Skip to main content

The Big Picture: Prospects for Ecological Engineering to Guide the Delivery of Ecosystem Services in Global Agriculture

  • Chapter
  • First Online:

Abstract

Feeding an estimated nine billion people by the year 2050 will be challenging. Though controversy surrounds the extent to which food production needs to increase, versus a focus on distributional issues and reduced waste, there is a need to reduce the environmental impacts of current farming practices and to avoid further depletion of biodiversity. Over the last century, biodiversity loss has accompanied agricultural intensification so a business-as-usual scenario gives little cause for optimism. In the last decade, studies in many countries have demonstrated the benefits of “alternative” agricultural systems that can be as productive as conventional agriculture on a per-hectare basis, despite requiring fewer pesticides and fertilizers. These systems employ ecological intensification whereby ecosystem services such as nutrient provisioning, natural pest control, and enhanced pollination replace anthropogenic inputs. Enhancement of biodiversity in these systems is not confined to planned diversity such as multiple crops but includes many other taxa to the extent that farmlands can be important complements to nature reserves and other protected areas. Ecological engineering is one approach that can guide the diversification of farmlands to deliver multiple ecosystem services agricultural intensification based on an ecological evidence base offers significant scope for a win–win scenario whereby future food production needs are more strongly supported by ecosystem services whilst simultaneously motivating farmers to accommodate biodiversity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Badgley C, Perfecto I, Chappell MJ, Samulon A. Strengthening the case for organic agriculture: response to Alex Avery. Renew Agric Food Syst. 2007;22:323–7.

    Article  Google Scholar 

  • Bengtsson J, Ahnström J, Weibull A-C. The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol. 2005;42:261–9.

    Article  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol. 2013;28:230–8.

    Article  PubMed  Google Scholar 

  • Brodt S, Klonsky K, Jackson L, Brush SB, Smukler S. Factors affecting adoption of hedgerows and other biodiversity-enhancing features on farms in California, USA. Agroforest syst. 2009;76:195–206.

    Article  Google Scholar 

  • Brooks TM, Bakarr MI, Boucher T, Da Fonseca GA, Hilton-Taylor C, Hoekstra JM, Moritz T, Olivieri S, Parrish J, Pressey RL, Rodrigues ASL, Sechrest W, Stattersfield A, Strahm W, Stuart SN. Coverage provided by the global protected-area system: is it enough? Bioscience. 2004;54:1081–91.

    Article  Google Scholar 

  • Cassman KG. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA. 1999;96:5952–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chappell MJ, LaValle LA. Food security and biodiversity: can we have both? An agroecological analysis. Agric Human Values. 2011;28:3–26.

    Article  Google Scholar 

  • Chen X-P, Cui Z-L, Vitousek PM, Cassman KG, Matson PA, Bai J-S, Meng Q-F, Hou P, Yue S-C, Römheld V. Integrated soil–crop system management for food security. Proc Natl Acad Sci USA. 2011;108:6399–404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Putra DD, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffan-Dewenter I, Stenchly K, Vidal S, Weist M, Wielgoss AC, Tscharntke T. Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci USA. 2011;108:8311–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costanza R, d’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Van Den Belt M. The value of the world’s ecosystem services and natural capital. Nature. 1997;387:253–60.

    Article  CAS  Google Scholar 

  • Crowder DW, Northfield TD, Strand MR, Snyder WE. Organic agriculture promotes evenness and natural pest control. Nature. 2010;466:109–12.

    Article  CAS  PubMed  Google Scholar 

  • De Schutter O. Report submitted by the special rapporteur on the right to food, Oliver De Schutter. Ref: A/HRC/16/49; New York: United Nations General Assembly; 2010.

    Google Scholar 

  • Diaz RJ, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science. 2008;321:926–9.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich PR, Pringle RM. Where does biodiversity go from here? a grim business-as-usual forecast and a hopeful portfolio of partial solutions. Proc Natl Acad Sci USA. 2008;105:11579–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evans LT. Feeding the ten billion: plants and population growth. Cambridge: Cambridge University Press; 1998.

    Google Scholar 

  • Ewers RM, Scharlemann JP, Balmford A, Green RE. Do increases in agricultural yield spare land for nature? Global Change Biol. 2009;15:1716–26.

    Article  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM. Solutions for a cultivated planet. Nature. 2011;478:337–42.

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO): The state of food insecurity in the world. http//www.fao.org/publications/sofi/en/. Accessed 7 May 2012.

  • Godfray HCJ. Ecology, food and biodiversity. Science. 2011;333:1231–2.

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Crute IR, Haddad L, Lawrence D, Muir JF, Nisbett N, Pretty J, Robinson S, Toulmin C, Whiteley R. The future of the global food system. Philos Trans R Soc B: Biol Sci. 2010a;365:2769–77.

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010b;327:812–8.

    Article  CAS  PubMed  Google Scholar 

  • Gregory PJ, George TS. Feeding nine billion: the challenge to sustainable crop production. J Exp Bot. 2011;62:5233–9.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths GJ, Holland JM, Bailey A, Thomas MB. Efficacy and economics of shelter habitats for conservation biological control. Biol Control. 2008;45:200–9.

    Article  Google Scholar 

  • Gurr GM, Wratten SD, Luna JM. Multi-function agricultural biodiversity: pest management and other benefits. Basic Appl Ecol. 2003;4:107–16.

    Article  Google Scholar 

  • Hawkins BA, Mills NJ, Jervis MA, Price PW. Is the biological control of insects a natural phenomenon? Oikos. 1999;86:493–506.

    Article  Google Scholar 

  • Jacometti M, Wratten S, Walter M. Understorey management increases grape quality, yield and resistance to Botrytis cinerea. Agric Ecosyst Environ. 2007;122:349–56.

    Article  Google Scholar 

  • Khan ZR, Midega CA, Pittchar J, Bruce TJ, Pickett JA. ‘Push–pull’revisited: the process of successful deployment of a chemical ecology based pest management tool. In: Gurr GM, Wratten SD, Synder WE, Read DMY, editors. Biodiversity and insect pests: key issues for sustainable management. Chichester: Wiley; 2012. pp. 259–75.

    Chapter  Google Scholar 

  • Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond Ser B: Biol Sci. 2007;274:303–13.

    Article  Google Scholar 

  • Landis DA, Gardiner MM, Tompkins J. Using native plant species to diversify agriculture. In: Gurr GM, Wratten SD, Snyder WE, editors. Biodiversity and insect pests: key issues for sustainable management. Chichester: Wiley; 2012. pp. 276–92.

    Chapter  Google Scholar 

  • Losey JE, Vaughan M. The economic value of ecological services provided by insects. Bioscience. 2006;56:311–23.

    Article  Google Scholar 

  • Ma S. Ecological engineering: application of ecosystem principles. Environ Conserv. 1985;12:331–5.

    Article  Google Scholar 

  • McIntyre BD, Herren HH, Wakhungu J, Watson RT. Agriculture at a crossroads. global report. International assessment of agricultural knowledge, science and technology for development. Washington DC: Island Press; 2009.

    Google Scholar 

  • Mitsch WJ, Jørgensen SE. Classification and examples of ecological engineering. In: Mitsch WJ, Jørgensen SE, editors. Ecological engineering: an introduction to ecotechnology. New York: Wiley; 1989. pp. 3–19.

    Google Scholar 

  • Parrott L. Complexity and the limits of ecological engineering. Trans ASAE. 2002;45:1697–702.

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JP, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WW, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M. Scenarios for global biodiversity in the 21st century. Science. 2010;330:1496–501.

    Article  CAS  PubMed  Google Scholar 

  • Perović DJ, Gurr GM, Raman A, Nicol HI. Effect of landscape composition and arrangement on biological control agents in a simplified agricultural system: a cost-distance approach. Biol Control. 2010;52:263–70.

    Article  Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science. 2011a;333:1289–91.

    Article  CAS  PubMed  Google Scholar 

  • Phalan B, Balmford A, Green RE, Scharlemann JP. Minimising the harm to biodiversity of producing more food globally. Food Policy. 2011b;36:S62–71.

    Article  Google Scholar 

  • Pretty J. Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc B. 2008;363:447–65.

    Article  Google Scholar 

  • Pretty J. Can ecological agriculture feed nine billion people? Monthly Review. 2009;61:46.

    Article  Google Scholar 

  • Pretty JN, Noble A, Bossio D, Dixon J, Hine R, de Vries Penning F, Morison J. Resource-conserving agriculture increases yields in developing countries. Environ Sci Technol. 2006;40:1114–9.

    Article  CAS  PubMed  Google Scholar 

  • Pretty J, Toulmin C, Williams S. Sustainable intensification in African agriculture. Int J Agr Sus. 2011;9:5–24.

    Article  Google Scholar 

  • Pywell RF, Meek WR, Loxton R, Nowakowski M, Carvell C, Woodcock BA. Ecological restoration on farmland can drive beneficial functional responses in plant and invertebrate communities. Agric Ecosyst Environ. 2011;140:62–7.

    Article  Google Scholar 

  • Rands MR, Adams WM, Bennun L, Butchart SH, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann JP. Biodiversity conservation: challenges beyond 2010. Science. 2010;329:1298–303.

    Article  CAS  PubMed  Google Scholar 

  • Reganold J, Jackson-Smith D, Batie S, Harwood R, Kornegay J, Bucks D, Flora C, Hanson J, Jury W, Meyer D, Schumacher AJ, Sehmsdorf H, Shennan C, Thrupp LA, Willis P. Transforming US agriculture. Science. 2011;322:670–1.

    Article  Google Scholar 

  • Stuart T. Waste: Uncovering the global food scandal. London: Penguin; 2009.

    Google Scholar 

  • Thomas M, Wratten S, Sotherton N. Creation of ‘island’ habitats in farmland to manipulate populations of beneficial arthropods: predator densities and emigration. J Appl Ecol. 1991; 906–917.

    Google Scholar 

  • Tillman PG, Smith HA, Holland JM. Cover crops and related methods for enhancing agricultural biodiversity and conservation biocontrol: successful case studies. In: Gurr GM, Wratten SD, Snyder WE, Read DMY, editors. Biodiversity and insect pests: key issues for sustainable management. Chichester: Wiley; 2012. pp. 309–27.

    Chapter  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci. 2011;108:20260–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol Lett. 2005;8:857–74.

    Article  Google Scholar 

  • Vandermeer J, Lawrence D, Symstad A, Hobbie S. Effect of biodiversity on ecosystem functioning in managed ecosystems. In: Loreau M, Naeem S, Inchausti P, editors. Biodiversity and ecosystem functioning: synthesis and perspectives. New York: Oxford University Press; 2002. pp. 221–36.

    Google Scholar 

  • Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ. Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci. 2011;16:363–71.

    Article  CAS  PubMed  Google Scholar 

  • Wade MR, Gurr GM, Wratten SD. Ecological restoration of farmland: progress and prospects. Phil Trans R Soc B: Biol Sci. 2008;363:831–47.

    Article  Google Scholar 

  • Xie J, Hu L, Tang J, Wu X, Li N, Yuan Y, Yang H, Zhang J, Luo S, Chen X. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system. Proc Natl Acad Sci. 2011;108:E1381–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu MQ, Lin XW, Zhu ZR. High density of spiders is the important factor resulting in the light occurrence of rice planthoppers. B Sci Tech. 2011;27:371–5.

    Google Scholar 

  • Zhang YE, Chu QQ, Wang HG. Exploration and practice of developing high-yielding agriculture to ensure food security. J Agri Sci Techn (Beijing). 2012;14:17–21.

    Google Scholar 

  • Zhu ZR, Lv ZX, Yu MQ, Guo R, Cheng JA. Ecological engineering for pest management in rice Beijing: China Agri Press; 2012.

    Google Scholar 

Download references

Acknowledgments

Charles Godfray and Jules Pretty provided valuable feedback during drafting. We thank Annie Johnson, Donna Read, and Catherine Gulliver for assistance with manuscript preparation. GMG acknowledges the Minjiang Scholar support of Fujian Provincial Government. MSY acknowledges support from China’s 973 Program (2011CB100404) and NSFC (30871649, 30970528). ZRZ acknowledges support from China’s 973 Program (2010CB126206) and NSFC (30971908, 31371935).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Zhejiang University Press, Hangzhou and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gurr, G.M., Zhu, ZR., You, M. (2015). The Big Picture: Prospects for Ecological Engineering to Guide the Delivery of Ecosystem Services in Global Agriculture. In: Heong, K., Cheng, J., Escalada, M. (eds) Rice Planthoppers. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9535-7_7

Download citation

Publish with us

Policies and ethics