Skip to main content

Applications of Peptide Retention Time in Proteomic Data Analysis

  • Chapter
  • First Online:
Urine Proteomics in Kidney Disease Biomarker Discovery

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 845))

Abstract

In proteomic studies, liquid chromatography is commonly used to separate peptide mixtures prior to mass spectrometry (MS) detection. As an independent dimension of information from the information provided by the MS, peptide retention time information has been proven to be able to aid proteomic data analysis in many aspects. So far, some popular software has offered options for this information for MS data acquisition and analysis. This chapter is a brief review of current methodologies of retention time prediction and application in proteomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baczek T, Kaliszan R (2009) Predictions of peptides’ retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics. Proteomics 9:835–847

    Article  PubMed  CAS  Google Scholar 

  2. Browne CA, Bennett HPJ, Solomon S (1982) The isolation of peptides by high-performance liquid chromatography using predicted elution positions. Anal Biochem 124:201–208

    Article  PubMed  CAS  Google Scholar 

  3. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  PubMed  CAS  Google Scholar 

  4. Dasari S, Wilmarth PA, Rustvold DL, Riviere MA, Nagalla SR, David LL (2007) Reliable detection of deamidated peptides from lens crystallin proteins using changes in reversed-phase elution times and parent ion masses. J Proteome Res 6:3819–3826

    Article  PubMed  CAS  Google Scholar 

  5. Dwivedi RC, Spicer V, Harder M, Antonovici M, Ens W, Standing KG, Wilkins JA, Krokhin OV (2008) Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics. Anal Chem 80:7036–7042

    Article  PubMed  CAS  Google Scholar 

  6. Escher C, Reiter L, MacLean B, Ossola R, Herzog F, Chilton J, MacCoss MJ, Rinner O (2012) Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12:1111–1121

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Fu Y, Xiu LY, Jia W, Ye D, Sun RX, Qian XH, He SM (2011) DeltAMT: a statistical algorithm for fast detection of protein modifications from LC-MS/MS data. Mol Cell Proteomics 10(5):M110–000455

    Google Scholar 

  8. Gallien S, Peterman S, Kiyonami R, Souady J, Duriez E, Schoen A, Domon B (2012) Highly multiplexed targeted proteomics using precise control of peptide retention time. Proteomics 12:1122–1133

    Article  PubMed  CAS  Google Scholar 

  9. Guo D, Mant CT, Taneja AK, Parker JMR, Hodges RS (1986) Prediction of peptide retention times in reversed-phase highperformance liquid chromatography I. Determination of retention coefficients of amino acid residues of model synthetic peptides. J Chromatogr 359:499–517

    Article  CAS  Google Scholar 

  10. Henneman AA, Palmblad M (2013) Retention time prediction and protein identification. Methods Mol Biol 1007:101–118

    Article  PubMed  CAS  Google Scholar 

  11. Jaffe JD, Mani DR, Leptos KC, Church GM, Gillette MA, Carr SA (2006) PEPPeR, a platform for experimental proteomic pattern recognition. Mol Cell Proteomics 5:1927–1941

    Article  PubMed  CAS  Google Scholar 

  12. Kawakami T, Tateishi K, Yamano Y, Ishikawa T, Kuroki K, Nishimura T (2005) Protein identification from product ion spectra of peptides validated by correlation between measured and predicted elution times in liquid chromatography/mass spectrometry. Proteomics 5:856–864

    Article  PubMed  CAS  Google Scholar 

  13. Kim J, Petritis K, Shen Y, Camp DG 2nd, Moore RJ, Smith RD (2007) Phosphopeptide elution times in reversed-phase liquid chromatography. J Chromatogr A 1172:9–18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Kiyonami R, Schoen A, Zabrouskov V (2010) On-the-Fly retention time shift correction for multiple targeted peptide quantification by LC-MS/MS. Thermo Fisher Scientific Application note: 503

    Google Scholar 

  15. Klammer AA, Yi X, MacCoss MJ, Noble WS (2007) Improving tandem mass spectrum identification using peptide retention time prediction across diverse chromatography conditions. Anal Chem 79:6111–6118

    Article  PubMed  CAS  Google Scholar 

  16. Krokhin OV (2006) Sequence-specific retention calculator. Algorithm for peptide retention prediction in ion-pair RP-HPLC: application to 300- and 100-A pore size C18 sorbents. Anal Chem 78:7785–7795

    Article  PubMed  CAS  Google Scholar 

  17. Krokhin OV (2012) Peptide retention prediction in reversed-phase chromatography: proteomic applications. Expert Rev Proteomics 9:1–4

    Article  PubMed  CAS  Google Scholar 

  18. Krokhin OV, Spicer V (2009) Peptide retention standards and hydrophobicity indexes in reversed-phase high-performance liquid chromatography of peptides. Anal Chem 81:9522–9530

    Article  PubMed  CAS  Google Scholar 

  19. Krokhin OV, Craig R, Spicer V, Ens W, Standing KG, Beavis RC, Wilkins JA (2004) An improved model for prediction of retention times of tryptic peptides in ion pair reversed-phase HPLC: its application to protein peptide mapping by off-line HPLC-MALDI MS. Mol Cell Proteomics 3:908–919

    Article  PubMed  CAS  Google Scholar 

  20. May D, Liu Y, Law W, Fitzgibbon M, Wang H, Hanash S, McIntosh M (2008) Peptide sequence confidence in accurate mass and time analysis and its use in complex proteomics experiments. J Proteome Res 7:5148–5156

    Article  PubMed  CAS  Google Scholar 

  21. Meek JL (1980) Prediction of peptide retention times in high-pressure liquid chromatography on the basis of amino acid composition. Proc Natl Acad Sci USA 77:1632–1636

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Meek JL, Rossetti ZL (1981) Factors affecting retention and resolution of peptides in high-performance liquid chromatography. J Chromatogr 211:15–28

    Article  CAS  Google Scholar 

  23. Moruz L, Tomazela D, Kall L (2010) Training, selection, and robust calibration of retention time models for targeted proteomics. J Proteome Res 9:5209–5216

    Article  PubMed  CAS  Google Scholar 

  24. Mueller LN, Rinner O, Schmidt A, Letarte S, Bodenmiller B, Brusniak MY, Vitek O, Aebersold R, Muller M (2007) SuperHirn—a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics 7:3470–3480

    Article  PubMed  CAS  Google Scholar 

  25. Nagaraj N, Mann M (2011) Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res 10:637–645

    Article  PubMed  CAS  Google Scholar 

  26. Norbeck AD, Monroe ME, Adkins JN, Anderson KK, Daly DS, Smith RD (2005) The utility of accurate mass and LC elution time information in the analysis of complex proteomes. J Am Soc Mass Spectrom 16:1239–1249

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Petritis K, Kangas LJ, Yan B, Monroe ME, Strittmatter EF, Qian WJ, Adkins JN, Moore RJ, Xu Y, Lipton MS, Camp DG 2nd, Smith RD (2006) Improved peptide elution time prediction for reversed-phase liquid chromatography-MS by incorporating peptide sequence information. Anal Chem 78:5026–5039

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Petyuk VA, Qian WJ, Chin MH, Wang H, Livesay EA, Monroe ME, Adkins JN, Jaitly N, Anderson DJ, Camp DG 2nd, Smith DJ, Smith RD (2007) Spatial mapping of protein abundances in the mouse brain by voxelation integrated with high-throughput liquid chromatography-mass spectrometry. Genome Res 17:328–336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Pfeifer N, Leinenbach A, Huber CG, Kohlbacher O (2009) Improving peptide identification in proteome analysis by a two-dimensional retention time filtering approach. J Proteome Res 8:4109–4115

    Article  PubMed  CAS  Google Scholar 

  30. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566

    Article  PubMed  CAS  Google Scholar 

  31. Sakamoto Y, Kawakami N, Sasagawa T (1988) Prediction of peptide retention times. J Chromatogr 442:69–79

    Article  PubMed  CAS  Google Scholar 

  32. Savitski MM, Nielsen ML, Zubarev RA (2006) ModifiComb, a new proteomic tool for mapping substoichiometric post-translational modifications, finding novel types of modifications, and fingerprinting complex protein mixtures. Mol Cell Proteomics 5:935–948

    Article  PubMed  CAS  Google Scholar 

  33. Shen Y, Kim J, Strittmatter EF, Jacobs JM, Camp DG 2nd, Fang R, Tolie N, Moore RJ, Smith RD (2005) Characterization of the human blood plasma proteome. Proteomics 5:4034–4045

    Article  PubMed  CAS  Google Scholar 

  34. Smith RD, Anderson GA, Lipton MS, Pasa-Tolic L, Shen Y, Conrads TP, Veenstra TD, Udseth HR (2002) An accurate mass tag strategy proteome measurements. Proteomics 2:513–523

    Article  PubMed  CAS  Google Scholar 

  35. Smith R, Ventura D, Prince JT (2013) LC-MS alignment in theory and practice: a comprehensive algorithmic review. Brief Bioinform doi: 10.1093/bib/bbt080

    Google Scholar 

  36. Stahl-Zeng J, Lange V, Ossola R, Eckhardt K, Krek W, Aebersold R, Domon B (2007) High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics 6:1809–1817

    Article  PubMed  CAS  Google Scholar 

  37. Stanley JR, Adkins JN, Slysz GW, Monroe ME, Purvine SO, Karpievitch YV, Anderson GA, Smith RD, Dabney AR (2011) A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics. Anal Chem 83:6135–6140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Strittmatter EF, Ferguson PL, Tang K, Smith RD (2003) Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry. J Am Soc Mass Spectrom 14:980–991

    Article  PubMed  CAS  Google Scholar 

  39. Strittmatter EF, Kangas LJ, Petritis K, Mottaz HM, Anderson GA, Shen Y, Jacobs JM, Camp DG 2nd, Smith RD (2004) Application of peptide LC retention time information in a discriminant function for peptide identification by tandem mass spectrometry. J Proteome Res 3:760–769

    Article  PubMed  CAS  Google Scholar 

  40. Sun W, Zhang L, Yang R, Shao C, Zhang Z, Gao Y (2009) Improving peptide identification using an empirical peptide retention time database. Rapid Commun Mass Spectrom 23:109–118

    Article  PubMed  CAS  Google Scholar 

  41. Tolmachev AV, Monroe ME, Purvine SO, Moore RJ, Jaitly N, Adkins JN, Anderson GA, Smith RD (2008) Characterization of strategies for obtaining confident identifications in bottom-up proteomics measurements using hybrid FTMS instruments. Anal Chem 80:8514–8525

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Xie H, Gilar M, Gebler JC (2009) Characterization of protein impurities and site-specific modifications using peptide mapping with liquid chromatography and data independent acquisition mass spectrometry. Anal Chem 81:5699–5708

    Article  PubMed  CAS  Google Scholar 

  43. Yanofsky CM, Kearney RE, Lesimple S, Bergeron JJ, Boismenu D, Carrillo B, Bell AW (2008) A Bayesian approach to peptide identification using accurate mass and time tags from LC-FTICR-MS proteomics experiments. Conf Proc IEEE Eng Med Biol Soc 2008:3775–3778

    PubMed  Google Scholar 

  44. Zimmer JS, Monroe ME, Qian WJ, Smith RD (2006) Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrom Rev 25:450–482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Zybailov B, Sun Q, van Wijk KJ (2009) Workflow for large scale detection and validation of peptide modifications by RPLC-LTQ-Orbitrap: application to the Arabidopsis thaliana leaf proteome and an online modified peptide library. Anal Chem 81:8015–8024

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shao, C. (2015). Applications of Peptide Retention Time in Proteomic Data Analysis. In: Gao, Y. (eds) Urine Proteomics in Kidney Disease Biomarker Discovery. Advances in Experimental Medicine and Biology, vol 845. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9523-4_7

Download citation

Publish with us

Policies and ethics