Skip to main content

Using Peat Records as Natural Archives of Past Atmospheric Metal Deposition

  • Chapter
  • First Online:

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 18))

Abstract

Over the last decades, scientists throughout Europe and beyond have been increasingly using peat as archives of past atmospheric metal deposition. Since the pioneering studies using herbaria moss collections to evidence atmospheric metal pollution in the late sixties, the improvements in analytical techniques, as well as chronological controls, have allowed investigations of a variety of scientific questions in various fields, e.g. elemental biogeochemical cycles, atmospheric pollution and archaeology. In this chapter we summarize the various applications and usage of peat cores as archives of past atmospheric metal deposition. The chapter contains an introduction followed by a section addressing the state of the art in the field, providing examples of various elements and a variety of study sites. We then continue with a brief description of the application of metal records stored in peat, i.e. applications to archaeology. To end we present some confounding factors affecting the integrity of the peat record, which must be carefully considered, and lastly we give a few examples of challenges and perspectives for future generations of peat geochemists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaby B, Jacobsen J (1978) Changes in biotic conditions and metal deposition in the last millennium as reflected in ombrotrophic peat in Draved Mose, Denmark. Danm Geol Unders Årbog 1978:5–43

    Google Scholar 

  • Allan M, Le Roux G, Sonke JE et al (2013) Reconstructing historical atmospheric mercury deposition in Western Europe using misten peat bog cores, Belgium. Sci Total Environ 442:290–301

    CAS  Google Scholar 

  • Almquist-Jacobson H, Foster DR (1995) Toward an integrated model for raised-bog development: theory and field evidence. Ecology 76:2503–2516

    Google Scholar 

  • Appleby PG (2008) Three decades of dating recent sediments by fallout radionuclides: a review. Holocene 18:83–93

    Google Scholar 

  • Appleby PG, Shotyk W, Fankhauser A (1997) Lead-210 age dating of three peat cores in the Jura Mountains, Switzerland. Water Air Soil Pollut 100:223–231

    CAS  Google Scholar 

  • Bacon JR, Jones KC, McGrath SP et al (1996) Isotopic character of lead deposited from the atmosphere at a grassland site in the United Kingdom since 1860. Environ Sci Technol 30:2511–2518

    CAS  Google Scholar 

  • Baron S, Lavoie M, Ploquin A et al (2005) Record of metal workshops in peat deposits: history and environmental impact on the Mont Lozère Massif, France. Environ Sci Technol 39:5131–5140

    CAS  Google Scholar 

  • Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob Change Biol 10:1043–1052

    Google Scholar 

  • Berg T, Steinnes E (1997) Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: from relative to absolute deposition values. Environ Pollut 98:61–71

    CAS  Google Scholar 

  • Biester H, Martinez Cortizas A, Birkenstock S et al (2003) Effect of peat decomposition and mass loss on historic mercury records in peat bogs from Patagonia. Environ Sci Technol 37:32–39

    CAS  Google Scholar 

  • Biester H, Keppler F, Putschew A et al (2004) Halogen retention, organohalogens and the role of organic matter decomposition on halogen enrichment in two Chilean peat bogs. Environ Sci Technol 38:1984–1991

    CAS  Google Scholar 

  • Biester H, Bindler R, Martínez Cortizas A et al (2007) Modeling the past atmospheric deposition of mercury using natural archives. Environ Sci Technol 41:4851–4860

    CAS  Google Scholar 

  • Biester H, Hermanns YM, Martínez Cortizas A (2012) The influence of organic matter decay on the distribution of major and trace elements in ombrotrophic mires—a case study from the Harz Mountains. Geochim et Cosmochim Acta 84:126–136

    CAS  Google Scholar 

  • Bindler R (2003) Estimating the natural background atmospheric deposition rate of mercury utilizing ombrotrophic bogs in south Sweden. Environ Sci Technol 37:40–46

    CAS  Google Scholar 

  • Bindler R (2011) Contaminated lead environments of man: reviewing the lead isotopic evidence in sediments, peat, and soils for the temporal and spatial patterns of atmospheric lead pollution in Sweden. Environ Geochem Health 33:311–329

    CAS  Google Scholar 

  • Bindler R, Brännvall M-L, Renberg I et al (1999) Natural lead concentrations in pristine boreal forest soils and past pollution trends: a reference for critical load models. Environ Sci Technol 33:3362–3367

    CAS  Google Scholar 

  • Bindler R, Klarqvist M, Klaminder J et al (2004) Does within-bog spatial variability of mercury and lead constrain reconstructions of absolute atmospheric deposition rates from single peat records? The example of Store Mosse. Glob Biogeochem Cycles 18:GB3020

    Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518

    Google Scholar 

  • Blaauw M, Christen JA (2005) The problems of radiocarbon dating. Science 308:1551–1551

    CAS  Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Google Scholar 

  • Blaauw M, Heuvelink GBM, Mauquoy D et al (2003) A numerical approach to C-14 wiggle-match dating of organic deposits: best fits and confidence intervals. Quat Sci Rev 22:1485–1500

    Google Scholar 

  • Blackford JJ, Chambers FM (1993) Determining the degree of peat decomposition for peat based palaeoclimatic studies. Int Peat J 5:7–24

    CAS  Google Scholar 

  • Brännvall M-L, Bindler R, Emteryd O et al (1997) Stable isotope and concentration records of atmospheric lead pollution in peat and lake sediments in Sweden. Water Air Soil Pollut 100:243–252

    Google Scholar 

  • Brännvall M-L, Bindler R, Renberg I et al (1999) The Medieval metal industry was the cradle of modern large-scale atmospheric lead pollution in northern Europe. Environ Sci Technol 33:4391–4395

    Google Scholar 

  • Breitenlechner E, Hilber M, Lutz J et al (2010) The impact of mining activities on the environment reflected by pollen, charcoal and geochemical analyses. J Archaeol Sci 37:1458–1467

    Google Scholar 

  • Ceburnis D, Steinnes E (2000) Conifer needles as biomonitors of atmospheric heavy metal deposition: comparison with mosses and precipitation, role of the canopy. Atmos Environ 34:4265–4271

    CAS  Google Scholar 

  • Charman D (2002) Peatlands and environmental change. Wiley, West Sussex

    Google Scholar 

  • Chow TJ, Patterson CC (1962) The occurrence and significance of lead isotopes in pelagic sediments. Geochim Cosmochim Acta 26:263–308

    CAS  Google Scholar 

  • Cloy JM, Farmer JG, Graham MC et al (2005) A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombrotrophic peat bog, Scotland. J Environ Monit 7:1137–1147

    CAS  Google Scholar 

  • Cloy JM, Farmer JG, Graham MC et al (2008) Historical records of atmospheric Pb deposition in four Scottish ombrotrophic peat bogs: an isotopic comparison with other records from Western Europe and Greenland. Glob Biogeochem Cycles 22 Article Number: GB2016

    Google Scholar 

  • Coggins AM, Jennings SG, Ebinghaus R (2006) Accumulation rates of the heavy metals lead, mercury and cadmium in ombrotrophic peatlands in the west of Ireland. Atmos Environ 40:260–278

    CAS  Google Scholar 

  • Damman AWH (1978) Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30:480–495

    CAS  Google Scholar 

  • Damman AWH (1986) Hydrology, development, and biogeochemistry of ombrogenous peat bogs with special reference to nutrient relocation in a western Newfoundland bog. Can J Bot 64:384–394

    CAS  Google Scholar 

  • De Vleeschouwer F, Gèrard L, Goormaghtigh C et al (2007) Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millennia: human impact on a regional to global scale. Sci Total Environ 377:282–295

    CAS  Google Scholar 

  • De Vleeschouwer F, Fagel N, Cheburkin A et al (2009) Anthropogenic impacts in North Poland over the last 1300 years—a record of Pb, Zn, Cu, Ni and S in an ombrotrophic peat bog. Sci Total Environ 407:5674–5684

    CAS  Google Scholar 

  • De Vleeschouwer F Le Roux G Shotyk W (2010) Peat as an archive of atmospheric metal pollution: the example of Pb in Europe. In: Jackson S, Charman D (eds) Peatland. Special Issue of PAGES Newsletter, April 2010

    Google Scholar 

  • Elbaz-Poulichet F, Dezileau L, Freydier R et al (2011) A 3500-Year record of Hg and Pb contamination in a Mediterranean sedimentary archive (the Pierre Blanche Lagoon, France). Environ Sci Technol 45:8642–8647

    CAS  Google Scholar 

  • El-Daoushy F, Tolonen K, Rosenberg R (1982) Lead 210 and moss-increment dating of two Finnish Sphagnum hummocks. Nature 296:429–431

    CAS  Google Scholar 

  • Engstrom DR, Swain EB, Henning TA et al (1994) Atmospheric mercury deposition to lakes and watersheds. In: Baker L (ed) Environmental chemistry of lakes and reservoirs. American Chemical Society, Washington, DC, pp 33–66

    Google Scholar 

  • Farmer JG, Mackenzie AB, Sugden CL et al (1997) A comparison of the historical lead pollution records in peat and freshwater lake sediments from central Scotland. Water Air Soil Pollut 100:253–270

    CAS  Google Scholar 

  • Farmer JG, Eades LJ, Atkins H et al (2002) Historical trends in the lead isotopic composition of archival Sphagnum mosses from Scotland (1838–2000). Environ Sci Technol 36:152–157

    CAS  Google Scholar 

  • Farmer JG, Anderson P, Cloy JM et al (2009) Historical accumulation rates of mercury in four Scottish ombrotrophic peat bogs over the past 2000 years. Sci Total Environ 407:5578–5588

    CAS  Google Scholar 

  • Forel B, Monna F, Petit C et al (2010) Historical mining and smelting in the Vosges Mountains (France) recorded in two ombrotrophic peat bogs. J Geochem Explor 107:9–20

    CAS  Google Scholar 

  • Gallego JLR, Ortiz JE, Sierra C et al (2013) Multivariate study of trace element distribution in the geological record of Ronanzas Peat Bog (Asturias, N. Spain). Paleoenvironmental evolution and human activities over the last 8000 cal yr BP. Sci Total Environ 454:16–29

    Google Scholar 

  • Givelet N, Shotyk W, Roos-Barraclough F (2003) Rates and predominant anthropogenic sources of atmospheric mercury accumulation in southern Ontario recorded by peat cores from three bogs: comparison with natural “background” values (past 8000 years). J Environ Monitor 5:935–949

    CAS  Google Scholar 

  • Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. J Chem Soc London 655–673

    Google Scholar 

  • González ZI, Krachler M, Cheburkin AK et al (2006) Spatial distribution of natural enrichments of arsenic, selenium, and uranium in a minerotrophic Peatland, Gola di Lago, Canton Ticino, Switzerland. Environ Sci Technol 40:6568–6574

    Google Scholar 

  • Goodsite ME, Rom W, Heinemeier J et al (2001) High-resolution AMS C-14 dating of post-bomb peat archives of atmospheric pollutants. Radiocarbon 43:495–515

    CAS  Google Scholar 

  • Gore AJP (eds) (1983) Ecosystems of the World—mires: swamps, bog, fen, and moor. Elsevier, Amsterdam, Oxford. New York

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Google Scholar 

  • Görres M, Frenzel B (1993) The Pb, Br and Ti content in peat bogs as indicator for recent and past depositions. Naturwissenschaften 80:333–335

    Google Scholar 

  • Granlund E (1931) Kungshamnsmossens utvecklingshistoria jämte pollenanalytiska åldersbestämningar i Uppland. Sver Geol Unders C368:1–53

    Google Scholar 

  • Granlund E (1932) De svenska högmossarnas geologi: deras bildningsbetingelser, utvecklinghistoria och utbredning jämte sambandet mellan högmossebildning och försumpning [Geology of Swedish raised bogs]. Sveriges Geologiska Undersökning Ser C 373:1–193

    Google Scholar 

  • Hansson SV, Rydberg J, Kylander M et al (2013) Evaluating paleoproxies for peat decomposition and their relationship to peat geochemistry. Holocene 23:1666–1671

    Google Scholar 

  • Hansson SV, Kaste J, Chen K et al (2014) Beryllium-7 as a natural tracer for short-term downwash in peat. Biogeochemistry. doi:10.1007/s10533–014-9969-y

    Google Scholar 

  • Hettwer K, Deicke M, Ruppert H (2003) Fens in karst sinkholes—archives for long lasting ‘immission’chronologies. Water Air Soil Pollut 149:363–384

    CAS  Google Scholar 

  • Hölzer A, Hölzer A (1998) Silicon and titanium in peat profiles as indicators of human impact. Holocene 8:685–696

    Google Scholar 

  • Hong SM, Candelone JP, Patterson CC et al (1994) Greenland ice evidence of hemispheric lead pollution 2 millennia ago by Greek and Roman civilizations. Science 265:1841–1843

    CAS  Google Scholar 

  • Hvatum OØ (1970) Sterk blyopphopning i overflatesjiktet i myrjord. Tek Ukebl 27

    Google Scholar 

  • Iverfeldt Å, Munthe J, Brosset C et al (1995) Long-term changes in concentration and deposition of atmospheric mercury over Scandinavia. Water Air Soil Pollut 80:227–233

    CAS  Google Scholar 

  • Jouffroy-Bapicot I, Pulido M, Baron S et al (2007) Environmental impact of early palaeometallurgy: pollen and geochemical analysis. Veg Hist Archaeobot 16:251–258

    Google Scholar 

  • Kamenov GD, Brenner M, Tucker JL (2009) Anthropogenic versus natural control on trace element and Sr-Nd-Pb isotope stratigraphy in peat sediments of southeast Florida (USA), ≈ 1500 AD to present. Geochim et Cosmochim Acta 73:3549–3567

    CAS  Google Scholar 

  • Kaste JM, Bostick BC, Heimsath AM et al (2011) Using atmospheric fallout to date organic horizon layers and quantify metal dynamics during decomposition. Geochim Et Cosmochim Acta 75:1642–1661

    CAS  Google Scholar 

  • Kempter H, Frenzel B (2000) The impact of early mining and smelting on the local tropospheric aerosol detected in ombrotrophic peat bogs in the Harz mountains, Germany. Water Air Soil Pollut 121:93–108

    CAS  Google Scholar 

  • Kempter H, Frenzel B (2008) Titanium in ombrotrophic Sphagnum mosses from various peat bogs of Germany and Belgium. Sci Total Environ 392:324–334

    CAS  Google Scholar 

  • Kempter H, Görres M, Frenzel B (1997) Ti and Pb concentrations in rainwater-bogs in Europe as indicators of past anthropogenic activities. Water Air Soil Pollut 100:367–377

    CAS  Google Scholar 

  • Kempter H, Krachler M, Shotyk W (2010) Atmospheric Pb and Ti accumulation rates from Sphagnum moss: dependence upon plant productivity. Environ Sci Technol 44:5509–5515

    CAS  Google Scholar 

  • Klaminder J, Renberg I, Bindler R et al (2003) Isotopic trends and background fluxes of atmospheric lead deposition in N Europe: analyses of three ombrotrophic bogs from south Sweden. Glob Biogeochem Cycles 17:GB1019

    Google Scholar 

  • Klaminder J, Bindler R, Emteryd O et al (2006) Estimating the mean residence time of lead in the organic horizon of boreal forest soils using 210-lead, stable lead and a soil chronosequence. Biogeochemistry 78:31–49

    CAS  Google Scholar 

  • Klaminder J, Bindler R, Rydberg J, Renberg I (2008) Is there a chronological record of atmospheric mercury and lead deposition preserved in the mor layer (O-horizon) of boreal forest soils. Geochim et Cosmochim Acta 72:703–712

    CAS  Google Scholar 

  • Krachler M, Mohl C, Emons H et al (2003) Atmospheric deposition of V, Cr, and Ni since the late glacial: effects of climatic cycles, human impacts, and comparison with crustal abundances. Environ Sci Technol 37:2658–2667

    CAS  Google Scholar 

  • Kuhry P, Vitt DH. 1996. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77:271–275

    Google Scholar 

  • Küster H, Rehfuess K-E (1997) Pb and Cd concentrations in a southern Bavarian bog profile and the history of vegetation as recorded by pollen analysis. Water Air Soil Pollut 100:379–386

    Google Scholar 

  • Kylander ME, Weiss DJ, Martinez Cortizas A et al (2005) Refining the pre-industrial atmospheric Pb isotope evolution curve in Europe using an 8000 year old peat core from NW Spain. Earth Planet Sci Lett 240:467–485

    CAS  Google Scholar 

  • Kylander ME, Muller J, Wüst RAJ et al (2007) Rare earth element and Pb isotope variations in a 52 kyr peat core from Lynch’s Crater (NE Queensland, Australia): proxy development and application to paleoclimate in the Southern Hemisphere. Geochim et Cosmochim Acta 71:942–960

    CAS  Google Scholar 

  • Kylander ME, Klaminder J, Bindler R et al (2010) Natural lead isotope variations in the atmosphere. Earth Planet Sci Lett 290:44–53

    CAS  Google Scholar 

  • Lal D, Suess HE (1968) Radioactivity of atmosphere and hydrosphere. Ann Rev Nucl Sci 18:407–435

    CAS  Google Scholar 

  • Lamborg CH, Fitzgerald WF, Damman AWH et al (2002) Modern and historic atmospheric mercury fluxes in both hemispheres: global and regional mercury cycling implications. Glob Biogeochem Cycles 16. art. no. 1104

    Google Scholar 

  • Landers DH, Gubala C, Verta M et al (1998) Using lake sediment mercury flux ratios to evaluate the regional and continental dimensions of mercury deposition in Arctic and boreal ecosystems. Atmos Environ 32:919–928

    CAS  Google Scholar 

  • Le Roux G, Weiss D, Grattan JP et al (2004) Identifying the sources and timing of ancient and medieval atmospheric lead pollution in England using a peat profile from Lindow bog, Manchester. J Environ Monit 6:502–510

    CAS  Google Scholar 

  • Le Roux G, Aubert D, Stille P et al (2005) Recent atmospheric Pb deposition at a rural site in southern Germany assessed using a peat core and snowpack, and comparison with other archives. Atmos Environ 39:6790–6801

    CAS  Google Scholar 

  • Leblanc M, Morales J, Borrego J et al (2000) 4500-year-old mining pollution in southwestern Spain: long-term implications for modern mining pollution. Econ Geol 95:655–662

    CAS  Google Scholar 

  • Lee JA, Tallis JH (1973) Regional and historical aspects of lead pollution in Britain. Nature 245:216–218

    CAS  Google Scholar 

  • Lorey P, Driscoll CT (1999) Historical trends of mercury deposition in Adirondack lakes. Environ Sci Technol 33:718–722

    CAS  Google Scholar 

  • MacKenzie AB, Farmer JG, Sugden CL (1997) Isotopic evidence of the relative retention and mobility of lead and radiocaesium in Scottish ombrotrophic peats. Sci Total Environ 203:115–127

    CAS  Google Scholar 

  • Malmer N (1988) Patterns in the growth and the accumulation of inorganic constituents in the Sphagnum cover on ombrotrophic bogs in Scandinavia. Oikos 53:105–120

    CAS  Google Scholar 

  • Malmer N, Wallén B (1999) The dynamics of peat accumulation on bogs: mass balance of hummocks and hollows and its variation throughout a millennium. Ecography 22:736–750

    Google Scholar 

  • Marshall WA, Clough R, Gehrels WR (2009) The isotopic record of atmospheric lead fall-out on an Icelandic salt marsh since AD 50. Sci Total Environ 407:2734–2748

    CAS  Google Scholar 

  • Martin MH, Coughtrey PJ, Ward P (1979) Historical aspects of heavy metal pollution in the Gordano Valley. Proc Bristol Nat Soc 37:91–97

    Google Scholar 

  • Martínez Cortizas A, Pontevedra-Pombal X, Nóvoa Muños JC et al (1997) Four thousand years of atmospheric Pb, Cd and Zn deposition recorded by the ombrotrophic peat bog of Penido Vello (northwest Spain). Water Air Soil Pollut 100:387–403

    Google Scholar 

  • Martínez Cortizas A, Pontevedra-Pombal X, García-Rodeja E et al (1999) Mercury in a Spanish peat bog: archive of climate change and atmospheric metal pollution. Science 284:939–942

    Google Scholar 

  • Martinez Cortizas A Gayoso EGR Weiss D (2002) Peat bog archives of atmospheric metal deposition. Sci Total Environ 292:1–5

    CAS  Google Scholar 

  • Martinez Cortizas A, Mighall T, Pombal XP et al (2005) Linking changes in atmospheric dust deposition, vegetation change and human activities in northwest Spain during the last 5300 years. Holocene 15:698–706

    Google Scholar 

  • Martinez Cortizas A, Varela EP, Bindler R et al (2012) Reconstructing historical Pb and Hg pollution in NW Spain using multiple cores from the Chao de Lamoso bog (Xistral Mountains). Geochim Et Cosmochim Acta 82:68–78

    CAS  Google Scholar 

  • Martinez Cortizas A, Lopez-Merino L, Bindler R et al (2013) Atmospheric Pb pollution in N Iberia during the late Iron age/roman times reconstructed using the high-resolution record of La Molina mire (Asturias, Spain). J Paleolimnol 50:71–86

    Google Scholar 

  • Martini IP, Martinez Cortizas A, Chesworth W (2006) Peatlands: evolution and records of environmental and climate changes. Elsevier Science & Technology Books. Amsterdam, Oxford

    Google Scholar 

  • Mighall TM, Dumayne-Peaty L, Freeth S (2004) Metal mining and vegetational history of the Upper Rookhope Valley, Weardale, Northern Pennines. In: Barkers D, Cranstone D (eds) Archaeology of industrialization, vol 2. Maney Publishing, Leeds, pp 119–136

    Google Scholar 

  • Mighall TM, Timberlake S, Foster IDL et al (2009) Ancient copper and lead pollution records from a raised bog complex in Central Wales, UK. J Archaeol Sci 36:1504–1515

    Google Scholar 

  • Monna F, Dominik J, Loizeau J-L et al (1999) Origin and evolution of Pb in sediments of Lake Geneva (Switzerland-France). Establishing a stable Pb record. Environ Sci Technol 33:2850–2857

    CAS  Google Scholar 

  • Monna F, Hamer K, Lévêque J et al (2000) Pb isotopes as a reliable marker of early mining and smelting in the Northern Harz province (Lower Saxony, Germany). J. Geochem Explor 68:201–210

    CAS  Google Scholar 

  • Monna F, Galop D, Carozza L et al (2004a) Environmental impact of early Basque mining and smelting recorded in a high ash minerogenic peat deposit. Sci Total Environ 327:197–214

    CAS  Google Scholar 

  • Monna F, Petit C, Guillaumet J-P et al (2004b) History and environmental impact of mining activity in Celtic Aeduan territory recorded in a peat bog. (Morvan, France). Environ Sci Technol 38:665–673

    CAS  Google Scholar 

  • Muller J, Kylander ME, Martinez-Cortizas A et al (2008) The use of principle component analyses in characterizing trace and major elemental distribution in a 55 kyr peat deposit in tropical Australia: implications to paleoclimate. Geochim Et Cosmochim Acta 72:449–463

    CAS  Google Scholar 

  • Nilsson M, Klarqvist M, Bohlin E et al (2001) Variation in 14C age of macrofossils and different fractions of minute peat samples dated by AMS. Holocene 11:579–586

    Google Scholar 

  • Norton SA (1990) Geochemistry of selected Maine peat deposits. Bull Maine Geol Surv 34:1–39

    Google Scholar 

  • Norton SA, Evans GC, Kahl JS (1997) Comparison of Hg and Pb fluxes to hummocks and hollows of ombrotrophic Big Heath Bog and to nearby Sargent Mt. Pond, Maine, USA. Water Air Soil Pollut 100:271–286

    CAS  Google Scholar 

  • Novak M, Emmanuel S, Vile MA et al (2003) Origin of lead in eight central European peat bogs determined from isotope ratios, strengths, and operation times of regional pollution sources. Environ Sci Technol 37:437–445

    CAS  Google Scholar 

  • Novak M, Adamova M, Wieder RK et al (2005) Sulfur mobility in peat. Appl Geochem 20:673–681

    CAS  Google Scholar 

  • Nriagu JO (1983) Lead and lead poisoning in antiquity. Wiley-Interscience, NY

    Google Scholar 

  • Nriagu JO (1996) A history of global metal pollution. Science 272:223–224

    CAS  Google Scholar 

  • Oldfield F, Appleby PG, Battarbee RW (1978) Alternative Pb-210 dating—results from New-Guinea highlands and Logh Erne. Nature 271:339–342

    CAS  Google Scholar 

  • Oldfield F, Appleby PG, Cambray RS et al (1979) Pb-210, Cs-137 and Pu-239 profiles in ombrotrophic peat. Oikos 33:40–45

    CAS  Google Scholar 

  • Oldfield F, Richardson N, Appleby PG (1995) Radiometric dating (210Pb, 137Cs, 241Am) of recent ombrotrophic peat accumulation and evidence for changes in mass balance. Holocene 5:141–148

    Google Scholar 

  • Oldfield F, Thompson R, Crooks PRJ et al (1997) Radiocarbon dating of a recent high-latitude peat profile: stor Åmyran, northern Sweden. Holocene 7:283–290

    Google Scholar 

  • Olid C, Garcia-Orellana J, Martínez-Cortizas A et al (2008) Role of surface vegetation in 210Pb-dating of peat cores. Environ Sci Technol 42:8858–8864

    CAS  Google Scholar 

  • Olid C, Garcia-Orellana J, Martínez-Cortizas A et al (2010) Multiple site study of recent atmospheric metal (Pb, Zn and Cu) deposition in the NW Iberian Peninsula using peat cores. Sci Total Environ 408:5540–5549

    CAS  Google Scholar 

  • Olid C, Garcia-Orellana J, Masqué P et al (2013) Improving the 210Pb-chronology of Pb deposition in peat cores from Chao de Lamoso (NW Spain). Sci Total Environ 443:597–607

    CAS  Google Scholar 

  • Patterson CC, Tilton GR, Brown H et al (1955) Isotopic composition and distribution of lead, uranium and thorium in a Precambrian granite. Bull Geol Soc Am 66:1131–1148

    Google Scholar 

  • Piotrowska N, De Vleeschouwer F, Sikorski J et al (2010) Intercomparison of radiocarbon bomb pulse and Pb-210 age models. A study in a peat bog core from North Poland. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms 268:1163–1166

    CAS  Google Scholar 

  • Pontevedra-Pombal X, Mighall TM, Nóvoa-Munoz JC et al (2013) Five thousand years of atmospheric Ni, Zn, As, and Cd deposition recorded in bogs from NW Iberia: prehistoric and historic anthropogenic contributions. J Archaeol Sci 40:764–777

    CAS  Google Scholar 

  • Pratte S, Mucci A, Garneau M (2013) Historical records of atmospheric metal deposition along the St. Lawrence Valley (eastern Canada) based on peat bog cores. Atmos Environ 79:831–840

    CAS  Google Scholar 

  • Rabassa J, Coronto A, Heusser CJ et al (2006) The peatlands of Argentine Tierra del Fuego as a source for paleoclimatic and paleoenvironmental information. In: Martini IP, Martinez-Cortizas A, Chesworth W (eds) Peatlands—evolution and records of environmental and climate changes. Developments in earth surface processes series, vol 9. Elsevier, Amsterdam, pp 479–498

    Google Scholar 

  • Rausch N, Ukonmaanaho L, Nieminen TM et al (2005) Porewater evidence of metal (Cu, Ni, Co, Zn, Cd) mobilization in an acidic, ombrotrophic bog impacted by a smelter, Harjavalta, Finland and comparison with reference sites. Environ Sci Technol 39:8207–8213

    CAS  Google Scholar 

  • Renberg I, Wik-Persson M, Emteryd O (1994) Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368:323–326

    CAS  Google Scholar 

  • Renberg I, Bindler R, Brännvall M-L (2001) Using the historical atmospheric lead deposition record as a chronological marker in sediment deposits in Europe. Holocene 11:511–516

    Google Scholar 

  • Roos-Barraclough F, Martinez Cortizas A, Garcia-Rodeja E et al (2002) A 14500 year record of the accumulation of atmospheric mercury in peat: volcanic signals, anthropogenic influences and a correlation to bromine accumulation. Earth Planet Sci Lett 202:435–451

    CAS  Google Scholar 

  • Roos-Barraclough F, Givelet N, Cheburkin AK et al (2006) Use of Br and Se in Peat to reconstruct the natural and anthropogenic fluxes of atmospheric Hg: a 10,000-year record from Caribou Bog, Maine. Environ Sci Technol 40:3188–3194

    CAS  Google Scholar 

  • Rosman KJR, Chisholm W, Hong SM et al (1997) Lead from Carthaginian and Roman Spanish mines isotopically identified in Greenland ice dated from 600 BC to 300 AD. Environ Sci Technol 31:3413–3416

    CAS  Google Scholar 

  • Rosman KJR, Ly C, van de Velde K et al (2000) A two century record of lead isotopes in high altitude Alpine snow and ice. Earth Planet Sci Lett 176:413–424

    CAS  Google Scholar 

  • Ross HB (1990) On the use of mosses (Hylocomium splendens and Pleurozium schreberi) for estimating atmospheric trace metal deposition. Water Air Soil Pollut 50:63–76

    CAS  Google Scholar 

  • Rothwell JJ, Taylor KG, Chenery SRN et al (2010) Storage and behavior of As, Sb, Pb, and Cu in ombrotrophic peat bogs under contrasting water table conditions. Environ Sci Technol 44:8497–8502

    CAS  Google Scholar 

  • Rühling Å, Tyler G (1968) An ecological approach to the lead problem. Botaniska Notiser 122:321–342

    Google Scholar 

  • Rühling Å, Tyler G (1970) Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.) Br Et Sch Oikos 21:92–97

    Google Scholar 

  • Rühling Å, Tyler G (2001) Changes in atmospheric deposition rates of heavy metals in Sweden. a summary of nationwide Swedish surveys in 1968/70—1995. Water Air Soil Pollut Focus 1:311–323

    Google Scholar 

  • Rydberg J, Karlsson J, Nyman R et al (2010) Importance of vegetation type for mercury sequestration in the northern Swedish mire, Rödmossamyran. Geochim Et Cosmochim Acta 74:7116–7126

    CAS  Google Scholar 

  • Schell WR (1987) A historical-perspective of atmospheric chemicals deposited on a mountain top peat bog in Pennsylvania. Int J Coal Geol 8:147–173

    CAS  Google Scholar 

  • Schell WR, Tobin MJ, Massey CD (1989) Evaluation of trace-metal deposition history and potential element mobility in selected cores from peat and wetland ecosystems. Sci Total Environ 87:19–42

    Google Scholar 

  • Schofield JE, Edwards KJ, Mighall TM et al (2010) An integrated geochemical and palynological study of human impacts, soil erosion and storminess from southern Greenland since c. AD 1000. Palaeogeogr Palaeoclimatol Palaeoecol 295:19–30

    Google Scholar 

  • Schwikowski M, Barbante C, Doering T et al (2004) Post-17th-century changes of European lead emissions recorded in high-altitude alpine snow and ice. Environ Sci Technol 38:957–964

    CAS  Google Scholar 

  • Sernander R (1892) Die Einwanderung der Fichte in Skandinavien. Engler Bot Jahrb Leipzig Bd 15, h. 1:1–94

    Google Scholar 

  • Serrano O, Martínez-Cortizas A, Mateo MA et al (2013) Millennial scale impact on the marine biogeochemical cycle of mercury from early mining on the Iberian Peninsula. Glob Biogeochem Cycles 27:21–30

    CAS  Google Scholar 

  • Settle D, Patterson CC (1980) Lead in Albacore: guide to lead pollution in Americans. Science 207:1167–1176

    CAS  Google Scholar 

  • Shirahata H, Elias RW, Patterson CC (1980) Chronological variations in concentrations and isotopic compositions of anthropogenic atmospheric lead in sediments of a remote subalpine pond. Geochim Cosmochim Acta 44:149–162

    CAS  Google Scholar 

  • Shotyk W, Cheburkin AK, Appleby PG et al (1996) Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland. Earth Planet Sci Lett 145:E1–E7

    Google Scholar 

  • Shotyk W, Cheburkin A, Appleby PG et al (1997) Lead in three peat bog profiles, Jura Mountains, Switzerland: enrichment factors, isotopic composition, and chronology of atmospheric deposition. Water Air Soil Pollut 100:297–310

    CAS  Google Scholar 

  • Shotyk W, Weiss D, Appleby PG et al (1998) History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura mountains, Switzerland. Science 281:1635–1640

    CAS  Google Scholar 

  • Shotyk W, Krachler M, Martinez-Cortizas A et al (2002) A peat bog record of natural, pre-anthropogenic enrichments of trace elements in atmospheric aerosols since 12370 14C yr BP, and their variation with Holocene climate change. Earth Planet Sci Lett 199:21–37

    CAS  Google Scholar 

  • Shotyk W, Goodsite ME, Roos-Barraclough F, Givelet N, Le Roux G, Weiss D, Cheburkin AK, Knudsen K, Heinemeier J, van Der Knaap WO (2005) Accumulation rates and predominant atmospheric sources of natural and anthropogenic Hg and Pb on the Faroe Islands. Geochim et Cosmochim Acta 69:1–17

    CAS  Google Scholar 

  • Steinmann P, Shotyk W (1997) Geochemistry, mineralogy, and geochemical mass balance on major elements in two peat bog profiles (Jura Mountains: Switzerland). Chem Geol 138:25–53

    CAS  Google Scholar 

  • Steinnes E, Rambæk JP, Hanssen JE (1992) Large scale multi-element survey of atmospheric deposition using naturally growing moss as biomonitor. Chemosphere 25:735–752

    CAS  Google Scholar 

  • Steinnes E, Åberg G, Hjelmseth H (2005) Atmospheric deposition of lead in Norway: spatial and temporal variation in isotopic composition. Sci Total Environ 336:105–117

    CAS  Google Scholar 

  • Stewart C, Fergusson JE (1994) The use of peat in the historical monitoring of trace metals in the atmosphere. Environ Pollut 86:243–249

    CAS  Google Scholar 

  • Stos-Gale Z, Gale NH, Houghton J et al (1995) Lead isotope data from the Isotrace Laboratory, Oxford: archaeometry data base 1, ores from the western Mediterranean. Archaeometry 37:407–415

    Google Scholar 

  • Tarnocai C, Stolbovoy (2006) Northern peatlands: their characteristics, development and sensitivity to climate change. In: Martini IP, Martínez-Cortizas A, Chesworth W (eds) Peatlands: evolution and records of environmental and climate changes. Developments in Earth surface processes, vol 9. Elsevier, Amsterdam, pp 17–52

    Google Scholar 

  • Thevenon F, Guédron S, Chiaradia M et al (2011) (Pre-) historic changes in natural and anthropogenic heavy metals deposition inferred from two contrasting Swiss Alpine lakes. Quat Sci Rev 30:224–233

    Google Scholar 

  • Urban NR, Eisenreich SJ, Grigal DF et al (1990) Mobility and diagenesis of Pb and 210Pb in peat. Geochim Cosmochim Acta 54:3329–3346

    CAS  Google Scholar 

  • Villaverde P, Gondar D, Antelo J et al (2009) Influence of pH on copper, lead and cadmium binding by an ombrotrophic peat. Eur J Soil Sci 60:377–385

    CAS  Google Scholar 

  • Vinichuk M, Johanson KJ, Rydin H et al (2010) The distribution of 137Cs, K, Rb and Cs in plants in a Sphagnum-dominated peatland in eastern central Sweden. J Environ Radioact 101:170–176

    CAS  Google Scholar 

  • von Post L (1913) Über stratigraphische Zweigliederung schwedischer Hochmoore [The stratigraphy of Swedish raised bogs]. Sveriges Geologiska Undersökning Ser. C. 248:1–52

    Google Scholar 

  • Wängberg I, Munthe J, Pirrone N et al (2001) Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmos Environ 35:3019–3025

    Google Scholar 

  • Weber CA (1899) Ueber die Moore mit besonderer Berücksichtigung der zwischen Unterweser und Unterelbe liegenden. Jahresber. d. Männer v. Morgenstern, Bremerhafen h. 3:3–23

    Google Scholar 

  • Weiss D, Shotyk W, Cheburkin AK et al (1997) Atmospheric lead deposition from 12,400 to ca. 2000 years BP in a peat bog profile, Jura Mountains, Switzerland. Water Air Soil Pollut 100:311–323

    CAS  Google Scholar 

  • Weiss D, Shotyk W, Kramers JD et al (1999) Sphagnum mosses as archives of recent and past atmospheric lead deposition in Switzerland. Atmos Environ 33:3751–3763

    CAS  Google Scholar 

  • Weiss D, Shotyk W, Rieley J et al (2002) The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition. Geochim et Cosmochim Acta 66:2307–2323

    CAS  Google Scholar 

  • Weiss D, Rausch N, Mason TFD et al (2007) Atmospheric deposition and isotope biogeochemistry of zinc in ombrotrophic peat. Geochim Et Cosmochim Acta 71:3498–3517

    CAS  Google Scholar 

  • West S, Charman DJ, Grattan JP et al (1997) Heavy metals in Holocene peats from south west England: detecting mining impacts and atmospheric pollution. Water Air Soil Pollut 100:343–353

    CAS  Google Scholar 

  • Wijmstra TA and Groenhart MC (1983). Record of 700,000 years vegetational history in Eastern Macedonia (Greece). Revista Academia Colombiana Ciencias Exactas, Fisicas y Naturales 15:87–98

    Google Scholar 

  • Yang H, Rose N (2005) Trace element pollution records in some UK lake sediments, their history, influence factors and regional differences. Environ Int 31:63–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia V. Hansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hansson, S., Bindler, R., De Vleeschouwer, F. (2015). Using Peat Records as Natural Archives of Past Atmospheric Metal Deposition. In: Blais, J., Rosen, M., Smol, J. (eds) Environmental Contaminants. Developments in Paleoenvironmental Research, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9541-8_12

Download citation

Publish with us

Policies and ethics