P, Garbe-Schönberg D, Christenson BW, Jones B, Manconi R, Browne PRL, Hissmann K, Botz R, Davy BW, Schmitt M, Battershill CN (2002) Discovery of active hydrothermal venting in Lake Taupo, New Zealand. J Volcanol Geotherm Res 115:257–275

    Article  Google Scholar 

  • Einsele G (2000) Sedimentary basins: evolution, facies, and sediment budget, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Fritz SC (1989) Lake development and limnological response to prehistoric and historic land-use in Diss, Norfolk, U.K. J Ecol 77:182–202

    Article  Google Scholar 

  • Fukuda MK, Lick WJ (1980) The entrainment of cohesive sediments in freshwater. J Geophys Res 85:2813–2824

    Article  Google Scholar 

  • Gewurtz SB, Shen L, Helm PA, Waltho J, Reiner EJ, Painter S, Brindle ID, Marvin CH (2008) Spatial distributions of legacy contaminants in sediments of Lakes Huron and superior. J Great Lakes Res 34:153–168

    Article  CAS  Google Scholar 

  • Glade T (2003) Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena 51:297–314

    Article  Google Scholar 

  • Glymph LM (1973) Summary; sedimentation of reservoirs. In: Ackermann WC, White GF, Worthington, EB, Ivens JL (eds) Man-made lakes; their problems and environmental effects. American Geophysical Union, Washington, DC. (Geophysical Monograph Series 17), pp. 342–348

    Chapter  Google Scholar 

  • Hadfield J, Nicole D, Rosen MR, Wilson C, Morgenstern U (2001) Hydrogeology of Lake Taupo Catchment—Phase I. Environment Waikato Technical Report 2001/01

    Google Scholar 

  • Hagerthey SE, Kerfoot WC (1998) Groundwater flow influences the biomass and nutrient ratios of epibenthic algae in a north temperate seepage lake. Limnol Oceanogr 43:1227–1242

    Article  CAS  Google Scholar 

  • Hall RI, Smol JP (2010) Diatoms as indicators of lake eutrophication. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 122–151

    Chapter  Google Scholar 

  • Herczeg AL, Leaney FW, Dighton JC, Lamontagne S, Schiff SL, Telfer AL, English MC (2003) A modern isotope record of changes in water and carbon budgets in a groundwater-fed lake: Blue Lake, South Australia. Limnol Oceanogr 48:2093–2105

    Article  CAS  Google Scholar 

  • Heyvaert AC, Reuter JE, Slotton DG, Goldman CR (2000) Paleolimnological reconstruction of historical atmospheric lead and mercury deposition at Lake Tahoe, California-Nevada. Environ Sci Technol 34:3588–3597

    Article  CAS  Google Scholar 

  • Honkonen O, Rantalainen A-L (2013) Impact of urbanization on the concentrations and distribution of organic contaminants in boreal lake sediments. Environ Monit Assess 185:1437–1449

    Article  CAS  Google Scholar 

  • Hutchinson GE (1937) A contribution to the limnology of arid regions. Trans Connect Acad Sci 33:1–132

    Google Scholar 

  • Jacob J, Disnar J-R, Arnaud F, Gauthier E, Billaud Y, Chapron E, Bardoux G (2009) Impacts of new agricultural practices on soil erosion during the Bronze Age in the French Prealps. Holocene 19:241–249

    Article  Google Scholar 

  • Jepsen SM, Voss CJ, Walvoord MA, Minsley BJ, Rover J (2013) Linkages between lake shrinkage/expansion and sublacustrine permafrost distribution determined from remote sensing of Interior Alaska, USA. Geophys Res Lett. doi:10.1002/grl.50187.

    Google Scholar 

  • Jones B, de Ronde CEJ, Renaut RW, Owen RB (2007) Siliceous sublacustrine spring deposits around hydrothermal vents in Lake Taupo, New Zealand. J Geol Soc 164:227–242

    Article  CAS  Google Scholar 

  • Juracek KE (2004) Sedimentation and occurrence and trends of selected chemical constituents in bottom sediment of 10 small reservoirs, eastern Kansas. US Geological Survey Scientific Investigations Report: 2004–5228, p 80

    Google Scholar 

  • Katz BG, Lee TM, Plummer LN, Busenberg E (1995) Chemical evolution of groundwater near a sinkhole lake, Northern Florida: 1. flow patterns, age of groundwater, and influence of lake water leakage. Water Resour Res 31:1549–1564

    Article  CAS  Google Scholar 

  • Kebede S (2013) Groundwater in Ethiopia: features, numbers and opportunities. Springer, Dordrecht

    Book  Google Scholar 

  • Kharaka YK, Robinson SW, Law LM, Carothers WW (1984) Hydrogeochemistry of Big Soda Lake, Nevada: an alkaline meromictic desert lake. Geochim Cosmochim Acta 48:823–835

    Article  CAS  Google Scholar 

  • Lampi P, Tolonen PK, Vartiainen T, Tuomisto J (1992) Chlorophenols in lake bottom sediments: a retrospective study of drinking water contamination. Chemosphere 24:1805–1824

    Article  CAS  Google Scholar 

  • Lico MS (2004) Gasoline-related organics in Lake Tahoe before and after prohibition of carbureted two-stroke engines. Lake Reserv Manage 20:164–174

    Article  CAS  Google Scholar 

  • Lico MS, Johnson BT (2007) Gasoline-related compounds in Lakes Mead and Mohave, Nevada, 2004–06. US Geological Survey Scientific Investigations Report 2007–5144, p 28

    Google Scholar 

  • Likens GE, Davis MB (1975) Post-glacial history of Mirror Lake and its watershed in New Hampshire, U.S.A., and initial report. Verh Internat Vereinig Theoret Angew Limnol 19:982–993

    Google Scholar 

  • Lindström M (2001) Urban land use influences on heavy metal fluxes and surface sediment concentrations of small lakes. Water Air Soil Pollut 126:363–383

    Article  Google Scholar 

  • Liu Y, Chen Y (2006) Impact of population growth and land-use change on water resources and ecosystems of the arid Tarim River Basin in Western China. Int J Sustain Develop World Ecol 13:295–305

    Article  Google Scholar 

  • Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage 19:81–97

    Article  Google Scholar 

  • Macdonald RW, Harner T, Fyfe J (2005) Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci Total Environ 342:5–86

    Article  CAS  Google Scholar 

  • Mahler BJ, Van Metre PC, Callender E (2006) Trends in metals in urban and reference lake sediments across the united states, 1970 to 2001. Environ Toxicol Chem 25:1698–1709

    Article  CAS  Google Scholar 

  • Makarewicz JC, Lewis TW, Bosch I, Noll MR, Herendeen N, Simon RD, Zollweg J, Vodacek A (2009) The impact of agricultural best management practices on downstream systems: soil loss and nutrient chemistry and flux to Conesus Lake, New York, USA. J Great Lakes Res 35:23–36

    Article  CAS  Google Scholar 

  • Malins DC, McCain BB, Brown DW, Chan S, Myers MS, Landahl JT, Prohaska PG, Friedman AJ, Rhodes LD, Burrows DC, Gronlund WD, Hodgins HO (1984) Chemical pollutants in sediments and diseases of bottom dwelling fish in Puget Sound, Washington. Environ Sci Technol 18:705–713

    Article  CAS  Google Scholar 

  • Mathewes RW, D’Auria JM (1982) Historic changes in an urban watershed determined by pollen and geochemical analyses of lake sediment. Can J Earth Sci 19:2114–2125

    Article  CAS  Google Scholar 

  • Matthews DA, Effler SW (2006) Long-term changes in the areal hypolimnetic oxygen deficit (AHOD) of Onondaga Lake: evidence of sediment feedback. Limnol Oceanogr 51:702–714

    Article  CAS  Google Scholar 

  • Meyers PA, Tenzer GE, Lebo ME, Reuter JE (1998) Sedimentary record of sources and accumulation of organic matter in Pyramid Lake, Nevada, over the past 1,000 years. Limnol Oceanogr 43:160–169

    Article  CAS  Google Scholar 

  • Micklin P (2007) The Aral Sea Disaster. Annu Rev Earth Planet Sci 35:47–72

    Article  CAS  Google Scholar 

  • Miller JR, Lechler PJ, Rowland J, Desilets M, Hsu L-C (1995) An integrated approach to the determination of the quantity, distribution, and dispersal of mercury in Lahontan Reservoir, Nevada, USA. J Geochem Explor 52:45–55

    Article  CAS  Google Scholar 

  • Norton SA, Hess CT, Blake GM, Morrison ML, Baron J, (1985) Excess Unsupported 210Pb in lake sediment from rocky mountain lakes: a groundwater effect. Can J Fish Aquat Sci 42:1249–1254

    Article  CAS  Google Scholar 

  • O’Hara SL, Wiggs GFS, Mamedov B, Davidson G, Hubbard RB (2000) Exposure to airborne dust contaminated with pesticide in the Aral Sea region. Lancet 355:627–628

    Article  Google Scholar 

  • Oliver BG, Charlton MN, Durham RW (1989) Distribution, redistribution, and geochronology of polychlorinated biphenyl congeners and other chlorinated hydrocarbons in Lake Ontario sediments. Environ Sci Technol 23:200–208

    Article  CAS  Google Scholar 

  • Oremland RS, Cloern JE, Smith RL, Culbertson CW, Zehr J, Miller L, Cole B, Harvey R, Sofer Z, Iversen N, Klug M, Des Marais DJ, Rau G (1988) Microbial and biogeochemical processes in Big Soda Lake, Nevada. In: Fleet AJ, Kelts K, Talbot MR (eds) Lacustrine petroleum source rocks. Geological Society, London (Special Publication 40), pp 59–75

    Google Scholar 

  • Osleger DA, Heyvaert AC, Stoner JS, Verosub KL (2009) Lacustrine turbidites as indicators of Holocene storminess and climate: Lake Tahoe, California and Nevada. J Paleolimnol 42:103–122

    Article  Google Scholar 

  • Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M, Finney B, Gajewski K, Jacoby G, Jennings A, Lamoureux S, Lasca A, MacDonald G, Moore J, Retelle M, Smith S, Wolfe A, Zielinski G (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256

    Article  CAS  Google Scholar 

  • Owens EM, Effler SW (1989) Changes in stratification in Onondaga Lake, New York. Water Resour Bull 25:587–597

    Article  CAS  Google Scholar 

  • Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Sys 32:333–65

    Article  Google Scholar 

  • Pearson LK (2012) Taupo volcanic zone lakes and the effect trophic state has on exchange with the water column. Dissertation, The University of Waikato. http://researchcommons.waikato.ac.nz/. Accessed 15 Aug 2013

  • Peters GM, Maher WA, Jolley D, Carroll BI, Gomes VG, Jenkinson AV, McOrist GD (1999) Selenium contamination, redistribution and remobilisation in sediments of Lake Macquarie, NSW. Org Geochem 30:1287–1300

    Article  CAS  Google Scholar 

  • Quinn FH, Guerra B (1986) Current perspectives on the lake Erie water balance. J Great Lakes Res 12:109–116

    Article  Google Scholar 

  • Reidy LM (2013) Lake sediments as evidence of natural and human-induced environmental change from California and Nevada. Dissertation, University of California

    Google Scholar 

  • Rosen MR (2002) Comparing lakes Taupo and Tahoe’s physical, chemical and political issues: can both areas learn from each other? Lake Tahoe (LTEEC) Higher Education & Research Symposium Abstract Proceedings, 13–14 May 2002

    Google Scholar 

  • Rosen MR, Van Metre PC (2010) Assessment of multiple sources of anthropogenic and natural chemical inputs to a morphologically complex basin, Lake Mead, USA. Palaeogeogr Palaeoclimatol Palaeoecol 294:30–43

    Article  Google Scholar 

  • Rosen MR, Coshell L, Turner JV, Woodbury R (1996) Hydrochemistry and nutrient cycling in Yalgorup National Park, Western Australia. J Hydrol 185:241–274

    Article  CAS  Google Scholar 

  • Rosen MR, ChaguĂ©-Goff C, Eser P, Coshell L (2002) Utilisation of the sedimentological and hydrochemical dynamics of the Stump Bay Wetland along Lake Taupo, New Zealand, for the recognition of paleo-shoreline indicators. Sediment Geol 148:357–371

    Article  CAS  Google Scholar 

  • Rosen MR, Arehart GB, Lico MS (2004) Exceptionally fast growth rate of < 100-yr-old tufa, Big Soda Lake, Nevada: implications for using tufa as a paleoclimate proxy. Geology 32:409–412

    Article  CAS  Google Scholar 

  • Rosen MR, Alvarez DA, Goodbred SL, Leiker TJ, Patiño R (2010) Sources and distribution of organic compounds using passive samplers in Lake Mead national recreation area, Nevada and Arizona, and their implications for potential effects on aquatic biota. J Environ Qual 39:1161–1172

    Article  CAS  Google Scholar 

  • Rowell HC (1996) Paleolimnology of Onondaga lake: the history of anthropogenic impacts on water quality. Lake Reserv Manage 12:35–45

    Article  CAS  Google Scholar 

  • Rush FE (1972) Hydrologic reconnaissance of Big and Little Soda Lakes, Churchill County, Nevada. Water Resour Inform Ser Rep 11:3

    Google Scholar 

  • Russell IC (1885) Geological history of Lake Lahontan. U.S. Geol Surv Monogr 11:287

    Google Scholar 

  • Rydberg J, Klaminder J, RosĂ©n P, Bindler R (2010) Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes. Sci Total Environ 408:4778–4783

    Article  CAS  Google Scholar 

  • Schouten CJ (1983) Budget of water and its constituents for Lake Taupo (New Zealand). Int Assoc Hydrol Sci Pub No 141:277–297

    CAS  Google Scholar 

  • Schuster PF, Striegl RG, Aiken GR, Krabbenhoft DP, Dewild JF, Butler K, Kamark B, Dornblaser M (2011) Mercury export from the Yukon river basin and potential response to a changing climate. Environ Sci Technol 45:9262–9267

    Article  CAS  Google Scholar 

  • Scott J, Rosen MR, Saito L, Decker DL (2011) The influence of irrigation water on the hydrology and lake water budgets of two small arid-climate lakes in Khorezm, Uzbekistan. J Hydrol 410:114–125

    Article  Google Scholar 

  • Shanafield M, Rosen MR, Saito L, Chandra S, Lamers J, Nishonov B (2010) Identification of nitrogen sources to four small lakes in the agricultural region of Khorezm, Uzbekistan. Biogeohemistry 101:357–368

    Article  CAS  Google Scholar 

  • Smirnov A, Abrajano TA Jr, Smirnov A, Stark A, (1998) Distribution and sources of polycyclic aromatic hydrocarbons in the sediments of Lake Erie, Part 1 spatial distribution, transport, and deposition. Org Geochem 29:1813–1828

    Article  CAS  Google Scholar 

  • Smith WO, Vetter CP, Cummings GB, et al (eds) (1960) Comprehensive survey of sedimentation in Lake Mead, 1948–1949: U.S. Geol Surv Prof Paper 295:254. http://pubs.er.usgs.gov/publication/pp 295. Accessed 31 oct 2013

  • Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climatic change in the Arctic using lake sediments. Front Ecol Environ 5:466–474

    Article  Google Scholar 

  • Spliethoff HM, Hemond HF (1996) History of toxic metal discharge to surface waters of the Aberjona Watershed. Environ Sci Technol 30:121–128

    Article  CAS  Google Scholar 

  • Soler M, Serra T, Colomer J, Romero R (2007) Anomalous rainfall and associated atmospheric circulation in the northeast Spanish Mediterranean area and its relationship to sediment fluidization events in a lake. Water Resour Res 43:W01404

    Google Scholar 

  • Thornton KW (1984) Regional comparisons of lakes and reservoirs: geology, climatology, and morphology. Lake Reserv Manage: Proceedings of the third annual conference, 18–20 Oct, Knoxville, Tennessee. EPA 440-5-84-001, U.S. Environmental Protection Agency Washington, D.C. pp 261–265

    Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • Trolle D, Hamilton DP, Pilditch CA (2010) Evaluating the influence of lake morphology, trophic status and diagenesis on geochemical profiles in lake sediments. Appl Geochem 25:621–632

    Article  CAS  Google Scholar 

  • Turner K, Rosen MR, Holdren GC, Goodbred SL, Twichell DW (2012) Environmental setting of lake Mead national recreation area (Chapter 2). In: Rosen MR, Turner K, Goodbred SL, Miller JM (eds) A synthesis of aquatic science for management of Lakes Mead and Mohave. US Geological Survey Circular 1381, pp 7–22

    Google Scholar 

  • Twichell DC, Cross VA, Hanson AD, Buck BJ, Zybala JG, Rudin MR (2005) Seismic architecture and lithofacies of turbidites in Lake Mead (Arizona and Nevada, U.S.A.), an analogue for topographically complex basins. J Sediment Res 75:134–148

    Article  Google Scholar 

  • Valero-GarcĂ©s B, MorellĂłn M, Moreno A, Corella JP, MartĂ­n-Puertas C, Barreiro F, PĂ©rez A, Giralt S, Mata-Campo MP (2014) Lacustrine carbonates of Iberian Karst lakes: sources, processes and depositional environments. Sediment Geol 299:1–29

    Article  Google Scholar 

  • Vanek V (1991) Riparian zone as a source of phosphorus for a groundwater-dominated lake. Water Res 25:409–418

    Article  CAS  Google Scholar 

  • Vartiainen T, Lampi P, Tolonen K, Tuomisto J (1995) Polychlorodibenzo-p-dioxin and polychlorodibenzofuran concentrations in lake sediments and fish after a ground water pollution with chlorophenols. Chemosphere 30:1439–1451

    Article  CAS  Google Scholar 

  • Von der Borch CC (1975) Ground-water formation of dolomite in the Coorong region of South Australia. Geology 3:283–285

    Article  Google Scholar 

  • Vroblesky DA, Lorah MM, Trimble SP (1991) Mapping zones of contaminated ground-water discharge using creek-bottom-sediment vapor samplers, Aberdeen proving ground, Maryland. Ground Water 29:7–12

    Article  CAS  Google Scholar 

  • Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75

    Article  CAS  Google Scholar 

  • Warren JK (1982) The hydrological significance of Holocene tepees, stromatolites, and boxwork limestones in coastal salinas in South Australia. J Sediment Res 52:1171–1201

    CAS  Google Scholar 

  • Wetzel RG (2001) Limnology, lake and river ecosystems, 3rd edn. Academic Press, London

    Google Scholar 

  • Whish-Wilson P (2002) The Aral Sea environmental health crisis. J Rural Remote Environ Health 1:29–34

    Google Scholar 

  • Wiggs GFS, O’Hara SL, Wegerdt J, van der Meer J, Small I, Hubbard R (2003) The dynamics and characteristics of aeolian dust in dryland Central Asia: possible impacts on human exposure and respiratory health in the Aral Sea basin. Geogr J 169:142–157

    Article  Google Scholar 

  • Winter TC (1976) Numerical simulation analysis of the interaction of lakes and ground water. U.S. Geological Survey Professional Paper 1001, p 45

    Google Scholar 

  • Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45

    Article  Google Scholar 

  • Yang H, Rose NL, Battarbee RW, Boyle JF (2002) Mercury and lead budgets for Lochnagar, a Scottish mountain lake and its catchment. Environ Sci Technol 36:1383–1388

    Article  CAS  Google Scholar 

  • Yang ZR, Graham EY, Lyons WB (2003) Geochemistry of Pyramid lake sediments: influence of anthropogenic activities and climatic variations within the basin. Environ Geol 43:688–697

    CAS  Google Scholar 

Download references

Acknowledgements

This manuscript was approved for publication by the U.S. Geological Survey. The use of brand names is for information purposes only and does not imply endorsement by the author or the U.S. Geological Survey. The author would like to thank Bill Gibbs, USGS, for drafting Figs. 1 and 2. U.S. Geological Survey reviewers Kyle Juracek and Josh Koch, an anonymous colleague reviewer, and editorial reviews by Jules Blais and John Smol provided excellent comments that improved the manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Rosen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rosen, M. (2015). The Influence of Hydrology on Lacustrine Sediment Contaminant Records. In: Blais, J., Rosen, M., Smol, J. (eds) Environmental Contaminants. Developments in Paleoenvironmental Research, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9541-8_2

Download citation

Publish with us

Policies and ethics