Using Isolated Rat Kidney to Discover Kidney Origin Biomarkers in Urine

  • Lulu JiaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 845)


The use of targeted proteomics to identify urinary biomarkers of kidney disease in urine can avoid the interference of serum proteins. It may provide better sample throughput, higher sensitivity, and specificity. Knowing which urinary proteins to target is essential for targeted proteomics. In perfusates, there were proteins not found in normal human urine which may become biomarkers with zero background. There were proteins not found in normal human plasma which will not be influenced by other normal organs and will be kidney specific. When compared with existing candidate biomarkers, over 90 % of the kidney origin proteins in urine identified in this study have not been examined as candidate biomarkers of kidney diseases.


Kidney origin proteins Biomarker 


  1. 1.
    Pisitkun T, Johnstone R, Knepper MA (2006) Discovery of urinary biomarkers. Mol Cell Proteomics 5:1760–1771PubMedCrossRefGoogle Scholar
  2. 2.
    Ye X, Blonder J, Veenstra TD (2009) Targeted proteomics for validation of biomarkers in clinical samples. Brief Funct Genomic Proteomic 8:126–135PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Decramer S, Gonzalez de Peredo A, Breuil B, Mischak H, Monsarrat B et al (2008) Urine in clinical proteomics. Mol Cell Proteomics 7:1850–1862PubMedCrossRefGoogle Scholar
  4. 4.
    Pan S, Zhang H, Rush J, Eng J, Zhang N et al (2005) High throughput proteome screening for biomarker detection. Mol Cell Proteomics 4:182–190PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5:573–588PubMedCrossRefGoogle Scholar
  6. 6.
    Whiteaker JR, Lin C, Kennedy J, Hou L, Trute M et al (2011) A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 29:625–634PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Taft DR (2004) The isolated perfused rat kidney model: a useful tool for drug discovery and development. Curr Drug Discov Technol 1:97–111PubMedCrossRefGoogle Scholar
  8. 8.
    Jia L, Li X, Shao C, Wei L, Li M et al (2013) Using an isolated rat kidney model to identify kidney origin proteins in urine. PLoS One 8(6):e66911Google Scholar
  9. 9.
    Poola NR, Bhuiyan D, Ortiz S, Savant IA, Sidhom M et al (2002) A novel HPLC assay for pentamidine: comparative effects of creatinine and inulin on GFR estimation and pentamidine renal excretion in the isolated perfused rat kidney. J Pharm Pharm Sci 5:135–145PubMedGoogle Scholar
  10. 10.
    Epstein FH, Brosnan JT, Tange JD, Ross BD (1982) Improved function with amino acids in the isolated perfused kidney. Am J Physiol 243:F284–F292PubMedGoogle Scholar
  11. 11.
    Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309–338PubMedCrossRefGoogle Scholar
  12. 12.
    Remm M, Storm CE, Sonnhammer EL (2001) Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 314:1041–1052PubMedCrossRefGoogle Scholar
  13. 13.
    Shaye DD, Greenwald I (2011) OrthoList: a compendium of Caenorhabditis elegans genes with human orthologs. PLoS One 6:e20085PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN et al (2010) InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 38:D196–D203PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34:D363–D368PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Database resources of the National Center for Biotechnology Information (2013) Nucleic Acids Res 41:D8–D20CrossRefGoogle Scholar
  17. 17.
    Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R et al (2009) EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19:327–335PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K et al (2010) Towards a knowledge-based human protein atlas. Nat Biotechnol 28:1248–1250PubMedCrossRefGoogle Scholar
  19. 19.
    Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M (2006) The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 7:R80PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Marimuthu A, O’Meally RN, Chaerkady R, Subbannayya Y, Nanjappa V et al (2011) A comprehensive map of the human urinary proteome. J Proteome Res 10:2734–2743PubMedCrossRefGoogle Scholar
  21. 21.
    Li QR, Fan KX, Li RX, Dai J, Wu CC et al (2010) A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine. Rapid Commun Mass Spectrom 24:823–832PubMedCrossRefGoogle Scholar
  22. 22.
    Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA et al (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20:363–379PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Moon PG, Lee JE, You S, Kim TK, Cho JH et al (2011) Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics 11:2459–2475PubMedCrossRefGoogle Scholar
  24. 24.
    Wang Z, Hill S, Luther JM, Hachey DL, Schey KL (2011) Proteomic analysis of urine exosomes by multidimensional protein identification technology (MudPIT). Proteomics 12(2):329–338PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Saha S, Harrison SH, Shen C, Tang H, Radivojac P et al (2008) HIP2: an online database of human plasma proteins from healthy individuals. BMC Med Genomics 1:12PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272PubMedCrossRefGoogle Scholar
  27. 27.
    Shao C, Li M, Li X, Wei L, Zhu L et al (2011) A tool for biomarker discovery in the urinary proteome: a manually curated human and animal urine protein biomarker database. Mol Cell Proteomics 10:M111–010975PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Liu L, Liu X, Sun W, Li M, Gao Y (2013) Unrestrictive identification of post-translational modifications in the urine proteome without enrichment. Proteome Sci 11:1PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PharmacyBeijing Children’s Hospital, Capital Medical UniversityBeijingChina

Personalised recommendations