Skip to main content

Human Urine Proteome: A Powerful Source for Clinical Research

  • Chapter
  • First Online:
Urine Proteomics in Kidney Disease Biomarker Discovery

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 845))

Abstract

As noninvasive and easily available biological fluid, urine is becoming an ideal sample for proteomic study. In recent years, researchers endeavored in profiling urinary proteome and discovering potential disease biomarkers. However, there are still many challenges in the studies of urinary proteome for the complexity of urine. In this article, we review current status of urinary sample preparation, including collection, storage, and extraction of urinary proteins, and the overall urinary proteome analysis so far, which may be helpful for urinary proteome analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu S, Loo JA, Wong DT (2006) Human body fluid proteome analysis. Proteomics 6:6326–6353

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Elkind MS, Tai W, Coates K, Paik MC, Sacco RL (2006) High-sensitivity C-reactive protein, lipoprotein-associated phospholipase A2, and outcome after ischemic stroke. Arch Intern Med 166(19):2073–2080. doi:10.1001/archinte.166.19.2073

  3. Rossing K, Mischak H, Parving HH, Christensen PK, Walden M, Hillmann M, Kaiser T (2005) Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns. Kidney Int 68(1):193-205. doi:10.1111/j.1523-1755.2005.00394.x

  4. Cicenas J, Urban P, Vuaroqueaux V, Labuhn M, Kung W, Wight E, Mayhew M, Eppenberger U, Eppenberger-Castori S (2005) Increased level of phosphorylated akt measured by chemiluminescence-linked immunosorbent assay is a predictor of poor prognosis in primary breast cancer overexpressing ErbB-2. Breast Cancer Res 7(4):R394–R401. doi:10.1186/bcr1015

  5. Decramer S, Gonzalez DPA, Breuil B, Mischak H, Monsarrat B, Bascands JL, Schanstra JP (2008) Urine in clinical proteomics. Mol Cell Proteomics 7(10):1850–1862. doi:10.1074/mcp.R800001-MCP200

  6. Thongboonkerd V, McLeish KR, Arthur JM, Klein JB (2002) Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int 62(4):1461–1469. doi:10.1111/j.1523-1755.2002.kid565.x

  7. Pieper R, Gatlin CL, McGrath AM, Makusky AJ, Mondal M, Seonarain M, Field E, Schatz CR, Estock MA, Ahmed N, Anderson NG, Steiner S (2004) Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics 4(4):1159–1174. doi:10.1002/pmic.200300661

  8. Wu J, Chen YD, Gu W (2010) Urinary proteomics as a novel tool for biomarker discovery in kidney diseases. J Zhejiang Univ Sci B 11(4):227–237. doi:10.1631/jzus.B0900327

  9. Anderson NG, Anderson NL, Tollaksen SL, Hahn H, Giere F, Edwards J (1979) Analytical techniques for cell fractions. XXV. Concentration and two-dimensional electrophoretic analysis of human urinary proteins. Anal Biochem 95(1):48–61

    Google Scholar 

  10. Sun W, Chen Y, Li F, Zhang L, Yang R, Zhang Z, Zheng D, Gao Y (2009) Dynamic urinary proteomic analysis reveals stable proteins to be potential biomarkers. PROTEOMICS—Clinical Applications 3(3):370–382. doi:10.1002/prca.200800061

  11. Thongboonkerd V (2007) Practical points in urinary proteomics. J Proteome Res 6(10):3881–3890. doi:10.1021/pr070328s

  12. Bottini PV, Ribeiro AM, Garlipp CR (2002) Electrophoretic pattern of concentrated urine: comparison between 24-hour collection and random samples. Am J Kidney Dis 39(1):E2. doi:10.1053/ajkd.2002.29920

  13. Hoorn EJ, Pisitkun T, Zietse R, Gross P, Frokiaer J, Wang NS, Gonzales PA, Star RA, Knepper MA (2005) Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. Nephrology (Carlton) 10(3):283–290. doi:10.1111/j.1440-1797.2005.00387.x

  14. Thongboonkerd V, Chutipongtanate S, Kanlaya R (2006) Systematic evaluation of sample preparation methods for gel-based human urinary proteomics: quantity, quality, and variability. J Proteome Res 5(1):183–191. doi:10.1021/pr0502525

  15. Lifshitz E, Kramer L (2000) Outpatient urine culture: does collection technique matter? Arch Intern Med 160(16):2537–2540

    Google Scholar 

  16. Schaub S, Wilkins J, Weiler T, Sangster K, Rush D, Nickerson P (2004) Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int 65(1):323–332. doi:10.1111/j.1523-1755.2004.00352.x

  17. Havanapan PO, Thongboonkerd V (2009) Are protease inhibitors required for gel-based proteomics of kidney and urine? J Proteome Res 8(6):3109–3117. doi:10.1021/pr900015q

  18. Shinada M, Akdeniz A, Panagiotopoulos S, Jerums G, Bach LA (2000) Proteolysis of insulin-like growth factor-binding protein-3 is increased in urine from patients with diabetic nephropathy. J Clin Endocrinol Metab 85(3):1163–1169. doi:10.1210/jcem.85.3.6486

  19. Thongboonkerd V, Saetun P (2007) Bacterial overgrowth affects urinary proteome analysis: recommendation for centrifugation, temperature, duration, and the use of preservatives during sample collection. J Proteome Res 6(11):4173–4181. doi:10.1021/pr070311+

  20. Klasen IS, Reichert LJ, de Kat AC, Wetzels JF (1999) Quantitative determination of low and high molecular weight proteins in human urine: influence of temperature and storage time. Clin Chem 45(3):430–432

    Google Scholar 

  21. Rosenling T, Slim CL, Christin C, Coulier L, Shi S, Stoop MP, Bosman J, Suits F, Horvatovich PL, Stockhofe-Zurwieden N, Vreeken R, Hankemeier T, van Gool AJ, Luider TM, Bischoff R (2009) The effect of preanalytical factors on stability of the proteome and selected metabolites in cerebrospinal fluid (CSF). J Proteome Res 8(12):5511–5522. doi:10.1021/pr9005876

  22. Hsieh SY, Chen RK, Pan YH, Lee HL (2006) Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics 6(10):3189–3198. doi:10.1002/pmic.200500535

  23. Saetun P, Semangoen T, Thongboonkerd V (2009) Characterizations of urinary sediments precipitated after freezing and their effects on urinary protein and chemical analyses. Am J Physiol Renal Physiol 296(6):F1346–F1354. doi:10.1152/ajprenal.90736.2008

  24. Thongboonkerd V, Mungdee S, Chiangjong W (2009) Should urine pH be adjusted prior to gel-based proteome analysis? J Proteome Res 8(6):3206–3211. doi:10.1021/pr900127x

  25. http://www.hkupp.org and http://www.eurokup.org (Reprinted)

  26. Tantipaiboonwong P, Sinchaikul S, Sriyam S, Phutrakul S, Chen ST (2005) Different techniques for urinary protein analysis of normal and lung cancer patients. Proteomics 5(4):1140–1149. doi:10.1002/pmic.200401143

  27. Khan A, Packer NH (2006) Simple urinary sample preparation for proteomic analysis. J Proteome Res 5(10):2824–2838. doi:10.1021/pr060305y

  28. Spahr CS, Davis MT, McGinley MD, Robinson JH, Bures EJ, Beierle J, Mort J, Courchesne PL, Chen K, Wahl RC, Yu W, Luethy R, Patterson SD (2001) Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. I. Profiling an unfractionated tryptic digest. Proteomics 1(1):93–107. doi:10.1002/1615-9861(200101)1:1<93::AID-PROT93>3.0.CO;2-3

  29. Oh J, Pyo JH, Jo EH, Hwang SI, Kang SC, Jung JH, Park EK, Kim SY, Choi JY, Lim J (2004) Establishment of a near-standard two-dimensional human urine proteomic map. Proteomics 4(11):3485–3497. doi:10.1002/pmic.200401018

  30. Court M, Selevsek N, Matondo M, Allory Y, Garin J, Masselon CD, Domon B (2011) Toward a standardized urine proteome analysis methodology. Proteomics 11(6):1160–1171. doi:10.1002/pmic.201000566

  31. Vaezzadeh AR, Briscoe AC, Steen H, Lee RS (2010) One-step sample concentration, purification, and albumin depletion method for urinary proteomics. J Proteome Res 9(11):6082-6089. doi:10.1021/pr100924s

  32. Anderson NG, Anderson NL, Tollaksen SL (1979) Proteins of human urine. I. Concentration and analysis by two-dimensional electrophoresis. Clin Chem 25(7):1199–1210

    Google Scholar 

  33. Costello CE (1997) Time, life ... and mass spectrometry. New techniques to address biological questions. Biophys Chem 68(1–3):173–188

    Google Scholar 

  34. Smith G, Barratt D, Rowlinson R, Nickson J, Tonge R (2005) Development of a high-throughput method for preparing human urine for two-dimensional electrophoresis. Proteomics 5(9):2315–2318. doi:10.1002/pmic.200401267

  35. Zerefos PG, Vougas K, Dimitraki P, Kossida S, Petrolekas A, Stravodimos K, Giannopoulos A, Fountoulakis M, Vlahou A (2006) Characterization of the human urine proteome by preparative electrophoresis in combination with 2-DE. Proteomics 6(15):4346–4355. doi:10.1002/pmic.200500671

  36. Pang JX, Ginanni N, Dongre AR, Hefta SA, Opitek GJ (2002) Biomarker discovery in urine by proteomics. J Proteome Res 1(2):161–169

    Google Scholar 

  37. Sun W, Li F, Wu S, Wang X, Zheng D, Wang J, Gao Y (2005) Human urine proteome analysis by three separation approaches. Proteomics 5(18):4994–5001. doi:10.1002/pmic.200401334

  38. Castagna A, Cecconi D, Sennels L, Rappsilber J, Guerrier L, Fortis F, Boschetti E, Lomas L, Righetti PG (2005) Exploring the hidden human urinary proteome via ligand library beads. J Proteome Res 4(6):1917–1930. doi:10.1021/pr050153r

  39. Lee RS, Monigatti F, Briscoe AC, Waldon Z, Freeman MR, Steen H (2008) Optimizing sample handling for urinary proteomics. J Proteome Res 7(9):4022–4030. doi:10.1021/pr800301h

  40. Marimuthu A, O’Meally RN, Chaerkady R, Subbannayya Y, Nanjappa V, Kumar P, Kelkar DS, Pinto SM, Sharma R, Renuse S, Goel R, Christopher R, Delanghe B, Cole RN, Harsha HC, Pandey A (2011) A comprehensive map of the human urinary proteome. J Proteome Res 10(6):2734–2743. doi:10.1021/pr2003038

  41. Kim KH, Moon MH (2009) High speed two-dimensional protein separation without gel by isoelectric focusing-asymmetrical flow field flow fractionation: application to urinary proteome. J Proteome Res 8(9):4272–4278. doi:10.1021/pr900363s

  42. Wang L, Li F, Sun W, Wu S, Wang X, Zhang L, Zheng D, Wang J, Gao Y (2006) Concanavalin A-captured glycoproteins in healthy human urine. Mol Cell Proteomics 5(3):560–562. doi:10.1074/mcp.D500013-MCP200

  43. Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4(12):2010–2021. doi:10.1074/mcp.T500030-MCP200

  44. Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M (2006) The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 7(9):R80. doi:10.1186/gb-2006-7-9-R80

  45. Goo YA, Tsai YS, Liu AY, Goodlett DR, Yang CC (2010) Urinary proteomics evaluation in interstitial cystitis/painful bladder syndrome: a pilot study. Int Braz J Urol 36(4):464–478, 478–479, 479

    Google Scholar 

  46. Li QR, Fan KX, Li RX, Dai J, Wu CC, Zhao SL, Wu JR, Shieh CH, Zeng R (2010) A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine. Rapid Commun Mass Spectrom 24(6):823–832. doi:10.1002/rcm.4441

  47. Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci U S A 105(47):18132–18138. doi:10.1073/pnas.0800788105

  48. Nolen BM, Orlichenko LS, Marrangoni A, Velikokhatnaya L, Prosser D, Grizzle WE, Ho K, Jenkins FJ, Bovbjerg DH, Lokshin AE (2013) An extensive targeted proteomic analysis of disease-related protein biomarkers in urine from healthy donors. PLoS One 8(5):e63368. doi:10.1371/journal.pone.0063368

  49. Nagaraj N, Mann M (2011) Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res 10(2):637–645. doi:10.1021/pr100835s

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zou, L., Sun, W. (2015). Human Urine Proteome: A Powerful Source for Clinical Research. In: Gao, Y. (eds) Urine Proteomics in Kidney Disease Biomarker Discovery. Advances in Experimental Medicine and Biology, vol 845. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9523-4_4

Download citation

Publish with us

Policies and ethics